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ABSTRACT. An algorithm for the computation of Green’s matrices for boundary value problems
associated with a pair of mixed linear regular ordinary differential operators is presented and two

examples from the studies of acoustic waveguides in ocean and transverse vibrations in nonho-

mogeneous strings are discussed.
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1. INTRODUCTION
Recently, a new class ofproblems of the type where different differential operators are defined

over two adjacent intervals, involving certain mixed (interface) conditions are studied in [1,2,3,4].

These problems involve a pair of differential operators of the type 1ul PeDu ul, defined
ko0

on the interval J-[a,b] and x2u2- Q,D’u2 u2 defined on the adjacent interval J2-[b,c],
k-0- < a < b < +% where :k is an unknown constant (eigenvalue) and the functions u and u-z are

required to satisfy certain mixed conditions at the interfacex b. In most of the cases, the complete

set of physical conditions on the system gives rise to selfadjoint eigenvalue problems associated

with the pair 0q,%). Based on the interface conditions these problems can be classified into three

types, namely (i) where the values of u and u-z are not explicitly related to each other at x b, (ii)
where u and u-z are required to satisfy the continuity conditions at x b, and (iii) where u and

satisfy certain matching conditions at x b.

The methods presented in [4] for the construction of Green’s matrices for the boundary value

problems (BVPs) associated with 0:a, x2) are theoretical in nature and involve lengthy calculations.

Here, in this paper we present (i) simpler algorithms for the computation of Green’s matrices for

the BVPs associated with 0:,), and (ii) construct the Green’s matrices for the problems found in

some physical situations.

Before indicating the division of the work into sections, we introduce a few notations and make

some assumptions. For any compact interval J ofR and for a nonnegative integer k, let C(J) denote

the space of all k-times continuously differentiable complex valued functions defined on J. For a

function u, let u) denote thej derivative of u, if it exists. For a compact interval J ofR and for a

positive continuous (weight) function r(x) defined on J, let L(J,r) denote the Hilbert space of all
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Lebesgue measurable complex valued functions u defined on J such that r(x)[u(x)[ is integrable

overJ. The inner product in L(J,r) is given by (u, v)-fu(x)v-r(x)dx, u, v L(J,r), where v(x’-’-
denotes the complex conjugate of v(x), and the norm is given by

I111- Cx)luCx)ld . eL2(J,r)

Let H(J,r) denote those functions inACff) such that both u and u) are inLff,r). t C denotes

the k-dimensional complex space whose elemenm we take to be column vectors. For k x matrix

A with complex entries, A" denote the x k matrix which is the conjugate transpose ofA. tA-denote the inverse of a square matrix A, if it exists. If V and V are vector spaces (over the same

field), then V x V denotes the cartesian product of V and V taken in that order. For an operator T,

D(T),R(T),N(T), (T) denote the domain, range, null space and the dimension of the null space of

T, respectively. tX-Lff,r) xL(Jr) be the caesian product Hilbert space equipped with the

inner product (-) and the no "11 given by

<{u,.}, {v,, v}> <,, v,> + <u.v, {,, u}. {,, v} ex,
and

{.,,.}II (II.,II + II.II’)’=, {.,,}

Let H H’(Jl, rl) H"(J2,r2) be the cartesian product Banach space.

’- PD andASSUMPTION 1. LetJl-[a,b]andJ2-[b,c],-<a <b <c < +. Letx,-,, ._

0 Q’D’ be two formal differential expressions, where P . C(J), k O, 1 n, P,(x) ,, 0

on J1; Q C(J2), k O, 1 m,Q,,,(x) 0 on J2; and r,(x) . C(J,) and r:,(x) C(J) are positive

real valued functions. We also assume n m.

ASSUMPTION 2. LetA andB hem n andre tn matrices with complex entries, respectively

such that the range ofA range ofB, and hence, rank ofA rank ofB -m.

In Section 1, we shall collect together a few definitions and results, from our earlier papers,
which we require here. In Section 2, we shall present a lemma regarding the form of solutions of

a type of initial value problems (IVPs) associated with the pair (x,,x:,), in terms of Green’s matrices.

In Section 3, we shall present an algorithm for the computation of Green’s matrices for the BVPs
associated with the pair (x,,x:0- In Section 4, we shall construct the Green’s matrices for problems

encountered in the studies of acoustic wave guides in ocean and transverse vibrations in nonho-

mogeneous strings.

2. PRELIMINARIES

Letfbe a complex valued function defined onJ. Letf -f/J, 1,2. LetJ -J LIJ2. Consider

(,,)u -/" (2.)

and the corresponding homogeneous equation

(,,’r,2)u 0. (2.2)

DEFINITION I. We call a complex valued function u(x) defined on the interval J, a solution

(nonexplicitly mixed) of (2.1) if

(i) the functions u/J u AC"(J) and u/J u AC"(J)



GREEN’S MATRICES FOR BOUNDARY VALUE PROBLEMS 791

(ii) u and u satisfy the equations xul f, for x J1 a.e., and :2u2 f2, for x J2 a.e., respec-

DEFINITION 2. We call a complex valued function u(x) defined on the intervalJ, a continuous

solution of (2.1) if

(i) u is a solution of (2.1) in the sense of Definition 1, and

(ii) the functions ui and u satisfy the continuity conditions at the interface point x b, namely,

u)(b -)= u)(b +), j O, m 1.

DEFINITION 3. We call a complex valued function u(x) defined on the interval J, a matching

solution of (2.1) if

(i) u is a solution of (2.1) in the sense of Definition 1, and

(ii) the functions u and u satisfy certain matching conditions at the interface point x-b,

namely, Aa(b) B t2(b), where
t2 t(b) column(ul(b), u)(b) u" -X)(b)),

and

t’-(bz(b column(uz(b ),ut2X)(b ,u2 ))

REMARK 1. All the above definitions can be carried over to equation (2.2) also.

Below, we recall a few definitions from [6], in the form, required here. Let x

DEFINITION 5. The nonexplicitly mixed operator N0:) is defined by

D(N(’r,))-- {{ut, u,} H/Bi’V({u,u2})- O, n +m},

(){u,u (u,/,

where
-1 m-1

B({u,u2})- o(a,u’(a)+ou)(b))+ o(?,iu’(b)+,iu’(c)) i- 1 n +m

are the linearly independent nonexplicitly mixed bounda values.

DEFITION 6. The continuously mixed operator C() is defined by

O(C(x))-{{u,u:} eH/Bf({u,})-O, i-1 n, u)(b)-u2)(b), i-1,...,n},

c(x) {ut,} {xu,x}) where

N-1

,{u,u- ,u><a+O,u><)+6,u’<) i- L...,n
.0

are the linearly independent continuously mixed bounda values.

DEFION 7. e matchingly mixed operator M(x) is defined by

where

D(M(x))- {{u,u2} eH/Bf({u,u})-O, 1 n +m, Aa(b)-B(b),}

M() {ul, u}

N-1

BiC{u,u:,}) ,,oCa,u’)(a) + bou’)(c)) + , a(b i- 1 n,

are the linearly independent matchingly mixed boundary values.
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REMARK 2. For the sake of brevity, we shall study only the operators N(r) and M(r) and the

results for the operator C(r) follow by takingA -B -I (the n n identity matrix) in the results for

M(r).
ASSUMPTION 3. For the matchingly mixed case we assume that n m.

2. LEMMA REGARDING THE IVPs ASSOCIATED WITH O:,r)

We consider a particular type of initial value problem associated with (rt, r2) for nonexplicitly

mixed and matchingly mixed operators and give a result about the form of the solution of the IVPs,
in terms of Green’s matrices.

(I) Nonexplicitly Mixed Initial Value Problems

Let ul u,,l and u12 u,a be functions in H(J,r) and Hm(J,r2) which form bases for

the solution spaces of rut-0 and r2u2-0, respectively. Then, the pairs {ul,0},
{u,0} {u,,,0}, {0,ul2} {0,u,,a} (all of which belong to H) form basis for the solution space

ofN(r){u,u2} -0 (for the explicit form of the basis see [3]).
Define N(z) to be the operator in H such that

NCr) {{u,u2} H/u()(a)=O, j -0 n 1, u)Cb)-O, j -0 m 1},

REMARK 3. We note that the Wronskian of ul u,,, namely, W(Ull Unl)(S 0 for all

s J1, and the Wronskian of u:,l, u,,,:, namely W(u2 urn2) (s) 0 for all s J2. And, we denote

by W(u, un)(s) the determinant obtained by replacing the ’’ column in the corresponding
Wronskian by (0, 0 1) C’,i 1 n. Similarly, we define W/(u12, u,,,2)(s).
(II) Matchingly mixed initial value problems

Let the set of pairs {u.,ul} {u,l,u,,2} be a basis for the solution space ofMo(r) {ut, u} 0,

where

Mo(r) {{u,u} H/Aa(b)-Bu2(b)}

M0() {u,u_} {u,}.

Also, define M(r) to be the operator in H such that

M(r) {{u,u} H/u)(a O, j O, ...,n 1,aa(b Bud(b)},

M(r) {u, u2} {ru,r.zu}.
The lemma below follows from the variation of parameters formula.

LEMMA. (I) The solution {u,u-z} ofN(r){u,u2} {f,j} is of the form u(x)- {u(x),u(x)}

; G(x,s)f(s)r(s)ds xJ

G(x,s)f2(s)r(s)ds x J2

where
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w.(u u.,)(s)
u,(x)

Also, we define

o, w,Cu, u.)(s)
u,(x)Gzz(X’S)’i-lQ,,,(s)WCulz ,u,,,2)(s)

and call G’v as the Green’s matrix for N"0:).

where

and

Also, we define

a <s <x <b,

b <s <x <c,

II) The solution {ul, uz} ofM(z){u,u2} {f,f2} is of the form u(x)- {u(x),u2(x)}

/ Gff(x,s)f(s)rx(s)ds x

a(x,s)(s)rl(s) / a,’(x,s)(s)r,(s)

W,(u ,u.3(s)

c,(x,s)-,..p.(s)W(u u.O(s)

W,(u. u.)(s)
u,(x)::

a <s <x <b,

a<s<b, b<x<c,

and call Gu as the Green’s matrix for M(r,).

b <$ <x <c

Gu 0

G2ff G

(2.3)

(2.4)

3. COMPUTATIONAL ALGORITHM FOR THE GREEN’S MATRICES FOR
OPERATORS ASSOCIATED WITH

In this section, proceeding along the lines of [5], we present an algorithm for the computation
of Green’s matrices for operators associated with

(I) Nonexplicitly mixed operator: Consider {fx,j} X.

Let u(x) {ux(x),uz(x)} (N0:))-x (f,J}. Then (see [4]), u(x) {Ul(X), U2(/)}

f. G(x,s)f(s)r(s)ds+ f G(x,s)f(s)r,(s)ds,

f G(x’s)fl(s)rl(s)ds+ f, G(x’s)f(s)r2(s)ds’ x J.
(3.1)

we denote
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and we call G" the Green’s matrix for the operator N(x.). Let v(x)-{v(x),v2(x)}
(N(x))- {A(x),f(x)}. By Theorem 4 [1], we have rl(N(r)) n + m. Since, {ui vi, u2- v2} belongs

to the solution space of x{u,u} -O, there exists scalars c cn such that u(x)- {u(x),u2(x)},

qu,(x) + v(x), E cn .iu2(x) + v(x) (3.3)
-1 i-I

Applying the boundary value on (3.3), we have B({u,u}) 0 1,2, ...,n + m. That is,

B:({ ciuil(X",.t "-t c"/iui(x’})"-B:({v"v2}’ (3.4)

But,

where

and

B:i- ,.i(c:tu ")(a) + i,u)(b)) 1 n

t.
?itu)(a + 6itu)(b 1, m 1, n +m

Relation (3.4) can now be written as,

c.,B:, + , c. /.,B, -Bf({vx, v2}), I, ...,n +m.
i-I

It can be verified that the coefficient matrix of the (n +m) (n + m) linear system (3.5) in (n + m)

unknowns, is nonsingular. Now, by the choice of {vl, v2}, we have
-1 -1

where

and

(3.6)

m-1

-,C) Y_, ,E (u. u.:O()
tokut tc

Clearly, N H"(J,r) and NH’(J,r). Rewriting (3.5), we have, for
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LetB-(B/,),i- 1 n andB--(B),j-O,...,m l- 1,...,n +m. LetB -[B,B]. It can beshown

that B is a nonsingular matrix. That is, det B 0. Consider the (n + in) (n + m) linear system, for

l- 1,...,n +m,

B,’,{z,,,z,} + B{z,,/,),z,./,} --{,}, (3.7)
i-l - {B,,B},i 1,. n andj-1,2,, m whereB andWe have by Cramer’s rule, {z,(s),ziz(s)}-Bare determinants obtained by replacing the ’ andj’ columns inB andB, by the column vectors

(t,...,,.,>) and (g ,+,), respectively. at is, each of z(s) and z(s) are linear

combinations off,(s) andre(s), respectively. Hence, {z(s),z(s)} H. en, we have by taking

the inner-product of both sides of (3.7) with {A,},

-1 -1

(by (3.6)), which implies that,

c ({zl(s),z(s)}, {ft(s),f2(s)}), 1 n + m.

Combining (3.3) and (3.8), and comparing with (5), we get,

G (x,s)-
Uil(X)Zil(S) a < x < s < b

62(x,s)- ui(xi(s), a <x <b b <s <c

(3.8)

G21(x,s)- ui(x)zi(s), b <x <c a <s <b
i-I

[ ilui(x)z(s)+G(x,s), b <s <x <c

6(x,s)-
ui(x)zi(s b < x < s < c

This completes the algorithm for the computation of Green’s matrix GN for the nonexplieitly mixed

operator N:).
REMARK 4. The algorithm for the computation of the Green’s matrix Gu for the operator

M(x), runs along the similar lines, with n m.

4. PHYSICAL EXAMPLES
In this section, we shall use the computational algorithms developed in Section 3, to compute

the Green’s matrices for a matchingly mixed operator an/] a continuously mixed operator,

encountered in the studies of acoustic waveguides in oceans and transverse vibrations in nonho-

mogeneous strings, respectively.
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(I) Acoustic waveguides in oceans [6]:
Consider the ocean to be consisting of two homogeneous layers, with a rigid bottom and a

pressure release surface. Then, the propagation of acoustic waveguides in such an ocean is governed

by the following equations.

r,u, uz) + K2u Lug, 0 < x < d

+ < x <

together with the mixed boundary conditions given by,

u (0) o, u (clg

where p and P2 are constant densities of the two layers, K,K2 are constants which depend upon the

frequency constant o and the constant sound velocities cl, c2 of the two layers, respectively, . is an

unknown constant, [0,d] and [dl, d2] denote the depth of the two layers and u and u2 stand for the

depth eigenfunctions. LetJ [O,d] andJ2 [d,d2]. The matching conditions at the interfacex --dl
can be written in the matrix form Axa(d)-B2a2(dt), where ai(dO-column(ui(di),u.t,n(dO),

Ai 1/pi
for 1,2. Also, we have n m d 2. Define

M(x) {{u, u2} H2(J, 1/p) x H2(J2,1/p:) /afl l(d) Afl(d,), u(O) u’)(d2) 0},

M(r,)u {’u,xzuz}

After simple calculations along lines of the algorithm, we get the form of the Green’s matrix Gu to

be of the form,

sinKx

KM (19.:,K cosK(d d) cosK(cl s KsinK(cl s sinK(cl d)) 0 x < s d
G- sinK:

[ KM (PcsK(-d0csK(d-x)-pKsinK(d-x)sinK(-d0)’ 0 <s <x

G p’
-s,nKxx cosK2(d2-s), 0<x <all, di <$ <d

sinK: cosK2(dz-x), 0 <s <d, d <x <d

[osK(a-,)
G J|cosK2(d_x)(PzK sinK,d, csK2(d,-s)+P:,K, cosK,d sinK(s -d,)), d, <s <x

We also note that

and

AtdCdt,s) -M-A2G2t(dt, s)

AJ(d,,s AG(a,s
REMARK 5. In the above, we have the compact and general form of the Green’s matrix of

the problem compared to the one given in [6].
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(II) Transverse vibrations in nonhomogeneous strings [7]:

Consider the string consisting of two portions of lengths dl and d- dl, and different uniform

densities p, P2 respectively, having tension Tand stretched between the points x 0 andx d2. The

modes of transverse vibrations of the above string are governed by,

.- c(-.)) . o < x < d.
and

2. (2)
:2u2-c2t-u )-Lu2, dl<x<d2,

together with the mixed boundary conditions given by,

u(0) u:Cd9 0. u(4) u(d) u)(d) u)(4)

where c T/pi, 1, 2. Here, the conditions at the interface point are the continuity conditions.

Proceeding along the lines of the algorithm, we get, after routine calculations, the Green’s
matrix G to be of the form,

, 0<x<dl, d<s<d

, 0<x<s<d

, 0<s<x<d

We note that _,(dx, s)- t2C(dx, s) and similar relations are true of the components G and Gc.
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