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ABSTRACT. Let K be a non-archimedean non-trivially valued complete field. In this

paper we study Banach spaces over K. Some of main results are as follows:

(i) The Banach space BC((I=)I has an orthocomplemented subspace linearly homeomorp-

hic to cO.
(2) The Banach space BC((c0) I) has an orthocomplemented subspace linearly homeomorp-

hic to I

KEY WORDS AND PHRASE. non-archimedean valued fields, non-archimedean (p-adic) Bana-

ch spaces, polar spaces, spherically complete, complemented subspaces.

1992 AMS SUBJECT CLASSIFICATION CODES. 46SI0, 47S10.

i. INTRODUCTION.

Throught this paper K is a non-archimedean non-trivially valued complete field

with a valuation I, and E, F are Banach spaces over K with a non-archimedean norm

denoted by II. Let L(E,F) be the space consisting of all continuous linear maps of

E to F. The dual space of E is E’=L(E,K). The dual operator T’eL(F’,E’) of TeL(E,F)
is defined as usual. If there exists a linear isometry from E onto F, then E and F
are said to be isomorphic and we denote E~F. For a Banach space E, if there exists

a (ortho)complemented subspace of F which is isomorphic to E, then E is said to be

(ortho)complemented in F. Let S be a topological space and let BC(S) be the Banach

space consisting of all bounded continuous functions S K with a norm

llfll=sup{If(s)I seS} (feBC(S)). (i.i)

Let E" be the second dual Banach space of E and let JE E E" be the natural map.
DEFINITION. If JE is linearly homeomorphic from E into E", then E is said to

be polar (see [6]).
DEFINITION. A Banach space E is said to be strongly polar if every continuous

seminorm p on E satisfies the following equality (see [7]).

p=sup{Ifl fEE’, Iflp} (1.2)

These spaces were first introduced by Schikhof [5] for locally convex topologi-
cal spaces over K and were studied by some authors (e.g. [I], [2]).

DEFINITION. Let D be a subspace of E. If every x’eD’ has an extension x’eE’,
then D has the weak extension property in E. In additioh, if x’ can be chosen such
that Ux’=Hx’, then we say that D has the extension property in E.

For any r>0 we put Er={xeE llxllr}. Let denote an arbitrary fixed element of
K with 0<II<i. Other terms will be used as in Rooij [4]. In this paper we deal with
complemented subspaces of BC((E’)I and E". Throught this paper, when we consider a
subset (E’)r (r>0) of E’, (E’) r is assumed to have the weak * topology. In section 2
we show that there exists a Banach space E such that BC((I=)I is linearly homeomor-
phi to co E. And in section 3, we show that there exists a Banach space F such
that BC((c0)I) is linearly homeomorphic to 1 F;
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2. COMPLEMENTED SUBSPACES OF BC(S).

For every TeL(E,BC(S)), for every seS and for every xeE, let

(T(S))(x)=(T(x))(s). (2.1)

Then the map T(S) is a linear functional on E. Since IIT(S)IIIITII,
Hence T is a weak * continuous map from S to (E’)IITII. Conversely, for every weak *

continuous map S (E’) r (r>0), let

(r(x))(s)=((s))(x) (xeE, seS). (2.2)

Then T(x) is a map from S to K. Since for each xeE

sup{I(T(x))(s) seS}rllxll, (2.3)

T(x)eBC(S). Hence T is a linear map from E to BC(S). By (2.3), llTllr. It follows

that TeL(E,BC(S)).
For the natural map JE E E" and for every xeE, let RE(X) denote the restri-

ction of JE(X) to (E’) I, that is,

RE(X)=JE(X)I(E’)I (2.4)

Then RE is a linear map from E into BC((E’)I). Since for every xeE

HRE(X)H=sup{l(RE(X))(x’)l x’e(E’) I}

sup{Hx’HHxH x,e(E’)l (2.5)

flxH,

we have HREHI and REeL(E,BC((E’)I)).
The next theorem follows from Schikhof [7].

THEOREM i. Let E be a strongly polar Banach space and let D be a closed sub-

space of E. Then for each e>0, each fED’ can be extended to an eE’ with

(l+e)Hfx (xeE).

A norm p on E is said to be polar if

Hp=sup{Ifl fEE’, Ifl&H |p}. (2.6)

We recall that if E is polar, then there exists a polar norm llp on E such that it

is equivalent to the original norm (see [i, p.75]), and so there exists a real

number d (dZl) such that for every xeE llxH&HxHp&dHxH.
THEOREM 2. Let E be a polar Banach space. Then there exists a real number c

(c>l) satisfying the following (i) and (2).

(i) For each finite-dimensional subspace D of E and for each fED’ there exists an

extension feE’ such that HfHcllfH.

(2) For each finlte-dimenslonal subspace D of E there exists a projection P E D
with Pl[c.

PROOF. (i) Since fED’, it is trivial that fe(D, Hp)’. Let e>0 be an arbitrar-

ily given real number and put c=(l+e)d. By Theorem 2.1 in Garcia [i], there exists

an extension e(E, Hp)’ such that HHp(l+e)llf,p. Then we have that

(2) Using again Theorem 2.1 in [i], there exists a projection P E D such that

flPpl+e. It follows that

THEOREM 3. If E is a polar space, then RE is a linear homeomorphism. And if

the norm on E is polar, then RE is a linear isomet=y.
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llRE(X)llllxll. (2.7)

Note that for every x’eE’, x’0, there exists an integer m with IIm+l<,x’#ll m
then

-m
x

:I (RE(X)
From (2.7) and (2.8) it follows that

(2.8)

[1 JE(X) =< fIRE(X) II--< llxll (2.9)

Since E is polar, JE is a homeomorphism, so is RE Next, if the norm of E is

polar, then for all xeE we have

,x,=sp{Ix’(x)l x’.’. ,x’,.<}

=sup{Ix’(x) x’e(E’)I}="RE(X)#-
Therefore RE is a isometry.

COROLLARY 4. (I) For any strongly polar space E, RE is a linear isometry.

(2) For any topological space S, RBC(S is a linear isometry.

THEOREM 5. For every TeL(E,BC(S)), there exists a EL(BC((E’)I),BC(S)) such

that TORE=T. In particular, if IITII=I, then satisfies IIII=i.

(2.10)

PROOF. At first, we notice that (E’)I is supposed to carry the weak * topol-
ogy. To show theorem, we may assume that IITII=<I. Then T is a weak * continuous map
from S into (E’)I. Define

by

T BC((E’)I) BC(S),

(f)=f@T (fBC(E’)I))"

For every xeE and for every seS, we have

(T(RE(X))(s)=(RE(X))(#T(S))=(@T(S))(x)=(T(x))(s).
Then TRE=T. Further,

sup{If(T(S))I seS}
|T|=sup{ feBC((E’)I)}|f|

i.

(2.11)

(2.2)

(2.13)

(2.14)

Hence if |T|=I, then

I=T||ToRE||T||RE|&IT|I. (2.15)

The proof is complete.

LEMMA 6. Let E, F and X be Banach spaces. Let A E X be a linear homeomor-

phism onto X and H E F be a linear homeomorphism into F. If there exists an AE

L(F,X) such that AoH=A, then the closed subspace H(E) of F is complemented. In par-

ticular, if A and H are linear isometries and IIA|=I, then E is orthocomplemented in

F.

PROOF. Put P=HoA-Io F H(E)cF. Then P is a projection onto H(E). If A and

H are linear Isometries and |A|=I, then |PII. Hence P is an orthoproJectlon.

THEOREM 7. Let E be of countable type. Then E(E) is complemented in BC((E’) I)
Especially, co is orthocomplemented in BC((I’)I).
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PROOF. If E is flnite-dlmenslonal, then the assertion of this theorem is clear.

Hence we may assume E is Inflnlte-dimenslonal. Since E is of countable type, E is a

polar space. Then by Theorem 3 the map RE E BC((E’) I) is a linear homeomorphlsm

into BC((E’)I). Further, since E is Infinite-dimensional, for an infinite compact

ultrametrlzable space S, E is linearly homeomorphic to BC(S) (see [4, p.190]). Let

H0 E BC(S) be a linear homeomorphism onto BC(S). By Theorem 5, there exists an

0EL(BC((E’)I),BC(S)) such that 0ORE=H0 Hence by Lemma 6, RE(E) is complemented in

BC((E’)I). If E=cO, then the above H0 can be taken as a linear isometric from cO

onto BC(S). Since cO is strongly polar, by Corollary 4, the map Rc0 is linearly is-

ometrlc. Hence by Theorem 5, there exists an 0EL(BC(((c0)’)I), BC(S)) with HoU=I.
Thus, by Lemma 6, Rc0(C0) is orthocomplemented in BC(((c0)’)I). Since

BC(((c0)’)I)~BC((I’)I ). Hence c0 is orthocomplemented in BC((I’)I).
The following corollary follows immediately from Theorem 7.

COROLLARY 8. Let E be of countable type. Then there exists a Banach space X

such that BC((I)I and EX are linearly homeomorphic.

Since co is linearly isometric to some BC(S), the second part of Theorem 7 is

a special case of the following corollary.

COROLLARY 9. For any topological space S, let E=BC(S). Then E is orthocomple-

mented in BC((E’)I).
PROOF. Let I E BC(S) be the identity. Then there exists an [eL(BC((E’)I),

BC(S)) such that [ORE=I and [I=II=I. By Corollary 4, RE E BC((E’) I) is linea-

rly isometric. Put P=REOI-Io[. Then P is an orthoprojection of BC((E’) I) onto RE(E).

Hence E is orthocomplemented in BC((E’)I).
COROLLARY I0. The Banach space BC((c0) I) contains an orthocomplemented sub-

space linearly homeomorphic to 1. In particular if K is spherically complete, then

the Banach space BC((c0) I) contains an orthocomplemented subspace linearly isometric

to 1

PROOF. Suppose that K is not spherically complete. Applying the extended ver-

sion of Corollary 9 to S=N (N denotes the set of all natural numbers) and observing

that E=I and E’~c0, we can obtain this corollary. Furthermore, if K is spherically

complete, then so is i; it follows easily that the second part holds.

3. COMPLEMENTED SUBSPACES IN SECOND DUAL SPACES.

Let TEL(E,F’). Then T determins a map

#T F E’ (3.1)

defined by (T(y))(x)=(T(x))(y) (xeE, yeF). Clearly, T is linear and |T|T.

Hence TeL(F,E’). Let D be a closed subspace and let D1 be the annihilator of D in

F’, i.e. Di={x’eF x’(d)=0, deD}. A subset A of E is said to be compactoid if for

every e>0, there exists a finite subset X of E such that AcBE + Co(X), where BE
{xEE x} and Co(X) is the absolutely convex hull of X. Let TEL(E,F). If T(EI)
is compactoid in F, then T is said to be compact. A Banach space E is said to be (0)

-space if every TeL(E,c0) is compact.

PROPOSITION ii. Let E, F be Banach spaces and let D be a closed subspace of F.

Then for every TeL(E,DI), there exists a eL(E",Di) such that OJE=T and

PROOF. Let JE’ E’ E" be the canonical map. Define an operator
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E" Di (3.2)

by ((x"))(y)=(JE,(T(y))(x") (yeF, x"eE"). For every x"eE", (x") is a linear fun-

ctional on F and (x")llTlx", so (x")eF’. For every yeD and for every xeE,

(T(y))(x)=(r(x))(y)=0. (3.3)

Hence ((x"))(y)=0. This means that (x")eDi. It follows that eL(E",Di) and IIII
TII. Further, for every xeE and for every yeF,

((OJE)(X))(y)=(JE,(T(Y))(JE(X))

=(JE(X))(T(Y))
=(T(y))(x)
=(r(x))(y).

(3.4)

Hence TOJE=T. Therefore we have

Thus we complete the proof.

The following corollary is immediate from Proposition ii.

COROLLARY 12. Let E and F be Banach spaces. For every TeL(E,F’), there exists

a TeL(E",F’) such that TOJE=T and ]TI=IIT.

PROOF. In Proposition ii, put D={0}. Then DI=F
PROPOSITION 13. Let E be a Banach space and let D be a closed subspace of E.

If D is linearly homeomorphic (resp. isometric) to some dual space and is compleme-

nted (resp. orthocomplemented) in E, then JE(D) is complemented (resp. orthocomple-

mented) in E". In particular, if K is not spherically complete and D is of countable

type and complemented in E, then JE(D) is complemented in E".

PROOF. Let D be a complemented closed subspace of E, linearly homeomorphic to

a dual Banach space F’. By Lemma 4.23, (ii) and (iii), in Rooij [4], JD is a homeo-

morphism and there exists a projection of D" onto JD(D), so there is a QeL(D",D)

with QOJD=ID (= the identity map of D). As D is complemented in E, there is a proj-

ection P E D. Then JEoQop"L(E",JE(D)). As

Q P" JE=Q P" JE)--Q (JD P

--(QOJD) P--IDoP--P,
for xeD we have

(3.6)

(JEoQop")(JE(X))=JE(P(x))=JE(X) (3.7)

so JEoQop is the identity on JE(D). Thus JEoQop is a projection of E" onto JE(D).
If D is orthocomplemented in E" and linearly isometric to F’, we obtain |QII and

Pll, whence |JEoQop"III. In particular, if K is not spherically omplete and D is

of countable type, then D is linearly homeomorphic to (i) or Kn, where n is some

positive integer. Hence by the first assertion of this proposition, we can complete

the proof.

COROLLARY 14. Suppose K is not spherically complete. Let E be an infinite-di-

mensional polar space which is not a (0)-space and let F be an infinite-dimensional

Banach space of countable type. Then there exists a Banach space X such that E" is

linearly homeomorphic to FX.
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PROOF. By hypothesis, there exists an infinite-dimensional complemented sub-

space D of E which is of countable type (see [6, p.23]). It follows from Proposit-

ion 13 that there exists a subspace X of E" such that E"=JE(D) X. Since E is a

polar space, JE is a linear homeomorphism. Therefore, JE(D) is of countable type.

Hence JE(D) and F are linearly homeomophic, so E" is linearly homeomorphic to F X.

COROLLARY 15. The subspace JE(E) of E" has the extension property in E".

PROOF. For every continuous linear x’ JE(E) K the function x’--JE,(X’OJE)
is a continuous linear function E" K extending x’ and with llx’ ll<llx II, hence llx’

The following comment was given by the referee: From the proof of Corollary 15

we obtain a sort of "simultaneous extension", a linear isometry x’ x’ of (JE(E))’
onto E’" that assigns to every continuous linear function JE(E) K an extension E"

K. Further, the following question was asked by him: Under what circumstances is

there an orthoprojection of E" onto (the closure of) JE(E)?
COROLLARY 16. Let D be a closed subspace of E. If JD has an extension T from

E into D". Then D has the weak extension property in E. In particular, if IITII=I;JDII,
then D has the extension property in E.

PROOF. By Corollary 12, for every feD’, there exists an feD" such that foJD=f
and Ifll=|f. Put g=foT. Then geE’ and glD f. Hence D has the weak extension prope-
rty in E. If UTII=IIJDII, then by Corollary 12, for every xeE

f JD x < f x II.

Hence it holds that llgH<Ilfll=llfll<lgll.
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