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ABSTRACT. We study the existence of solutions for the periodic boundary value problem for
some second order integro-differential equations with a general kernel. Also we develop the
monotone method to approximate the extremal solutions of the problem.
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1. INTRODUCTION
The purpose of this paper is to study the following periodic boundary value problem for a
second order nonlinear integro-ordinary differential equation
—u'""(t) = ft,u(t),Ku(t)),u(0)=un),u'(0)=u'(2x) (1.1)
where f:1 xR®*— R is a Carathéodory function, K is an integral operator in L%(I) with kernel
k €L*J),J =1 xI. Related to (1.1) we consider the linear problem
~u"(@)+Mu(t) + N[Ku](t)=h(t), u(0) =u(2n),u'(0) =u'(2x) (1.2)
where M,N €R, and h ELX]).

By a solution u of (1.1) we mean a function u € H*(I) such that the function
t €1 — f(t,u(t),[Ku](t)) is a function in L*I) satisfying the equation for a.e. ¢t €I, and
u(0)=umn),u'(0)=u'(2n).

Problem (1.1) is considered in [7] with f continuous and K a Volterra integral operator with
positive kernel. The authors developed the monotone iterative method for (1.1) based on a
comparison result. As it is pointed out in [6], the method of [7] is not applicable to the general
situation. Erbe and Guo studied problem (1.1) with f continuous, and k continuous and positive.
They first considered the linear problem (1.2) and gave an estimate on || k|| .. We note that in [6],
Ku = NTu + N,Su with N, N, real numbers, T an integral operator of Volterra type, and S an integral
operator of Fredholm type. Problem (1.1) is studied in [8] under the assumption that f(t,u,v) is
continuous and increasing in v, and in [7] for f continuous and K of Volterra type. Following the
ideas of [6] we study (1.1) in the general case, i.e., fis a Carathéodory function and k is an L2 kernel.
Also, we do not require k to have constant sign onJ. For the linear problem (1.2) to have a unique
solution, we give an estimate on || k| , that improves the estimation given in [6], and our estimate is
the best possible in the sense that if equality is attained, then the existence-uniqueness result for

(1.2) is not valid anymore.
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2. PBVP FOR SECOND ORDER ORDINARY DIFFERENTIAL EQUATION
We recall here, for convenience of the reader, some results for the following periodic boundary
value problem (PBVP) for a linear second order ordinary differential equation. The problem
-u"()y+Mu(t)=h(t); u@)=u2n); u'(0)=u’'2n) (2.1)

withM =m* m >0 and h € L), has a unique solution given by the expression
2
u(t) = J' G(t,s)h(s)ds ,
(1]

the Green function G is given by

1 m(t -s) m2n— +s

—]e ; <s8<t<

G(t,s) 2'"(62’""—1)[ e T 0ssstsonm

’ 1 m(s -t) m2x-s +1 .
——]e e ; <t<s<?2
2m(e2""‘—-l)[ + )] O<t<s<2nm
Moreover, G is continuous onJ =1 x/,
2x 1 . emu
J; Glt,s)ds =5, min{G(t.8): (1) €} = i—sm .
Imx
and max{G (¢,5): (t,s) EJ } = l('z‘_,—n =b

Since G(t,s) = a > 0 for every (t,s) €J we obtain the following maximum principles:
h=z0 ae.on I implies u=z0on I, (2.3)
h=<0 aeon [ implies u<Oon [ (2.49)
Obviously, A =0 implies u =0, but if h>0 on a set of positive measure of I, then

u(t)zaji*h(s)ds >0forevery t €i.

3. LINEAR INTEGRO-DIFFERENTIAL EQUATIONS
We now consider the integro-differential problem (1.2) with M >0,
N ER,[Ku](t) = fZk(t,s)u(s)ds,k ELXJ) and hELY).
Note that K is an integral operator, and it could be either of Volterra or Fredholm type. Even
K can be of mixed type as in [6] where
Ku =NTu +N,Su 3.1)

with N, N, real numbers, T an integral operator of Volterra type with kernel k,, and S an integral
operator of Fredholm type with kernel k,. Thus, k =N = ky+N, * k,.
In what follows, || |, denotes the usual norm in L?, 1 < p < o,

According to the results of section 2, we have that u is a solution of (1.2) if and only if
u(t) - fo * G(t5)[h(s) ~ NTKu](s)]ds . (.2)
Using Fubini’s theorem it is easy to see that for any t €/
-NJ:"G(z,s)[Ku](s)ds -Lz"t(:,s)u(s)ds,
with
wt,s) =N |, " G r)k(rs)ds (33)

Therefore, equation (3.2) is equivalent to the following abstract equation
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u(t) =w(t) +[Tu](1) (3.4)
where
2r
w0 = [ Gs)nis)ds
and
2n
[T“](')=J; e, s)u(s)ds .

In consequence, u is a solution of the linear problem (1.2) if and only if « is a fixed point of
the operator T,, : LX(I) = L*(I), T,,(u) = w + Tu.
THEOREM 3.1. Suppose that
Id.<1, (3.5)

then (1.2) has a unique solution u <lim, _, ,u,, uy€LI), u,,, =T, (u,), n =0. Moreover, the

solution is given by the following relations

u(t) = L "G ts) + H(t,5)]h(s)ds , (3.6)
H(t,s) = L P L) G(r.s)dr , 3.7)
L= ilt, , T =T, T,(t5)= fzntn_l(t,r)t(r,s)dr , n=2. (3.8)

PROOF. Note that | T,(u) - T, (v)|,= ||, * |4 —v|, for any u,v €L*(I). By the contraction

principle of Banach we have that T, has a unique fixed point which is the solution of (1.2). Now,

we choose uy = w. Using again Fubini’s theorem, it is easy to see that

(1) = wit)+ L " H (6,5 h(s)ds ,
2n
H,,(t,s)=Jo L(t,r)G(r,s)dr ,

L=3r.
i=1

We have that |t|,=]t|%, and taking into account (3.5) we see that the series 3;.,7; is
convergent in L%J). We now deduce that {H,} — H in L) and the validity of formulas (3.6),
(3.7,(38). m

Takinginto account (3.3) we have that | t|, < || k[ ,| G|| . Inconsequence, || k| | G|, < 1 implies
that the linear problem (1.2) has a unique solution. It is possible to give different estimates for k
that imply that (3.5) holds. For instance, if there exists ¢ > 0 such that

2x
f k(t,s)ds| <c forevery s€I (3.9)
(1]

then |(¢,s)| s bc for every (¢t,s)EJ and 1|, <2nbc. Therefore, ¢ < 2% implies that the linear

problem (1.2) is uniquely solvable.

2xfkl, . .
and, in this

In the case that k €EL7(J) then |1(¢,s)] < l—ﬁ—' for a.e. (¢,5) EJ. Thus, |1, <—;

situation, ||| . < % implies that | 1], < 1.
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Note that in the case that K is given by (3.1), Erbe and Guo gave the estimate (see formula (4)

in [6])
M
N Kol .+ Nl &, <’2—n

which obviously implies (3.5).

A natural question is if Theorem 3.1 remains valid in the critical case | 1], = 1. The following
example shows that in such a case the linear problem (1.2) may have either no solution or an infinite
number of solutions, thus showing that the estimate (3.5) is as sharp as possible.

EXAMPLE. Take k =c¢ - G,c €R such that | k||, = 1. The integral operator T associated to
tis compact and selfadjoint. Thus, +1 or -1 is an eigenvalue of T. Suppose that +1 is an eigenvalue
and choose u = 0 with Tu = u. Thus, by the Fredholm alternative theorem, the equation u = w + Tu
has either no solution or an infinite number of solutions.

4. MAXIMUM PRINCIPLE

We are now interested in obtaining a similar result to (2.4) for the linear integro-differential
problem (1.2). Using the representation (3.6) for the solution of (1.2), we see that it is equivalent
to show that G + H =0 a.e. onJ. Since G(t,s)=a for any (¢,s) €EJ, we can affirm that G +H =0
a.e. on/J if, for instance, | H|| . < a. We first give an estimate for | H| ...

THEOREM 4.1. Suppose that k €L"(J) and

M
4. <5 @y
Then, (3.5) holds and
Il
H| s——1= 4.2
V=307 —2]a10) “2)

PROOF. From the relation (3.3) we deduce that t € L*(J), and

14 1
M -4

Id.=

On the other hand, v, €L~(J) for any n €N, and || t| . s d(2std )" ~'. This implies that the series

>a-1T, is convergent in L(J). Therefore,

d d
.- 35| s 75
and

ILl-__ 4
M “M(l1-2nd)

I1H]| =
which is precisely estimate (4.2). m
We note that the right hand side of (4.2) tends to 0 when || || , tends to 0. Thus, we obtain the
following maximum principle for the linear equation (1.2).
THEOREM 4.2. Assume that k €L"(J) and

Mme™™
k|o<—m——————=r. 4.3
Il e _1+2nme™ “3)

Then, we have that (3.5) holds and G +H =0 a.e. on J.



PERIODIC BOUNDARY VALUE PROBLEM 761

PROOF. We first note that the following inequality holds true:

me™™ 1
e L 44
e’ _1+2nme™ 2n (44)

Hence, | k| . < :’——" Now, using (4.2) we have for a.e. (¢,5) €J that

14] -

Gle,s)+H(t,s)=a - g

Combining (4.2) and (4.3) we obtain that | H|| . s a.

Therefore, we can write that G(1,s) + H(t,s) 2 a - | H|| . > +0 for a.e. (¢,s) €J, completing the

proof of the theorem. m

As a consequence, we obtain that if inequality (4.3) holds then
h 20(s0) a.e.on I implies u 20(<0) a.e.on J . (4.5)

We now consider the case when the kernel has constant sign onJ. Ifk s0a.e.onJ, thent=0

a.e. onJ and we have that H = 0 a.e. onJ. Then, trivially the maximum principle (4.5) holds.

Ifk = 0a.e. onJ, thent < 0 a.e. onJ and the previous reasoning is not valid. However, we have

that (-1)*t, =0 a.e. onJ, n = 1 and this is useful to prove the following result.

THEOREM 4.3. Suppose thatk €L"(J) is such thatk =0 a.e. onJ and

[ £l = g;;"-;n[\/(ez“"' C1Y + 1672Me™™ (2™ 1)) =1, . (4.6)

Then, (3.5) holds and G +H =0 a.e. onJ.

PROOF. We first note that r, < ;’—1 and then k||, < 5”; On the other hand,

@©
L= 3,
n=1
n odd

3 > 2 M| k|-
Sul < Sulls 3 d@rdpta—3 . .
“:;dld . :;dld ® :;dld 1—(251:(1)2 M2—4J'I$2"k||.2,
Hence,
Lt s)zi"k":_
UM -4 k|2
for a.e. (¢t,5)EJ,
-M| k|
H(t, —_—
)2 k]
for (¢,s) €J. In consequence,
-M| k|«

G+Hza-—————=-=a
M2 -4 k|2 !

onJ. Now, a, =0 if and only if

4™ k|2 + m(e>™ - 1)][ k] .~ M <0,

and this is true for | k| .€[0,r,]. m

Note that estimate (4.6) improves (4.3) since r < 7.
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5. MONOTONE ITERATIVE METHOD

We now consider the nonlinear equation (1.1). We recall that fis a Carathéodory function if
f(t,+, ) is continuous for a.e. t €1, f(-,u,v) is measurable for any u,v €R, and for any R > 0 there
exists 0 = 0 €L(I) such that | f(¢t,u,v)| s o(¢) for a.e.t €1 for any u,v € R with max(|u|,|v|)sR.
Define HZ,(I) = {u € H(I): u(0) = u(2x),u’(0) = u'(27)}. By asolution u of (1.1) we mean a function
u €H;} (I)suchthatt €I — [F(u)](¢) = f(¢,u(¢),[Ku](t)) is a function of L%(I) satisfying the equation
forae.t€l.

We say that a € H2(I) is a lower solution for (1.1) if Fa € LX), and

—a"(t) s f(t,at),[Ka](t)) forae. tEI. (5.1)

Similarly, we define an upper solution as a function € H2,(I) such that Fg € L*(), and

—B"(¢) s f(1,B(1),[KB](¢)) forae. tEI]. (5-2)
Inu € L), in general, Fu is not a function of LXI). The condition that F maps LXI) into LX)
is equivalent [1] to the existence of b €L*(I),a € Rsuch that| f(¢,u,v)| sb(t) +a(|u| +|v|)fora.e.
t €1 and every u,v ER.
Now suppose that condition (3.9) is verified. Obviously, (3.9) is satisfied if, for instance,
k EL7(J). However, k(t,s) = 57 is a kernel that satisfies (3.9) but does not belong to L*(J). Then
for any u € L*(I) we have that

2x
| [Kul(e)| = ’L k(t,5)u(s)ds

<cfuf.,

andKu € L=(I). In consequence, | f(t,u,[Ku](£))| s Ox(t)fora.e.t €I, whereR = max(| | .,c| u] ),
and Fu € LY(I).
Thus, if condition (3.9) holds and a € HZ(I), then Ka. € L*(I) and Fo. € LXI).
If o, B are lower and upper solutions of (1.1) respectively, we shall assume that
asf on I. (5.3)
Thus, k > 0( < 0) implies that Ka < (=)Kp a.e. on I.
In the case that k = 0 a.e. onJ, we introduce the following condition: there exist M > O,N >0

such that
flt,u,v)-f(t,w,x)=-M(u -w)-N(v-x) (5.4)

forae.t €l,a(t)sw su <f(t), and [Ka](t) <x s v s[KB](z).
If k <0 a.e. on J, we shall use the condition: there exist M > 0,N > 0 such that
flt,u,v)-ft,w,x)=2-M@u -w)-N(x -v). (5.5)
fora.e.t EI,a(t) sw s u < f(t), and [KB](t) sv sx s[Ka](¢).

THEOREM 5.1. Assume thatk €L"(J),k =0 a.e. onJ, and | k|| . s l—;—l In addition, suppose

that there exist o, p € Hz.(I) lower and upper solutions of (1.1) respectively such that (5.3) and (5.4)
hold. Then, there exists monotone sequences {a,} % ¢, and {B,} | Y uniformly on I with ogy=a

and By=P. Here ¢ and are the minimal and maximal solutions of (1.1) respectively on [a,B]

Moreover, these sequences verify ay<...sa, s...sB, ... s f.
PROOF. Forn €[a, ], let us consider the following linear periodic boundary value problem
-+ Mu +N[Ku]l= h(t), u()=u2m), u'(0)=u'(2m) (5.6)
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where h(t) = h,(¢) = f(t,n(¢),[Kn](t)) + Mm + N[Kn](2).

This linear problem has a unique solution 4 = An in view of Theorem 3.1 since | N * k

|osr.
Moreover, in this case G +H =0 a.e. onJ.

The operator A is well defined from [a,B] to [a, ] and A is increasing.

Indeed, let n € [a, ] and define v = u — a. Thus, using (5.4), we obtain

—v" + Mv + NKv = f(t,n,Kn) + Mn + NKn - (- + Ma + NKa) =
fe,m,Km) + Mn + NKn - f(t,a,Ka)-Ma-NKa =0.

Hence, by virtue of Theorem 4.3 we deduce that v = 0 on /. Similarly, one can show that u < on
L

To show the monotonicity of A, letn;, €E[a,B], 4, =Am,, i = 1,2, and w = u, — u,. Hence,

-w'" +Mw + NKw = f(t,m,,Kn,) + M, + NKn, - f(t,1,,Kn,) -Mn,-NKn, =0

and then, w 2 0.

We now define oy =a, a,,, =Aa,, n =0. By the properties of the operator A, the sequence
{0, } is increasing and uniformly bounded on I. Then, {a,} * ¢ pointwise on /. Writing the integral
representation for A a, and using standard arguments we obtain that ¢ is actually a solution of (1.1).
Analogously, defining B, =8, B,., =AB,,n =0, {B,} | P, where  is solution of (1.1).

To show that ¢ and ¢ are the minimal and maximal solutions of (1.1) in [a, ], let u € [a, B]
be a solution of (1.1). Then, Au = u, and using the properties of the operator A we have that a, <u< B,
for every n €N. Passing to the limit whenn — o we obtainthat ¢ su <. m

Ifk <0a.e. onJ, then we can use directly that G + H = 0 a.e. onJ to obtain the following result.

THEOREM 5.2. Suppose that k EL"(J), k<0 a.e. on J, and || k| » si;-ffm. In addition,
assume that there exist o, p € Hz(I) lower and upper solutions of (1.1) respectively such that (5.3)
and (5.5) hold. Then, there exist monotone sequences {o,} * ¢, and {B,} |  uniformly on I with

a=0ys..so,s..sf, s...sfB, =B,

and ¢, are the minimal and maximal solutions of (1.1) respectively on [a, B}

PROOF. Forn €[, B], let us consider the linear problem (5.6). Inthis case, Ko z u = Ky = K
onl. As in the proof of Theorem 5.1 we have that (5.6) has a unique solution u = An. The operator
A is well defined from [a, ] to [a,B], and it is increasing. As in the proof of Theorem 5.1 we
construct monotone sequences {a,} 1 ¢ and {B,} | ¥, where ¢ and 1 are the minimal and maximal
solutions of (1.1) respectively betweenac and . m

It may occur that

Kas<Kp ae.on [ 6.7

even if a < B and k changes sign on J since [Ka](z) depends on the value of k(¢,s)a(s), 0 s s < 2.

(For example, take € >0, k(t,s)=1 for 0ss <2mn-¢, k(t,s)=-1 for 2n-e<s<2m and a=1,
B =2.) Insuch asituation, we can apply the previous results to obtain.

THEOREM 5.3. Suppose thatk EL (J),N | k|| . <r, and (5.3), (5.4), (5.7) hold. Then, there

exist monotone sequences {a,} 1 ¢, and {B,} | ¢ uniformly on I with ag=qa, B,=p and
Qs...sa,s...<sB,<...sP,. Here ¢ and ¢ are the minimal and maximal solutions of (1.1)
respectively on [a, B].
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If Koz Kf a.e. on J (even if k has no constant sign on J), then we have an analogous result
using (5.5).

In the general case (k has no constant sign on J) we are able to deal with a linear integral
perturbation of the ordinary differential equation —u" = f(¢, u), being such a perturbation of the type
N + Ku,N €R. In concrete, we consider the problem

—u" = flt,u)+N +Ku, u(Q)=u(2n), u'(0)=u'2x). (5.8)

We now require the following condition: there exists M > 0 such that

flt,u)-ft,v)=-M(u -v) (5.9)
fora.e.t €I,a(t) sv su < f(t). In this case, for ) €[a,B], the linear problem (5.6) reads
-+ Mu =f(t,m) +Mn +NKn.

THEOREM 5.4. Consider the nonlinear problem (5.8) were f satisfies condition (5.9).
Suppose that k € L™(I) is such that | N| || k|| . <r, and that there exist o, € H;"(I) lower and upper
solution of (5.8) respectively with o < B on I. Then, there exists monotone sequences {a,} 1 ¢, and
{B,} | Yuniformlyonlwitha=0g<...sa,s...sB,s...sBy=P. Here ¢ andp are the minimal
and maximal solutions of (5.8) respectively on [a, ]
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