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ABSTRACT. Solutions are obtained of boundary value problems for L, y+
Sla, Loy, ..., Lo_2y), satisfying L,y(0) = L,_yy(1) = 0,0 < i < n— 2, where L, denotes the i**

quasiderivative, and where f(&,y1,...,y,-1) has singularitiesat 5, = 0,1 <i<n-1.
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1. INTRODUCTION.
We first define the quasiderivative operators, L,, 0 < i < n, inductively by,

Lou = pou,

Lu = p(Liou), 1<i<n,

571

where p,(z) € C"([0,1],(0,00)), 0 < i < n, and we assume p,_;(z) = 1 on [0,1]. We will be concerned

with solutions of boundary value problems for the quasi-differential equation,
L.y+ f(z,Loy, Lry,...,La_sy) = 0,
satisfying the boundary conditions,
Ly(0)=0,0<i<n-2, and L,_,y(1) =0,
where f(z,yy,...,Yn-1) = 0 has singularities at y, = 0,1 < ¢ < n — 1. For notation, we let

6;

i <1<
ogzli;lp,(z),o <i<mn,

and

I
1

sup pi(z), 0< i< m,
0<z<1

and we assume throughout that,

(1.1)

(1.2)



572 P. W. LLOE AND J. HENDERSON

(A) flzoy.. ... Y1) (0.1) X (0. ) =" — (0, %) is continuous;
(BY f(x.y1v-. cYu—i)1s decreasing in g, for cach fixed (r.oy..... Yomt s Yrt -

N IR SRS

(") /0' S Yoo Yoy e < 5. for cach fixed (yiv... Y1 );

(D) linl0 fle oy ... Yn—1) = +x uniformly on compact subsets of (0,1) x (0,00)""*. 1 <1< n—1:
yo—
(E) . “T Sfleoye.. . yn-1) = 0 uniformly on compact subsets of (0.1) x (0.00)" %, 1 <1< n— 1.

We observe that, if y is a solution of (1.1), then by (A), L,y < 0, so that L, _»y is a concave function.
The singular boundary value problem (1.1), (1.2) gencralizes in some sense the second order nonlinear
singular problems considered by Bobisud [1], Bobisud and Lee [2], Do and Lee [3], Garner and Shivaji (4],
O’Regan [5], Tinco [6], and Wang [7]-[8]. Among those works, 1], [4], and [8] used singular boundary value
problems to model diffusion problems arising in physiology and physics, while in [5]. singular problems
included as special cases the Thomas-Fermi and Emden-Fowler equations. Morcover. in (1], (2], 3], [5].
[6], and [7] - [8], @ prior: bounds are established on solutions, and then Schauder degree or Granas
topological transversality applications yield solutions of the singular boundary value problems. Others
have also used these methods (in the case p,(z)=1,0 <7 < n,so that L, = f-?), for singular boundary
value problems, with the paper by Eloe and Henderson [9] containing many references to those works.
Our motivation for the techniques used in obtaining solutions of (1.1), (1.2) are the works by [10] and
[11], followed by the papers by Eloe and Henderson [12] and Henderson and Yin [13]. These arguments
involve concavily properties, an iterative technique, and a fixed point theorem due to [11] for mappings
that are decreasing with respect to a cone in a Banach space. 1n Section 2, we state some properties of a
cone in a Banach space, followed by the fixed point theorem. In Section 3, we construct a suitable cone
and define a sequence of modifications of f, so that none of these modifications have the singularities
of f. For this sequence, we construct a sequence of operators, each of which satisfies the hypotheses of
the fixed point theorem, hence obtaining a sequence of iterates in the cone. The sequence is shown to

converge to a solution of (1.1), (1.2) in the cone.

2. SOME PRELIMINARIES.

The following definitions and properties of cones in a Banach space can be found in Amann’s [14]
treatise.

Let B be a Banach space, and &’ a closed, nonempty subset of B. I\ is a cone provided (i) au+p8v € K,
for all u,v € K and all a,3 > 0. and (ii) v.—u € A imply u = 0. Given a cone A, a partial order,
<, is induced on B by z < y, for z,y € B, iff y — 2 € K. (We may sometimes write z < y (wrt
L)) If a,y € B with ¢ < y, let (z,y) denote the closed order nterval between x and y given by
(z,y) = {: € B| 2 <z < y}. A coneh is normal in B provided there exists a 6 > 0 such that

llex + ez]] > 6, for all €;7e, € A with |le)]| = |les]} = 1.
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We remark that. if A is a normal cone in B. then closed order intervals are norm bounded.
We now state a fixed point theorem due to Gatica. Oliker, and Waltman [11] for operators that are

decreasing with respect 1o a cone.

THEOREM 1. Lt B Ic a Banach space. K a normal conc i B, £ C K such that, f x,y € ¥ with
r <y then (r.y) CFE, and lct T : E — K be a continuous mapping that is decrcasing with respect to K,
and which s compact on any closcd order intcrval contained in E. Supposc there exists vy € E such that
120y = T(Txy) s defined. and both Try and 1%z arc order comparable to zo. If either, (1) Tzy < 24

and Ty < 2 or (1) 2y < Tao and vy < T?xq, then T has fired point in E.

3. SOLUTIONS OF (1.1), (1.2).

In this section, we will apply Theorem 1 to a sequence of operators that are decreasing with respect
to an appropriate cone. We then obtain a sequence of iterates from these fixed points which converges
to a solution of (1.1), (1.2). Concavity of the (n — 2)"? quasiderivative of a solution plays a role in this
construction.

Let the Banach space B = C'"~2)[0, 1] with norm
lyll = max{|Loyleos- - - +|Ln-2Yleo},
where | - | denotes the supremum norm, and let
K={yeB|Ly(z)>00n[0,1,0<i<n-2}
K is a normal cone in B. We also note that, if u,v € B and u < v (wrt '), then
Liuw(z) < Lyiv(z) on [0,1], 0< i< n—2.

In addition, we will have need of the sign of the Green’s function, G(z, s), for the problem,

-L,y=0, L,y(0)=0,0<i<n-2, and L,_,y(1) = 0. (3.1)
Eloe [15] has proved
(L,).G(z.s)>00n (0,1)x (0,1),0<i<n~-2. (3.2)

By a solution, y, of (1.1), (1.2), we mean y € C)(0,1) n C-1[0,1], y satisfies (1.1) on (0,1), y
satisfies (1.2), and L,y(z) > 0 on (0,1), 0 < i < n — 2. For such, we seek a fixed point of the integral
operator,

To(z) = /ol G(z,8)f(s, Lo@(8),. .., Lu_a@(s))ds.
But because of the singularities in f given by (D), we cannot define T on all of the cone k. We next let

g1 :[0,1] — [0,00) be the solution of

Lou=0, (3.3)
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L0 =0.0< 1< n—2,
(3.1)

Ly u(0) =1,
and. for each 8 > 0. define

gu(x) = g1 ().

We note that, for 8 > 0, and 0 <1 < n =2,

Ligo(r) =
1
Of [T [ Irydry - -dry 2y
f“ ! f“ I’1+I(Tn—l—l)"'l)n—'.‘(r'.!)pw—l(rl)(TIIT_ “ '

and

L,_19s(7) =6 on [0,1],

so that go € I, and in fact L,ge(2) > 0 on (0,1},0 <1< n—2.

Assume for the remainder of the paper.
() For cach 6 > 0. [nl S(x, Loge(x), L1ga(T), ... Ly_sge())dz < 0o.
Finally, we define D C K by
D = {p € B| there exits 6(¢) > 0 such that go < p(wrt K)},
and define T': D — K by
Te(z) = /01 G(2,9)f(8, Low(8), Lip($)y ..., Lu_ap(s))ds,0 < 2 < 1,p € D.

It follows from (A) - (F) and properties of G(z,s) that, if ¢ € D, then T € C™(0,1) N C"=V[0,1],T¢
satisfies (1.2), L,(T¢)(z) > 0 and increasing on (0,1}, 0 < i < n — 2, L,_4(Ty) is concave on [0, 1],
and that T € D. On the other hand, if ¢ € C™(0,1) N C™-1[0,1] is a solution of (1.1), (1.2), with
L,o(x) > 00n(0,1],0 < i < n—2, it again follows from the concavity of L,_,y that o € D. Consequently,
@ € D is a solution of (1.1), (1.2) iff T'p = ¢.

Our first result of this section gives a priori bounds on L,_,¢, for all solutions ¢ of (1.1), (1.2), that

belong to D.

THEOREM 2. Assume that (A)-(F) are satisfied. Then, there exists an R > 0 such that |L,_3¢|e <
R, for all solutions ¢ of (1.1), (1.2), that belong to D.

PROOF. Assume the conclusion to be false. Then, there is a sequence {¢,} C D of solutions of

(1.1), (1.2). such that [lim |Ln—2¢e]es = 00. We may assume that, for each £ > 1,
—00

|Ln-295't|oo < |Ln-299t+1|oo- (3~5)

From the equation (1.1), L,_;(z) > 0 and decreasing on [0,1), and from (1.2), L,(z) > 0 and

increasing on (0.1], 0 < i < n — 2. It follows that, for each ¢,

0 < Lo—2@e(1) = |Ln—2@dos < |Ln-2@ts1loc = Ln_aypesi(1). (3.6)
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In addition, the concavity and positivity of L, _,p, imply that
4 |
(Ln_age(1)) ————ds = Ly_ape(1) -2 < Lp_gpe(2),0 < r < 1L
0 Pu-a(s)

So, from the monotonicity in (3.5) and (3.6), if we set § = L,_»9,(1), then
Iln-'.'.’/l(z) S Ln-Z‘r"l(z) on [Ov ]]»[ Z I.

From the conditions satisfied by gs and @, at z = 0, upon multiplying successively by (p,(z))~' and
integrating, we obtain

gs < @e(wrt ), forall € > 1.

Now, set

0< M= sup (L,-2):G(z,s).
]

[o,1]x[0,1

Then (B) and (F) yield that, for 0 <2 <1and £> 1,

Ln_»(Te)(z)
1
/0 (Ln-2):G(2,8) (8 Lo@e(8)s- . ., Ln_2p0(5))ds

Ln-i!‘;’t('t)

IN

1
M / 7(5, Logs(s)s- - -+ Ln-290(s))ds
0
N,

for some 0 < N < 0o. But 0 < 2 <1 and £ > 1 were arbitrary. So
[Ln—z‘plloo < Nv for all ¢ 2> 1,
which contradicts }im | La-2¢¢ |oo= 00. The proof is complete. D

COROLLARY . Assume (A)-(F) are satisfied. Then there ezxists an R > 0 such that 0 < Lip(z) <

R -2 R =
<1 <L — < —_— =
(6...4 ~-~6,-+1) moio2) on [0,1], for 0 < i < n—2, and [|p|| < o<sig£_2 {6.._2 - ~6.+,} R, for all

solutions ¢ of (1.1), (1.2) that belong to D. In particular, ¢ < —-R——-z"" (wrt K), for all solutions

(n—2)]
@€ D of (1.1), (1.2).

Next, for each £ > 1, let 3, : [0,1] — [0,00) be defined by
dulz) = /0l G(2,9)f(s,L, ..., L)ds.
With assumptions (A) - (E), we have
0 < Liey1(z) < Lipe(z) on(0,1), 0 < i < n — 2.

Furthermore,

llim L;3(z) = 0 uniformly on [0,1),0 < i< n—2.

Now, define a sequence of functions, fe(Z,41,...,¥n-1) : (0,1) X [0,00)*! — (0,00) by

flz,y1e .. ynm1) = f(z,max{y;, Loye(z)}, ..., max{yn_1, Ln_2%e(z)})-
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For ¢ > 1, f, is continuous and satisfies (B). Also, from (B), we have, for each € > 1,
fe@oyiee o Ynm1) < f(2 900 yn—1) on (0,1) X (0,00)" 7,

and

ft(z‘ Yy vyn-l) g f(zv Ll)d)l(z)»'- 'an—E"/’l(z)) on (01 1) X (O,w)"—l'

THEOREM 3. Assume that conditions (A)-(F) are satisfied. Then the boundary value problem
(1.1), (1.2) has a solution, y, such that L,iy(z) > 0 on (0,1),0<i<n—2.

PROOF. We begin by defining a sequence of compact mappings T, : ' — K" by
1

Tep(z) = / G(z,8)fe(8,Lop(8)y. .y Lu_ap(s))ds,0 <z < 1,p € K.
0

For ¢ > 1 and ¢ € K, L,_2(Tep) > 0 is concave on (0,1), Ty satisfies the boundary conditions (1.2),

and from (L,).G(z,s) > 0,0 < i < n—2, we have L,(T'¢) > 0 and increasing on (0,1),0<i<n—2.
Since each f, satisfies (B), it follows that T, is decreasing with respect to the cone k', for each £ > 1.

Also, 0 < T,(0) (wrt k') and 0 < T2(0) (wrt &), and so by Theorem 1, for each ¢, there exists a ¢, € K

such that T,¢, = ¢,. From our observations above,

|Ln-2‘pl|m = Ln—?ﬁal(l)'

By essentially the same arguments as in Theorem 2, it follows that there is an R > 0 such that, for
each £> 1,
|La-2¢el < R and |l@e]| < R,

where R is given in the Corollary.
Our next claim is that there exists £ > 0 such that k < |L,_2¢¢|co, all £ > 1. Assume the claim is false.
Then passing to a subsequence and relabeling, we have without loss of generality that llim |La2¢tleo = 0,
— 00

which implies, along with the boundary conditions (1.2),
llirglo L,pi(z) = 0 uniformly on [0,1], 0 < ¢ < n—2. 3.7
Let 0 < 6 < % be fixed and let
0 < m = infis1-sx(s,1-6Ln-2G(z,s).
By (D), there exists 7 > 0 such that,if 6 <z <1-6and0<y, <7,for1 <i<n-—1,then
2
f@ g ) >
From (3.7), there exits £, > 1 such that, for £ > ¢,
0< |Lipe(z) <n/2,0<z<1,0<i<n—-2.
Also, for some £; > (, it follows that, if £ > ¢,,

0 < |Ly(z) <n/2,0<r<1,0<8i<n—2.
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So,for £ > ¢ and 6 <o <1 - 6.

1
I'n—’_";f(":) = [1,,_2(1'(1'.5)_[1(-\'.LQL,C‘((S),...,l:,,_v_)t,’)((s))(ls

0

1-4
/ GUr.5) ol $s Lo@e(8), -+ L 2pr(s))ds

v

m/6 f(s,n/2,...,n/2)ds

> 1.

k
This is a contradiction to (3.6). Thus, there is a & > 0 such that k < |L,_»¢¢|, for all €. With 8 = 3

and applying (1.2), we obtain
Lgo(z) < Lype(x)on [0,1], 0<i<n—2,€6>1.

We have

9s < e < o2y "} wrt K),€> 1,

or, in particular,

{we} C (yo»mz"_g) cD.

{ RQ)' z"=2), T is a compact mapping. So, there is a
n
subsequence of {T,}, which we relabel as the original sequence, which converges to some ¢* € K; that

When restricted to the closed order interval, (go,

is, |[Tee — ]| = 0, as £ — oo.
k .
To complete the proof, we show that ||T¢, — @¢|| — 0, as £ — co. With 8 = > let € > 0 be given,
and let

P= max { sup L,G(z,s)}.

0<1<n~2 [0,1]x[0,1]

The integrability condition (F) and the absolute continuity of the integral imply there exists 0 < § < 1

such that
2P 105, Lagals). . Ln-agu(s))ds +
/ f(8, Logo(8),- -+, Ln_290(8))ds] < €.
Also, there exists £ such that, for £ > €,
Lipe(z) < Lige(z) < Lipe(z) on [6,1 - 6,0 <71 <n—2.

Observe also that fo(s, Lowe(s),- - Ln_20e(8)) = f(8,Lo@e(8)s ..y Ln_aype(s)), for § < s <1 -6 and
£>4£y. Thus,for0<i<n-2,£>{,and0<z <1,

X3
IL(Te0(@) = Lipe@) < 2P[[ (s, Lopu(s)o.o Locaprls))ds

* ./:-5 f(8: Lowe(s)s - - Lu-pe(s))ds]

IA

1
2P[/0 F(5, Logo(s), -+ s Ln_2ge(s))ds

1
+/ 7(5yLogo(s)s - -+ Ln_sgs(s))ds)
1-4

< €.
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Therefore,
lim ||T'¢r = ¢e]| = 0.
t—no
It follows, in turn, that Ilim llge = ¢l = 0, so that
—

i

#" € (s ("—_271'"'2) cD,
and
vo = Jim T = T(lim @) = T
and the proof is complete. 0

REFERENCES

1. BOBISUD, L. E. Existence of solutions of some nonlinear diffusion problems, J. Math. Anal. Appl.
168 (1992), 413-4241.

2. BOBISUD, L. E. and LEE, Y. S. Existence for a class of nonlinear singular boundary value problems,
Appl. Anal. 38 (1990), 45-67.

3. DO, T. S. and LEE, H. H. Existence of solutions of singular nonlinear two-point boundary value
problems, Kyungpook Math. J. 31 (1991), 113-118.

4. GARNER, J. B. and SHIVAJI, R. Existence and uniqueness of solutions of a class of singular
diffusion problems, Appl. Anal. 30 (1988), 101-114.

5. O’REGAN, D. Existence theorcms for certain classes of singular boundary value problems, J. Math.
Anal. Appl. 168 (1992), 523-539.

6. TINEO, A. Existence theorems for a singular two-point Dirichlet problem, Nonlin. Anal. 19 (1992),
323-334.

7. WANG, H. Y. Solvability of some boundary value problems for the singular equation (p(t)r(¢,y)y')' /q(t)
f(t,y,pry’), Chinese Ann. Math. Ser. A 12 {1991), 87-91 (Chinese).

8. WANG, H. Y. Solvability of some singular boundary value problems for the equation (p(t)r(t,u)u’) /q(t)
Sf(t,u,prv’), Nonlin. Anal. 18 (1992), 649-655.

9. ELOE, P. W. and HENDERSON J. Existence of solutions of some singular higher order boundary
value problems, Zeit. Angew. Math. Mech. 72 (1992).

10. GATICA, J. A., HERNANDEZ, G. E., and WALTMAN, P. Radially symmetric solutions of a class
of singular elliptic problems, Proc. Edinburgh Math. Soc. 33 (1990), 169-180.

11. GATICA, J. A., OLIKER, V., and WALTMAN, P. Singular nonlinear boundary value problems for
second-order ordinary differential equations, J. Diff. Eqs. 79 (1989), 62-78.

12. ELOE, P. W. and HENDERSON, J. Singular nonlincar boundary value problems for higher order
ordinary differential equations, Nonlin. Anal. 17 (1991), 1-10.

13. HENDERSON, J. and YIN, K. C. Singular boundary value problems, Bull. Inst. Math. Acad.
Sinica 19 (1991), 229-242.

14. AMANN, H. Fixed point equations and nonlinear eigenvalue problems in ordered Banach spaces,
SIAM Rev. 18 (1976), 620-709.

15. ELOE, P. W. Sign properties of Green’s functions for two classes of boundary value problems,
Canad. Math. Bull. 30 (1987), 28-35.



