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ABSTRACT. We present here a modern, detailed proof to the following theorem which was introduced

by Garrett Birkhoff [1] in 1938. If S is a local semigroup with neighborhood of homeomorphic to a

Banach space and with multiplication strongly differentiable at 1, then S is a local Lie Group. Although
this theorem is more than 50 years old and remains the strongest result relating to Hilbert’ s fifth problem
in the infinite dimensional setting, it is frequently overlooked in favor of weaker results. Therefore, it

is the goal ofthe authors here to clarify its importance and to demonstrate a proofwhich is more accessible

to contemporary readers than the one offered by Birkhoff.

KEY WORDS AND PHRASES: Lie groups, Lie algebras, strong differentiability, canonical
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0. INTRODUCTION
In the year 1900, Hilbert presented a list of twenty-three problems at the Second International

Congress of Mathematics in Paris. The central idea behind Hilbert’s fifth problem is whether

every C group is in fact a Lie group. More explicitly, is continuity of the multiplication enough to

ensure analyticity of the multiplication? In his comprehensive book on Lie groups, Price [2] gives credit

to Schur [3], in 1889, for showing that if G is a Ck-Lie group (k _> 2), then G is a Lie group. Price also

points out that an outline of the methods used by Schur may be found in Montgomery and Zippin [4],

while details for the case k > 3 may be found in Pontrjagin [5]. It is interesting to note the

absence of Birkhoff’ s result in Price’ s book, a result which requires less differentiability (indeed, less

than C1), and which appeared one year prior to Pontrjagin’s paper of 1939. In 1929, Von

Neumann [6] showed that each topologically closed subgroup of the group of invertible matrices is a

manifold and that the multiplication is analytic. In fact, he showed that the exponential series maps a

neighborhood of0 in the tangent space onto a neighborhood ofI in the group. In 1952, Gleason [7] and
Montgomery and Zippin [8] improved on this result by showing that every finite dimensional,
locally connected, locally compact group is a Lie group. Finally, in 1957 Jacobi [9] showed that ifG is
a local group with Euclidean neighborhood at l, then G is a local Lie group; while shortly
thereafter, Mostert and Shields [10] showed that if S is a local semigroup with Euclidean neigh-
borhood at 1, then S is a local group. Hence, combining these last two results we have if S is a local

semigroup with Euclidean neighborhood at 1, then S is a local Lie group. This seems to close the
book on Hilbert’s fifth problem, at least in the finite dimensional case. However, this result is not

true in the general setting of a Banach space. Consider, for example, infinite dimensional Hilbert
space, which is homeomorphic to Ru, the countable product of the real numbers. RN admits
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a continuous multiplication, namely coordinate-wise multiplication. Therefore, Hilbert space admits

a continuous semigroup multiplication with identity 1. However, there are points arbitrarily close

to which are non-invertible. Hence, this semigroup is not even a local group. This indicates that

something stronger than continuity is required in the infinite dimensional case, particularly if G is

required only to be a semigroup and not a group. It is at this point that the significance of Blrkhauff’s

paper, which holds in the infinite dimensional case, becomes apparent.

DEFINITION. The statement that the function f, with domain the open set U in the Banach

space X, and with codomain contained in the Banach space Y, is strongly differentiable at the point

p in U means there is a continuous linear function T :X Y such that if e > 0 there is a 0 > 0 such

that if each ofx and y is in U and is within 5 ofp then [1(x)-f(y)- T(x -Y)I 1 x -Yl.
The statement in Birkhoff’s Theorem that S is a local Lie group means that under canonical

parameters and in an appropriate neighborhood of 1, S is representable by a power series. More

precisely, suppose S has a neighborhood of homeomorphic to the Banach space X, and V is the

corresponding multiplication, in X, defined on a neighborhood of 0. Then there are open sets C and

D containing 0 and a transformation T :D C such that T is strongly differentiable at 0, T’(0) 1,

and ifx ED and each of s, t, and s + E [-1,1], then V(T(sx), T(tx)) T((s + t)x). This then implies

the existence of a multiplication W :D DX defined by W(x,y)= r-’(v(r(x),r(y))) which is

also strongly differentiable at (0,0), is associative, and has the property that if x E D and each of s,

t, and s +t E [-1,1] then W(sx, tx)=(s +t)x. That is, the restriction of W to a straight ray through

0 in D is a local one parameter subgroup. It is the multiplication W that is representable by a power

series.

The first appearance of the power series representation of the group multiplication, a particular

series given in terms of the associated Lie algebra multiplication, is attributed to Campbell 11] in

1898, by Price, although the key question regarding convergence of the series was not settled there.

This problem of convergence was later avoided independently by Baker [12], in 1905, and by

Hausdofff 13], in 1906, by giving a purely algebraic version of the series which relies on the algebra

of matrices. Consequently, this Lie group power series is often referred to as the Campbell-

Baker-Hausdorff (CBH) formula. However, Birkhoff attributes the series originally to Schur and

refers to it as the SCH series, inadvertently overlooking Baker altogether. In any event, the

convergence of the CBH series is of primary importance to these authors and a detailed proof is

given towards the end of this paper.

1. THE CANONICAL TRANSFORMATION
The primary goal of section 1 is to present a proof of the following theorem.

THEOREM 1.1. IfS is a local semigroup with neighborhoodof homeomorphic to the Banach

spaceXandwith multiplication strongly differentiable at 1, then S can be transformed into canonical

parameters.

Before proceeding directly to a proof of Theorem 1.1, we develop some necessary machinery.

Notice that in the theorems which follow, strong differentiability is required at a single point only.

The following versions of the chain rule, the Inverse Function Theorem, and the Implicit Function

Theorem are included here for completeness, and may be found in numerous functional analysis

texts.
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THEOREM 1.2. If eact of X, Y, and Z is a Banach space, f X Y, g Y Z, and g is

strongly differentiable at f(Xo) and f is strongly differentiable at Xo then g f is strongly differ-
entiable at Xo at xo and (g f)’(Xo g’(f(xo)) f’(xo).

TIIEOREM 1.3. Inverse Function Theorem. Iff" X Y is strongly differentiable at xo and

f’(xo) is invertible, then there are neighborhoods U and V OfXo and f(Xo) respectively so that f U

is a homeomorphism onto V and (f U)- is strongly differentiable at f(xo).
THEOREM 1.4. Implicit Function Theorem. If f" X x Y Z is strongly differentiable at

(x,yo) and f(xo, ")’(Y0) is invertible, then there is a neighborhood U ofx and a unique continuous

function u U Y such that U(Xo)= Yo and f(x,u(x))=f(xo, Yo) for each x in U. Moreover, u is

strongly differentiable at Xo and u ’(x0) (x0, ")’(y0)]- f(., Yo)’(Xo).
Next, let D be an open neighborhood of 0 in the Banach space, X, and V" D xD X such that

V is strongly differentiable at (0,0) and V(x, O) V(O,x) x for each x D.
APPLICATIONSTO V. V’(O,O)(x,y) -x + y implies that V(0, .)’(0) I. Therefore, Theorem

1.4 implies the existence ofu so that V(x, u (x)) 0 for eachx in some neighborhoodD’ of 0. Similarly,

a v exists such that V(v(x),x) 0 for each x in some neighborhood D" of 0. By associativity of V,

u(x) v(x) for each x close enough to 0. Thus, without loss of generality we may assume that for

each x D there is a unique x- and moreover that x x- is strongly differentiable at 0 and has

derivative -I there.

Furthermore, if T-X X is strongly differentiable at 0 and T(0)- 0 and T’(0)- I, then the

function W :X xX X defined by W(x,y) T-(V(T(x),T))) is associative and strongly differ-

entiable at (0,0) by Theorems 1.2 and 1.3.

NOTATION: x,V(x,,V(x,_,V( V(x,xO)...) if this product makes sense, and

x" V(x,x"-) where x V(x,x) again whenever each of these makes sense.

Theorems 1.5 and 1.6, which follow, are extremely powerful and will be used throughout the

remainder of the paper.

THEOM 1.5. Ire > 0 there a 6 > 0 so that if Ixi < 6 then

i. x exists,

ii. x- x e x ,and
i- i-

PROOF. Suppose 0 < e < 1. Choose . 0 so that if Ixl I1, I1 * I1 then

IV(x,y)-V(a,b)-(x-a)--b)l e(Ix-a +ly-b[). If Ixtl +[xzl < then

V(x,xg- v(0, o) x, xl (i xl + [x=l ), and V(x,xz)[ (e + 1)(] xl + x]) < 6. In order to use

induction on n, suppose that if x, < then xi exists, has norm, 6, and x,
-1 -1

n+l

Now suppose -]x] < . It then follows that

x x V x, a, x, V O, x x, + x, x
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and xi (e + 1),.l[x,[ < 6. Thus, by induction, a proof is complete.

THEOREM 1.6. Ire > 0 there is a 6 > 0 so that if lx, < and ly, < then each of x,

and y, exists and

PROOF. Note that (x,y,z) V(x, V(y,z)) is strongly differentiable at (0,0,0) by Theorem

1.2, so we may choose b, >0 so that if Ix +lyl +lzl < and lal +lbl +lcl < , then

]V(x,V@,z))-V(a,V(b,c))-(x-a)-@-b)-(z-c)l <(Ix-al +ly-bl +lz-cl).

By Theorem 1.5, choose 2>0 so that if [x,I <62 then x, exists, Ix,I <2 lx,[, and
i-I i-I i-I

xi- -e- x,[. t 6- min Z, and suppose ..lx’l < and ly, < . Thus, the
i-I

choice of g and implies that each of h x Y, I1, aria lyl ha norm ess than 7, for

each ] { 1, 2,..., n }. It then follows from the choice of that

0x,- ,Oy (x-y)I,IV(,-0. ,x,, V(x,O:y)) V(, .. ,x,, V(y,O y))-(x- y;)

In the following discussion we will consider functions from [a,b into the Banach space X. If

D > 0, the function f is said to be D-admissib&provid thatfb continuous, ofunded vartion,

I:(x)l D for each x [a,b], and Vart,.lfD. ff e =[] is a subinteal of [a,b] then

L f() f(a) and f’-/()f(a)- if it exits. A subdivision of an inteal I is a finite collection of
nonoverlapping inteals whose unn L

ffP is a subdivision of[a, b and [a, b then let P, denote the subdivision of[a, cons6ng

ofthose memrs e ofP which are contained in [a,t] together with [a,t] g [a,] P. Define
,f’[a,b]X by (,(t)=f,,._...L if P,={e,...,e} with e, <e,+ for each i- n 1,

proved theproduct exits; and fine f" [a, b X by (,D (t f" providf" exists for

each e P,

THEOM 1.7. There a D > 0 so that iff D-admissible then each of ,f and

exit on [a, b for each subdivision P. Moreover, ife > 0 there is a 8 > 0 so that ifeach ofP and Q
is a suivision of[a,b with mesh less than 8 then

i. (H, (b) (He (b)1 "e- Var[,.,): and

PROOF. Using the strong differentiability at (0,0) of (x, y) xy- and Theorems 1.2 and 1.6,

chooseD > 0 so that

i. if each of Ix and lYl is less than then y- exists and I--(x-Y)I lx-Yl, and

ii. if each of ,- x, and i.lY’l is less than 6D then each of
i-,
fi x, and ,-Jfi y, exist and

xi- y,- -y,) Ix,-y, I.
i=
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Next, suppose 0 < e < 1. Using Theorem 1.5, choose 6’> 0 so that if x,[ < 26’ then fl x, exists
-1

and x,- x, .:Z" [x,[. Now, assuming f is D-admissible, choose 6 > 0 so that if e is
-1 -1

a subinterval of [a,b] with length less than 8 then Var, f< b’. Suppose each of P and Q is a

subdivision of[a,b with mesh less than 8 and Q refines P. For each e P let Q" {d Q d C e }.

Note that if e P and e [t,l], then Y I/1 Var,f b’ since the length of e is less than

6. Therefore, re" exists and (e,)(,- I(le,)(’ o’el <" eZ’ll" Thus,

11 and 11 hence, each of (,(b) and (e(b) exist. It then follows, since

r}
ee,

()’ that

<2. Y Y ILl
EP dEO"

.: -" Var[,,blf

Now, since If(/)l :2D for each [a,b], which implies If()-’l .:40, it follows that f" exists for

each subinterval e of [a, b and If’l 21f1. Therefore,,p] f’l .: 2- Vart,.blf .: 2D for each sub-

division P of[a,b]. If each of P and Q is defined as above, it follows that
dQ"

and thus, E fa_ I-I fa o fl However, since I-I j.u=f,=, we have

dQ d eP dQ

The result now follows easily. Moreover, Theorem 1.7 leads us to the following.

COROLLARY 1.8. There is a D > 0 so that iff is D-admissible and e > 0 then there is a

6 > 0 so that ire [a,[3] is a subinterval of[a,b], then there arepoints l-l,f and ,,f in X so that

ifP is a subdivision of[ct,[] with mesh less than 8 then

i. I-I.f-(1-Ipf)(l)l < e- Vart.,bf, and

ii. E,f-(E,f)(l)l <e" Var, f.

Let I-If and Yfbe defined for such/by (1-If)(t)= I-[io hi/and (Y/)(t) l-lt.,,f. We now return

to a proof of Theorem 1.1.

PROOF OF THEOREM 1.1. Choose D > 0 so that 6D satisfies Theorem 1.6 for e and

so that D satisfies Corollary 1.8. Let B(0,D) denote the D-neighborhood of 0 in X. For each x in

B(0,D) define L [0,1] X by L(s) sx. Since L is D-admissible for each x B(0,D) we can

define T B(0,D) X by T(x) I-I L(1). Notice that T(0) 0 and that ifP is a partition of [0, then
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Y. (f,,), =x for eachx EB(0,D). It then follows from Theorem 1.6 that Tis strongly differentiable

at 0 and T’(0) I. Therefore, applying Theorem 1.3 to T, let U and V be open neighborhoods of 0

in X so that T[U is a homeomorphism. We can now define W:U U--, V by

W(x,y) Tq(V(T(x), T(y))). In order to complete a proof of Theorem 1.1, it remains only to be

shown that ifx U and s,t,s +t [-1,1], then W(sx, tx)--(s +t)x. In the case where s, (0, 1]
this is clear by construction. Therefore, first consider the case where -s. Let x be nonzero in

U,s (0,1], and e > 0. Choose a positive integer N so that if n is a positive integer, n N, then

n n n n 2. Isxl 2n

Let n be an integer, n :,.N. The choice of D guarantees that if j is a positive integer, j n, then

< 2. sxl < 21), < 21), and 7o < 2/). Therefore, since the sum of these three is

less than 6D, it follows that

(.x isxn n n n n n

which implies that

Isx_ xl
which, by induction on] is less than 2j . Therefore, since T(sx) i follows

ha g(r(sx),r(-sx)) o which implies that W(sx,-sx) 0 W(-sx, sx). The situation where -s

can be considered in various cases depending on which of s, t, and s + is positive. For example,

in the case where s 0, < 0, and s + 0, we have, by construction, r(sx)
However, since r(-) is he inverse of r(), it follows that g(r(sx), r()/- r((s + )) and hence,

W(,) (s +t). The other cases follow similarly, which completes a proof of Theorem 1.1.

Theorems 1.9-1.13 which follow, although not required for a proof of Theorem 1.1, will be

used in the main construction of section 3.

TNEONEN 1.. There a D 0 so that i
suivision 4N,bl then each 42,f, 2f ,; and Hf a 6D-admissible.

PROOF. ChooseD’ small enough to satisfy Theorem 1.6 for e I, Theorem 1.7 and Corollary

1.8, and so that if Ix , Y I, z I, w D’ then I- -I (x z) + (y w)l s Ix z + Y w[ and

I--(x -z)- w)l Ix -zl + Y wl tD D’ and supposefisD-admissible. Choose

8 > 0 so that if e =[] is a subintewal of [a,b] and P is a subdivision of e with mesh less than

then

i. H./-(H,f)()I < Var,fand

+ er ,ore, yt  c oiceo,

which implies I(,I)()l e" ar, I. Thus, I,N I(,I)()l + ar,I 3. arI. Similarly,

since IIl el, for any subintea e of[a,bl we have 12, I1 *I 3. aI. Note

thatl (I)()- (I)(a)l I,I" (I)(a)-(I)(a)l ;but, wehavejust seentha (l)(a)l 3
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and I-I,1 3D. Therefore, we have that

I([lf)l IVI,I-(H)()-(Hf)()-VI, II +lVl,l 2-II-],]l-6. Var, f.

It follows that VarI-If6" Varf for any subinterval e of [a,b] and, hence, that ]-]f is 6D-

admissible. Next, ](f)] -I(YI)(t)-(YI)(ct)l --I Y,]I, which as noted above, is less than or

equal to 3 Vat, f; so f is 3D-admissible. Now suppose P is an arbitrary subdivision of[a,b]. If

e [ct, I] is in P and d [’t, 6] is contained in e then

l(’)l(ct)-I

Bu, eac o IJ’O)l, I.,"(ct)l, and II(’)l -=2D D’, wich implies ](:,,f),]- 21I!. it follows that

Vard(,1), 2. Vardf for any subinterval d of [a,b]. Hence, ,f is 6D-admissible. Finally, note

that

(II, f)(o) (l-I,/) (v)l if(o) -/(c)) (I-I,o.o,I) (o0 if(v) I(c))(I-I,o.o,f) (x)l

Therefore, since (II,.,,,f)(ct)l s 30 and If(b)-f(ct)l ,If(’)-f(a)l D, we have

It follows that Vardl-Ief 2. Varaf for any interval d of [a,b] and l-Ief is 6D-admissible.

THEOREM 1.10. There is a D >0 so that if f,g:[a,b]--,X are D-admissible, then

(I-[ef) (fi)- (]-[e g) (fi)[ 2" Var(f-g)for any subinterval e of[a,b] and any subdivision P ore.
PROOF. Choose D > 0 so that D satisfies Theorem 1.7 and Theorem 1.6 for e 1. It then

follows that 1-]el and l-leg exist for any subdivision P of e and that

II-I,/-1-I, gl lI-gl 2. Var,(f-g).

We now have the following.

COROLLARY 1.11. lfD is as in Theorem 1.10 and each off and g is D-admissible, then

FI,J- I]1 2o Vrff-)yor each subinterval e of[a,b].
THEOREM 1.12. There is a D >0 so that if f:[a,b]--*X is D-admissible and e > 0

there is a 5>0 so that if P is a subdivision of [a,b] with mesh less than 5 then

PROOF. Choose D1 > 0 as in Corollary 1.8 and suppose > 0. Choose 5 as in Corollary 1.8

so that if e [ct,]] is a subinterval of [a,b] and P is a subdivision of e with mesh less than 5 then

,f- (ef)(fi)] < e" Varf. SupposeP is a subdivision of[a,b with mesh less than 5. If e [ct, ]

is in P we have that {e}, is a subdivision of e with mesh less than 5. Therefore, since

,,f- (,f)(fi)-(,f)(ct) and re- (ef)(fi)-(,,f)(a) (
t,l

f)(fi), we have

THEOREM 1.13. There is a D > 0 so that iff is D-admissible then each of f and I1( f)

exist and (II(Z I))()- I()I(a)-’.
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PROOF. Choose D small enough to satisfy Theorems 1.9, 1.10, and 1.12 and let D --Dd6.

Iffis D-admissible, then f and pf are Dr-admissible for any subdivision P of [a,b]. Also, if

e >0 then there is a 6 >0 so that if P is a subdivision of [a,b] with mesh less than 5 then

(I-I(Y. f))(b )- (l-Ip(Xf))(b)l < e" Varto.bl,f s 6e. Varlo.bf. Therefore, by Theorem 1.10 we have

that (Fl,(Y.f))(b)- (I-I,(Y,))(b) < 2. Varto.(Y-Y,I), which, by Theorem 1.12 can be made

smaller than 2.e Varto.bl]" by making the mesh of P small. Thus, there is a P so that

(l-I(X/’)) (b)-(I-l(Xf)) (b)l (I-I(Y f)) (b)-(.(f))(b )l + I(Y(f))(b -(Yf))(b )l

However, (I-I(Y.pf )) (b f(b )f(a )-i, since(f), f" foreache EP. Thus,([-i(f))(b) =f(b )f(a -
and by extension (I-I(,f))(t)--f(t)f(a)-I for each E [a,b].

2. THE DEVELOPMENT OF THE LIE ALGEBRA MULTIPLICATION
In this section we show that if S is a local semigroup with neighborhood of homeomorphic

to the Banach space X, then there is a bilinear "bracket" function X xX X which is a Lie-

Algebra multiplication on X. We first define the commutator function K S xS X on S x S by

K(x,y)- x-ly-lxy and then after a sequence of theorems show that bracket can be defined on all of

XX by Ix,y]- lira -d-gK(ax, by) for real a and b.
a,b

THEOREM 2.1. If c >0 there is a d >0 so that if Ix [+[y I/[u I<d the

K(ux,y)-K(x,y)-K(u,y) lsc K(u,y) andlK(x, uy)-K(x,y)-K(x,u) sc g(x,u)

PROOF. Suppose 0 < c 1. Let dl > 0 such that:

i. fl" I+ z I< then [wz w -z < 1/4[w I, using strong differentiability of the multipli-

cation at (0,0), and

ii. if x + a + y l< d and x + b + y l< d then xay xby a b [< a b l,

by Theorem 1.2. Choose d >0 so that if Ix / I" + y <a then
d

X-X-U-y-uYx + x-Y- < and Ix + I< , using continuity of the multiplication
and inversion functions.

Next, let lx + u + [Y < d. It then follows from the choice ofd that

K(,y K(x,y K(u,y )I < +l K(,y K(x,y x-’(u,y

+lx-K(u,y -K(u,y)

(x-u-y-uyx (x-y- x-u y uyx x-y
+]x-u y-uyx u-ty-luyl

Cc -y-uyxl +lx-u u ly-uy[

lru,yl

Similarly, K(x, uy K(x,y) K(x, u )l c lK(x, y )
TEOM 2.2. There is a d > 0 such that if each of m and n a positive integer and

mix +nly <d then IK(x,y)l "’.
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PROOF. Letd >0suchthatiflx +lul +lyl <d, then]K(ux,y)-K(x,y)] :lK(u,y) Using

Theorem 1.5 for:= 1,1etd2>0suchthatif,.[x,[ <d2then,.x, existsand ]x,-, ,-lx’l,-,lx’[’
which of course implies x, :2,lx,I.. Now suppose m is a positive integer such that

m Ix + Y < " Then it follows that x’ + Y + x < d2 for each 1,2, ...,m 1. Therefore, the

choice of d, yields ]K(x’,y)-mK(x,y) ]K(x’,y)-K(x’-’,y)- K(x,y) lK(x,y)l.

Similarly, there is a 0<ds<-g such that if n is a positwe integer and xl+nly I<ds then

[K(x,y")-nK(x,y)l lg(x,y)I. Now let0 <a <asand supposem Ix I+n y <d- It then follows

that

IK(x’,y")-mnK(x,y)l lK(x’,y")-nK(x’,y)l +lnK(x’,y)-K(x,y)

n mn
-gl r(x’, y )l + -g-I g(x, y )[

mn
-Ig(x,y)l

The conclusion now follows from the triangle inequality.

TItEOREM 2.3. There ared, 0andM > 0 such that ill x + yl < d then K(x, y )l MI xl Yl.
PROOF. Let d > 0 such that:

i. ifm [x I+n Y < dx then K(x,y)l .,,,,, using Theorem 2.2,

ii. ifm Ix I+’ y I<al then Ix’l ":lxl and lYIZnlYl, using Theorem 1.5 for e 1, and

iii. if Ix" +ly’l < then Ig(x",y’)l < , using the continuity of Kat (0,0).
,

Let 0 < d < 7’’ and chooseM > .2 Next, suppose Ix + Y < d. Choose m and n so that 7 < mxl <

n,-; < I"1 < -, w,iu implies I,nxl I"1 > ra. It then follows from the choice of d, that

21K,’,,".) 2 21"*1IKx,y)l Mlxl lYlmn mn d?
mn 1

THEOREM 2.4. There are d > 0 and M > o such that if Ix + h + g < cl then

Ig-xg-h-Xxhl MIg-hl Ixl.
PROOF. Choose a positive number d so that if I,-11 /lbl <d, then

la-lb-aqa-(b-a)l-:51t,-al Using Theorem 1.2, choose a positive number d so that if

lal+l’l<’h then la-Xba-a-la-bl <1’1- Choose positive numbers M and d so that if

Ix I+lh +lg I<d then:

i. I(g-xg)- +lhqxhl <d, which implies Ig-xg-h-xhl . 2[g-x-gh-lxhl,

ii. Ihl /lg(h-,x)l a, using the continuity of Kat (0,0),
M

iii. IK(gh-,x) 71gh-’l Ixl, using Theorem 2.3 and continuity, and

iv. gh - hh- (g h)l g hi, which implies gh.-1 zl g hi.
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Now suppose I I+ h + g < d. It then follows from the choice of d that

g-lxg h-lxh 21 g-lx-tgh-xh

21 h-tK(gh q,x)hl

21K(gh-’,x)l
M
lgh-’l

MIg-hl I1.
The following is a direct consequence of Theorem 2.4 and strong differentiability of the

multiplication at (0,0).
COROLLARY 2.5. There are d > 0 and M > 0 such that if Ix + Y + u I< at then

IK(x,y)-K(u,Y)I Mlx-ul lyl.
THEOREM 2.6. If c > 0 there is a d > 0 such that if Ix + w + y ]< d then r(x + ,y)

K(x,y)-K(w,y)] ":l’l ]Y] and lK(x,w +Y)-K(x,w)-K(x,Y)l -:ll Ixl.
PROOF. Suppose c > 0. Let dl > 0 such that if Ix[ +lwl < d then there is a u such that

x +w- ux, using Theorem 1.4. Let 0 <d: <d such that if Ix + Y + ]u I< d_ then

IK(ux,y)-K(x,y)-K(u,y)l 1/41uJlyl, using Theorems 2.1 and 2.3. Let 0<d3<d2 and

M >0 such that if]u I+ly I+1 w I<d then II(u,u)-K(.,,y) <MI -wl lYl, by Corollary 2.5.

Finally, let 0<d <- such that if Ixl+lu I<d then [ux-u-x lu[ and

Now suppose Ix + ]w + [Y < d. Let u be in X such that x + w ux, by choice of dr. Notice,

since w-ux-x, the choice of d yields ]ul 211, lu-l lul 1’1,
[xl /lyl +11 11 /lyl /2lwl 2d <a2, and [u] /lyl /lwl lyl /31wl <3d <d3. It then

follows that

[K(x +w,y)-K(x,y)-K(w,y)[ lK(ux,y)-K(x,y)-K(u,y)[ +[K(u,y)-K(w,y)[

c

 clwl
Similarly, lr(x,y +w)-K(x,y)-K(x,w)l clxl Iwl.

Theorem 2.6 and the triangle inequality give the following.

COROLLARY 2.7. /f c > 0 there are d > 0 andM > 0 such that if Ix + Y + u + v l< d
thenlK(x +u,y +v)-K(x,y) M(lu +lvl).

THEOREM 2.8. Ifc > 0 there is a d > 0 such that ifeach ofm and n is apositive integer and

mix +nly <d then IK(mx,v)-mnK(x,y)l cmnlx
PROOF. Suppose c > 0. We first show the case where n 1. Let d > 0 satisfying Theorem

2.6, and suppose mlxl +lYl <d. Then since (m-j)lxl+lxl+ly I<d for each j--1,2 ,m it

follows that IK(mx,y)-mK(x,y)l .IK((m-j)x +x,y)-K((m-j)x,y)-K(x,y)[ cM[x[ lYl.
Similarly, there is a d >0 such that if Ixl +nlyl <d then Ig(x,v)-ng(x,y) lxl lyl. Next,

choose a d >0 so that if mix[ +lyl <d then [K(mx, y)-rnK(x,y)[ mlx lYl and so that if

Ixl +nlyl <d then IK(x,v)-nK(x,y)l "’lxl lYl- Suppose mix +nlY <d. Since this implies
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that Ixl +"IYl <d andmlx +1’1 <d, it follows that

K(mx, v) mnK(x, y K(mx, v) mK(x, v)[ + m K(x, v) nK(x, y )[

cmlxl lyl-

THEOREM 2.9. lfc >0 there is a d >0 such that if]x[ +IY] <d and each of h, 1, m, and n

is a positive integer such that 0 < -d < then

g ,y cl lYl-mn mR

PROOF. Suppose c >0. Using Theorem 2.8, choose d >0 so that if mlx} +n[y] <d

hen I(,.)-K(,y) EII lYl- Suppose I1 +lyl d and O<.E,;< 1. Thn, since

 l=l+,l l < d, it follows that

]K(x,y)-hlK(x’Y)]mn ]K(h( m) l())-hlK( m’n)[+ ]hlK(,)-hlK(x,y)Imn
hi

We now show Theorem 2.9 holds for real numbers s and between 0 and 1.

THEOREM 2.10. g c > 0 there a d > 0 such that if Ixl + yl < a and 0 < s,t < then

PROOF. Suppose c >0. t d >0 and Mt >0 such that if Ixl +ll +lul +l! <d, thn

[K(x +u,y + v)-K(x,y)[ g(lul +lvl), by Corollary 2.7. Using Theorem 2.9, choose 0 <de <d
so that if Il +lyl <d and 0<=,:< then K ,:y -:K(x,y) =ll lyl. Now suppose

Il +lyl < and0<s,t < 1. Choose rational < s and i < so that
M Iti.

ii. -=<2, and

iii. st-= =< xllyl

It now follows that

x (s h
n

h

+--K y
hl

K(x,y) + -st IK(x,y)l
st m -ran mn

clxl lyl.

It is clear that we can now define the bracket function on all ofX xX by [x, y] lim sK(sx,).
s,tO

Furthermore, since K(-x + x,y) K(O,y) O, Theorem 2.6 can be used to show that if c > 0 there

isaa > 0 such that if Ix[ +lY[ <d thenlK(-x,y)+K(x,y)l clx] lY[, which in turn can be used to

show [x,y]- limo,sK(sx, q). The next theorem follows immediately from the definition of[x,y]
s,t

and eorem 2.10.
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TItEOREM 2.11. If c>0 there is a d>0 such that if ]l+ll d then

I[x,Y]-g(x,Y)l clxl lyl.
The following theorem shows that the bracket function is bilinear.

THEOREM 2.12. [x +w,y]=[x,y]+[w,y]and[x,y +z]=[x,y]+[x,z].

PROOF. Suppose c >0 and each ofx, w, andyis inX. Choose 0 <s,t < so that

i. [[x +w,y]-K(s(x +w),ty)l <1/4l[:,y]-K(sx, ty) <1/4 I[.,,y]_,K(.,.w.ty)l <, using

the definition of [x, y ], and
1-’111 using Theorem 2.6.ii. ]K(sx +sw,))-K(sx, ty)-K(sw,)

The conclusion now follows easily from the triangle inequality.
We now combine some of the previous results into a single theorem. Notice that part ii, which

follows from part and Theorem 2.11, together with Theorem 2.12 implies that the bracket function
is continuous.

THEOREM 2.13. There are d > 0 andM > 0 such that if[x] + yl + I1 < d then

i. Ig(x,y) MIm lyl,
ii. I[x,y] M[x[ lYl, and

iii. y--v-l MIxlly v I.
We now show that is a Lie-Algebra.

THEOREM Z.4. Ix, y] =-,x].
PROOF. Suppose c > 0 and each of x and y is in X. Using Theorem 2.13, choose d > 0 and

M > 0 such that iflal +lbl <d thenlg(a,b)nlal Ibl Choose 0 <s < so that

i. lsxi +lsyl <d,

ii. IK(sx, sy) + K(sy,sx)l IK(sx,)-K(sx,sy(,sx) + K(sy,)l K(sx,sy)[ using

strong differentiability of the multiplication at (0,0), and

iii. [x,y]-jK(sx, sy) gand ,x]-jK(sy,sx) g, bydefinitionof[x,y].

The conclusion now follows from the triangle inequality.
The next wo theorems will be used in Theorem 2.17 to show that the bracket function satisfies

Jacobi’s identity.

TNEOM .15. Ifc. 0 there a d. 0 such that glxl + I1 * I1 e

PROOF. Suppose c 0 and each of x, y, and z, is in X. Using Theorem 2.13, choose d 0

andM. 1 so that if I1 * yl < then I[,y]l dl I1. Using Corollary 2.5, choose 0 < d
,rid M .M so that if Ix +y +z < then K(x,z)-K,z) Mx-y I1. using eorem
2"ll, chseO<d<sthatiflxl +Yl +11 d thenlK(x,y) +l[x,y]l +11 . Now suppose

I1 *11 *11 - t then fonows that
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]K(K(x,y),z)-[[x,y],z]] ]K(K(x,y),z)-K([x,y],z)[ + IK([x,y],z)-[[x,y],z]l

c
glK(x,Y)-[x,y]l I1 +l[x,y]l I1

Mc c

lxl lyl Izl +M,Ixl lYl Izl

lx[lYllzl
THEOREM 2.16. Ifc >0 there is ad >0 such that iflxl +lyl +lzl <d then

]K(K(x,y),z) K(K(z,x),y) K(K(y,z),x)[ sclx] [yl [zl
PROOF. First note that it is easy to verify below by direct computation that

K(x, y )K(K(x, y ),z )K(z, y )K(z,x)K(K(z,x ), y )K(y,x)K(y,z)K(K(y,z ),x)K(x,z O

Now suppose c > 0. Using strong differentiability of the multiplication at (0,0) and Theorem 2.13,

choose d > 0 and M > so that ilia + b] + gl + hl < d, then

Igabh -gabK(b,z)h +K(b,a)l lK(b,a)l gla Ibl,
which implies Igabh -gbah 2MII Ibl, since abK(b,a)--ba. Choose 0 <d <d so that

i. d<-,and
ii. iflxl +lyl +lzl <d anda= FIa,, wherej {1,2 9} anda, is one ofthe nine terms

d

in (*) above, then la <7-
Now suppose Ix +lyl +lzl <d. Then, since

g(x, y )K(y,x) K(z, y )K(y,z) K(z,x)K(x,z) O,

the conclusion follows from the triangle inequality.
We now give Jacobi’s identity.

THEOREM 2.17. [[x,y],z]+[[z,x],y]+[[y,z],x]--O.

PROOF. Suppose each of x, y, and z is in X and c > 0. First choose d > 0 and M > 0 so that

if lal /lbl <d then Ig(a,b)Mlal Ibl, by Theorem 2.13. Next choose 0<d <dl so that if

xl + x=l / xd d then

i. Ixx-(x +x+x)l -:(IxA +lxd +lxl), using Theorem 1.5,

ii. ]g(g(x,xz),x3).g(g(x3,x),x2)og(g(x2.x3),x)]-:lxl Ixl Ixd, using Theorem 2.16,
and

iii. [[x,x:,],x3] + [[x3,x],x,] + [[x,,x3],x] (K(K(xi,x),x3) + K(K(x3,x),x:,) +

g(g(x,x),xO)l .:-r(Ixd Ixl Ixd ), using Theorem 2.15 and the triangle inequality.

Now choose 0 < , < so that Lr + Z.y[ + I1 < a, and

K(K(?,x, y), ),z)l + K(K(,Zx), ),.y)[ + K(K(.y,. ), )x)l < d.

It then follows that

][x,y],z]+[[z,x],y]+[[y z],x]] 11=? [[Lx,LY],)z]+[[Xz, Lx],Z.Y]+[[X.Y,LZ],kx]i

which completes a proof.
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3. THE MAIN CONSTRUCTION
The purpose of this section is to prove that if an analytical group is in canonical coordinates

then the multiplication function is determined by the bilinear function [, in a canonical way.

THEOREM 3.1. If(X, V) is an analytical group in canonicalparameters then there is a d > 0

so that iflxl,ly <d then

y-lxy x [y,z] + (l/Z!) [y, [y,x]] exp(ad(-y))(x).

Notice in canonical parameters this also implies that
-1yxy x + D’,x] + (1/2!)[y,[y,x]] + exp(ad(y))(x).

PROOF. Suppose e, 0. By Theorem 2.13 choose M and d > 0 so that if Ixl ,I Yl ,I v’l < d then

Ig(x,y)l <Mlxl lYl,

I[x,y]l <Mlxl [Yl
and

[y-lxy v-lxvl < M[xl ly v

Suppose }y < and choose n so that Yl < d. Let T be defined by

and S by

Suppose xl < d/eu. We then have

since [xl < d and ;’Yl < d. Thus we have

Assume that if 0 k 1 < n then () exists and

I(1 < l+Mly Ixl.

Sin(l+glYl)- e< we have [-lx[ < d so T( l exists and

IIxl + Mly IT*-txl +lMly Ixl.n

A similar induction shows that

IS’xl + lyl
n

for 0-: k <n.

By Theorem 2.11 choose 0 < 8 < so that if la bl < a then

IK(a,b)-Ea,b]] <elal It’l
and so that
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lab--bl lbl.
Suppose Yl and hoose an integer n so that -I Yl a andM ’-I Y] & Suppose I1 (min(h,d))/e’.

Then IT’ll min(6,d)and ]K(
Suppose 0 k n and consider

T(T’x)-S(T’x), xK(T’x,y) T’x T’x,y]

,y +e[ffx y e(M+l) 1+ Mly[

For the same x,y,n, and range of k we have

,S(x)-S(S’, +M[y[ T’x -S’x,

It follows that

)’l[y[]x] +(l+M[y,),-’x-S’-’x,s’l (M +

for n. By induction then we have

Ir*-s’*l ne(M + 1) + MlY[ I*1 Y e(M + 1)Ix[ [yleMI,I

If we are in canonical parameters then T’x y-xy. Moreover, S’x approaches exp(ad(-y)) @)

as n increases without bound. Thus we have shown that if

and y- exists then

y-’ -exNad(-Y))(x)l lxl lYl
However, in canonical parameters, we have

so (y-(}x)y)--)., Thus, ifx and y are such that y-’()y exists for each [0,1], we have

that if n is sufficiently large then

and the fact that we are in canonical parameters implies that we can cancel out in the inequality

to obtain

Hence we have

ly-*xY -exp(ad(-Y))(x)l < 1*1 ly[

y-lxy exp(ad(-y )) (x

and we are done with a proof of Theorem 3.1.

Recall the definition ofD admissible following the proof of Theorem 1.6.

LEMMA 3.2. There is a 8 > 0 so that if > D > 0 and each ofp and q is D admissible then

the productpq is 4D admissible.
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PROOF. Choose 6 > 0 so that if each of x, y,a, and b has norm less than is then

Ixy-ab-(x-a)-(y-b) <lx-al +[y-b

Let 0 <D < is and suppose each ofp and q is D admissible. Let [a,b]-dom(p)*dora(q) and

suppose [c,d]C[a,b]. Note that each of p(c),p(d),q(c), and q(d) has norm less than is and hence

]p(d)q(d)-p(c)q(c)-(p(d)-p(c))-(q(d)-q(c))[ < [p(d)-p(c)l + [q(d)-q(c)

It follows that

Ip(d)q(d)-p(c)q(c)l , 2(]p(d)-p(c) + Iq(d)-q(c)[

and hence that pq has variation not exceeding 2(Varto.bp + Varto.bIq) < 4D.

We have from our choice of 6 that

Ip(d)q(d)-OO-(p(d) +q(d))[ < Ip(d)l +

or that

Ip(d)q(d)l < 2(Ip(d)l + Iq(d)l < 4D

Thus pq is 4D admissible.

The following lemma will be used to prove Theorem 3.4.

LEMMA3.3. There is iS > 0 so that if6 >D > 0 andp isD admissible then p- is 2D admissible.

Here p- denotes the multiplicative inverse; that is, p- [a,b] X by p-t(x) (p(x))-.
PROOF. Since the derivative ofx x-l at 0 is -Id, choose is > 0 so that if each ofx and y has

norm less than 6 then

[x-l-y -’ -(y -x)] < [x-yl

If 0 < D < 6 andp is D admissible then the last inequality shows that for each x and y in dom(p) we

have

Ip(x)-’-p(y)-’l < 2lp(x)-p(y)
and

[p(x)-’-(-p(x)) < lp(x)l

It follows that p-1 is 2/) admissible.

LEMMA 3.4. There is a D > 0 such that if each ofp and q is a D admissible function from
[0,A] into Xand e > 0 then there is a 6 > 0 such that i.f[tx, [5] C [0,A] has length less than 6 then

p(f) -p(ct) [u(a)(q() -q(a))u(a)-’ + u([) u(a)] e(Varto.alq + Var[ap

where u(k)= (I-Ip(Z))[ l-lq(.)]-’.

PROOF. ChooseD > 0 as in Lemmas 3.2 and 3.3 and suppose 0 < D:, <D satisfies Corollary

1.8 and Theoem 1.9 and 1.13. Choose 0 <D <D:48" 6) and so that if Ixl / lal / Ibl <D thn

]xax-’-xbx-’[ < 2[a -b[. Now suppose e > 0 and each ofp and q is D admissible. It then follows

from the two previous theorems that each of u and u is D2 admissible. Choose 8 > 0 to satisfy

Corollary 1.8 and also small enough so that if e -[a,] C_ [0,A] with length less than 6 then

I-I(X, u)u() l-I, q[u (x)]-1 I-I(X, u u(o:) I-I, q[u ()]-’ 1 [I(Y,.)l
Here I-I(Y, u) denotes I-I(2 u lao)() and similarly I-l, q denotes I-I(q It-,o) (1). Now assume e [o., ]

has length less than is and consider the following inequality.
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P (1) P() [u (c) (q (1) -q())u()- + u(f) u (c)]

Each of the first and fourth summands is less than eVar< by choice of De. The second

summand is identically 0, again by choice of D, since H,p=[Ip()[Hp()]-,
[I,q=Hq()[H(=)]-’, and H(E,u)=u()[u(=)]-’. The third summand is less than

el u(l)D()]-l, by choice of 6, which is less than 2eVar{<u. Finally, the fifth summand

is less than 2 ,q-q()-q()[ by choice of D, which in turn is less than 2eVart, by choice

of De. Therefore, if D is chosen small enough to also insure that

gar, 2gartlp 4(Vaqlu + gartl[q]q) 4Vart), it follows that the

original quantities can be made to differ by less than 51e(Vartu + Vart), which completes a

proof of Theorem 3.4.

THEOREM3.5. There is aD > 0such that ifeach ofp, q, andq is a continuouslydifferentiable,
D admissible nctionom [0, A] into X and u (p)(q )-, then p’ uq’u - + u ’.

PROOF. Choose D to satisfy Theorem 3.1 and mma 3.4 and suppose each ofp, q, and q’

is D admissible. t [0, A] and e > 0. Choose 6 > 0 satisfying mma 3.4 and the definition of

differentiability at a for u and q. If [0,A] and ]a ] < 6, it follows that

I() p(a) (’u- + u’)(a)- ( a)l

]p() p() [u()(q() q(a))u (a)q + u() u (a)]]

+ ]u()(q()-q())u()q -u()(q’()(-))u()- 11
+ u()(q’()( ))u()- ua’(a)u(a)q, ( a)] +]u( u(a) u’(a)( a)]

The first summand is less than e(Var + Vart) by choice ofD and , while the fourth summand

is less than el - a] by choice of 6. If D and are chosen small enough, the second summand is

less than 2]q()-q(a)-q’(a)(-a)[, which in turn is less than 2el -a], and the third summand

is identically 0 by eorem 3.1. This is enough to complete a proof of eorem 3.5.

Suppose each ofx andy is near 0 and consider the continuously differentiable function q defined

on [0,1] by

q(/) +q +[x,y]+[x,[x,y]]+...
The derivative of q is given by the series

q’(t)=x + y +[x,y]+[x,[x,y]]+ x +exp(tad(x))(y)

by Theorem 3.1.

Now consider the function r defined by r(t)=()(q). If x and y are close to 0 then

(r)(1) r(1)r(0)q =. The next lemma shows that r =q so that we have q(1) =.
LEM 3.6. There is a d > 0 so that ifeach ofx and y within d of0 and each ofq and r

is defined as ave then q r.
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PROOF. By Lemma 3.2 we have that r is 4d admissible if Ix ]Yl < d if d is sufficiently small.

By Theorem 3.1 we have the existence of a d > 0 so that if Ixl ,I yl < d then q’(t) x + (tx)y(tx)-t for

E [0,1 ]. Suppose d is small enough to make both of these happen and so that Corollary 1.8 holds

for D 4d and [,l,ly[ <d-

Suppose each of and + h is in [0,1] and consider

I,-( +h)rft)-’-(q(t +h)-q(t)) lr(t +h)r(t)-’-hq’(t) +lhq’(t)-(q(t +h)-qO)l

Ir(t +h)r(t)-t-hq’(t)[ +Mh

for some :! > 0.

Continuing the chain of inequalities we have the last sum equals

(hx)(tx)(hy)(ty)(ty)- (tx)- -hx -(tx)(hy)(tx)- + Mh

We can force each of hx and (tx)(hy)(tx)-1 as close as we like to 0 by choosing h small so if > 0

we can find a t5 > 0 so that if h] < 6 then the last quantity is dominated by el hi xl /Mh2. On the

other hand, if we apply Corollary 1.8 to r we have

r(t + h )r(t)- -((,r)(t + h )-(,r)(t)) < eVarl,.,/,lr

But, using strong differentiability of multiplication, we have the existence of a B > 0 so that

Ir(b)-r(a)l <Bib -a and hence that Vart,.,/hr
Combining all the inequalities we have if each of Ix <d and lyl <a and Ihl < then

I(,r)(t +h)-(Yr)(t)-(q(t +h)-q(t))

and hence that (Er) is differentiable and that (r)’ =q’ on [0,1]. The lemma now follows since

(Xr)(0) q(0).

The strategy for building a series expression for xy is now apparent. We have the series q

whose product integral is xy. We will modify q into a succession ofp’s, each having product integral

xy. Indeed, noting that each of the first two terms of q is already of the form tz for some z X, we
12

will alter the third term [x, y into this form while at the same time introducing a new infinite series

of terms. Each of these new terms, together with each of the terms of the original series, will be

altered one at a time in succeeding steps, each step introducing a new series and in the limit

approaching a P of the form P(t) tZ, where here Z denotes the Campbell-Hausdorf series. Due to

the complexity of the construction, rather than choosing a D at this time, we will simply assume

that each of x and y is chosen small enough for each intermediate step and show in the end that it is

indeed possible to choose such a D.

We first choose a norm on Xso that if each ofx and y is inX then [x,y]l Ixl lYl. Next, let

b be a denumeration of the set of all brackets involving x and y such that bl -x, b2= y, b3-[x,y

and if n is a positive integer greater than 2 then b,, [b,,b], where each of andj is a distinct positive

integer less than n. Furthermore, we define the length of each of b and b:, as and the length of b,,

inductively as l, + l where l, denotes the length of b, and we require the sequence to be non-

decreasing. In other words, b is a sequence of brackets in x and y of non-decreasing length. Next,

define p [0, X by

p(t) tx +ty +-.[x,y]+[x,[x,y]]+... ,. pL,(t)b,.
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Notice that Pl, 0 for infinitely many and that Lemma 3.6 gives I-Ipl(1) xy. In order to define

p,, nductvely, assume p,, -[(), X is defined as p.(t) . p,,,(t)b; and define u,, -[0, X by

u.(t)=(tp,,,,(1)-p,,,,(t)), b,, =-[5,(t). b,,

Notice that u(t ue(t) 0 for each and are included only for completeness. Define p, [0, X

as
p./ E(u. lip.).

If D is chosen small enough so that Theorem 1.13 applies, it follows that

I-It,.. (t) u.(t)I-lp.q) I-Ip.(0)% (0)- u.(t)l-Ip.(t).

since each of l-lp,(0) and u(0) is 0. Therefore lip, (1 u(1) I-Ip,(1), which by induction equals

xy. Moreover, since u, lip, (Iqp,)-, it follows from Theorems 3.5 and 3.1, that if D is chosen

small enough,

P’,, + U’,,t/- +

=(l,. ,,(l)-p’,,,,, )b, +p’, +[u.,p’. ]+-..[u.,[u.,p’, ]]+...

=(p,, ,,(1)-p’ )b. +,.,p’.., b, + [5,b., "ib’ + 2-’.""

(p,,. (1) p’,,, )b. +
i.

P’"" bi +
,’. P’"" . [b"’bi’t’]’

where h,. b, and b,., [#., b,.,].

Next, notice that each bracket in p Y. p,b,, which has a non-zero polynomial coefficient

p,,, is of the form [x,b] [b,b] and hence has a first term of length 1. Recall the length of

b, is denoted by l,. Now suppose n is a positive integer and each bracket in p. with non-zero

coefficient is of the form [b,, b], where l I. and if l I. then b ,, b.. Then, ignoring simplifications

resulting from bracket algebra such as [x,y] -[y,x] and the Jaeobian identity, it follows that ifp,,,,.

is non-zero and b,,, [bt,b], then each bracket of the form [b., b,,,.,], as defined above for p’. , has

a first term of value h,, and hence of length 1. and therefore corresponds to a polynomial p.. which

is constantly 0.

We now define q,,/ "[0,1]--,X by q./(t)-- Y q./.,(t)bi, where for each j,q./t.i is a real

valued polynomial defined on [0,1] as

[tp.,.(1),
[p,,(t),

]0---zv-p’., (s,
[.13,

if j-n
if p,.i is non-zero, j n

if bi-[b,,bi.] for some and k

otherwise

It follows from induction on n and the argument above that q,/ is well defined, at least

coordinate-wise, and that q. ,(0) 0 for eachj. It will be shown below that each of Y supi0.qi q,.,b,I

Y sup,,.,l q’ b,I, and supfa 1]I q"., bl is bounded for each n and hence each of q, and q’ exist.
i=1 =I

Moreover, this also implies that q’. ] q’., b.
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Furthermore, since q’.. (t)=p’,,/ (t) for each [0, 1] and q..(O) =p. /(0) O, it follows

that p.. q. , and hence that 1-|% (1) I-IP. (1) xy. In other words, even though p. was

defined earlier in terms of p. and u. to obtain 1-Ip./t(1)=xy, it follows that p./ is also given by
the infinite series q,, I. Notice, by induction on n, that the first n terms of q.. , and hence of p.. l,

are each of the form tz for some z in X.

We now show that supl l[q,,.,b,] is bounded by showing that Varlo, tl(q,,,,b,)is bounded
=I

and in fact can be kept as small as desired, provided D is chosen accordingly. First, we define

v, Varlo.ll(q2 ,h,) and notice that ifD is chosen small enough we have y v, < 1/20, since q., p2 p.

Also hi x and b:, y gives q3 q2. However, since b3 [x,y] and hence the coefficient of b is

non-zero, it follows that

Varlo,,O,= , Varlo,l(q#,,b,)= , v, +lq3,(1)b3l + , w, v, + , w,,
-I ,=I *=I ,,=I

i,,3

where

w I Vart q(q’"bl)’ if b [b3,bi] for some j

[0, otherwise.

Therefore, using the fact that

’(f3(s))
(s)ds .[b,b,.] (IP#)l*lp ,.,(s)l)-I[b,b,.][Varo. k P ’’

and he fact hat Var[o.l < 2Var[a.3. we have that

2,-Ytv + 1-" 2(1/10) Var’qPs’bs,. v, +v
The reader should note that if w, is non-zero, then b is not of the form [x, bi] and hence the coefficient

of b, in p is zero. Thus, the variation of these previously zero coefficients form and infinite

series, namely w,, which sums to less than of a single previous summand, v. Clearly,

Varlo.tfh < + < 7. Subsequent steps in the construction yield similar results, where v3 is replaced

by either v, for some > 3, or w, for some positive integer i, or some other variation introduced at

an earlier stage while altering a term such as w. Thus, if n is a positive integer and n new series
have been introduced, each with their corresponding series of variations, it follows that

1 4Varto fl. v, + v + v + <
4

<
,=, i- ,- 20 3 10

Thus, just as before, we have
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where here

1-1

Varto.trq,.,b,, if b, =[b,,b,] for some j
U

O, otherwise.

Therefore, using a similar argument as before, we have

V.r,o.,l./ <,., q. b, + ,., Var[o., ft. b,

,-1’ q"’’ + - Var[’llP"’"b"

,." Var[o. lh.,b, + - Var[o. (L..b.

Thus, the variation of q,, is less than E for each n and, except for showing the convergence of the

various series and their derivatives, as promised above, we are done. However, in order to drive

home the idea that the tails of the series must approach O, suppose e > O. Choose a positive integer

N, such that
-0’ v, < -. This implies that the sum of the variations of the series introduced to

alter the v,,i > N,, plus the series introduced to alter these, etc. sum to less than . However, we still

need to take care of the fact that each of the at mostN variation series introduced to alter bracket

terms with index less than N, such as the W series used to alter bs, contain infinitely many terms

corresponding to brackets with index greater than N. For each of these series, say W-,, Ws W,,
+/- ,W<7. Thus, if N is chosen greater thanchoose a positive integer N satisfying

max{Nt,Nz Nu,} it follows that the sum of the variations of all series introduced after the Na’ stage

is less than e.

We now show that Y supt0,,]l q’ ,, bl can be made arbitrarily small by an appropriate choice

of D. But this argument is very similar to the one above.

For if

(l,(s))*
q" Li(t) k! .p’,.,(s)ds

as defined above, and hence b [b,, b,a,] then

supt0.l q’, . bl (Varto.l,b,) suPt0.,l q’.., b,I

Thus, for example, if we denote sup[0,ql q’s,,bl as v’ we have that

Y-. sup[0. ]l q",, b,[ < --. v’i+lPs,s(1)b31 + ,.(Var[o,,]sb3)" ’lP’s,,b,I.
2vs 5

,- 10 1-2(1/10)
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Therct’ore, if we again use the property that Y. supi0.ilp’,,., b,] 76 as our induction step we see that

lq,,.,b, But we’ve already shown this last sum can be madesupl, Ill q h,I < v’, + Varro
-1 t-I -1

as small as desired, since 1/10 may clearly be replaced by (1/lO)e; hence we are done.

The property that y. supt0.111 q" ., b,I is bounded for each n follows from the fact that

(t n I}j k

(13")*
[b.,b,,,]p’. p’.,, [b.,b,,,] +--. p"..

Thus, since supt0.l113’,, ’.,.)1 + supt0,,llP’,,,. --M., we have

st’pl,, ,llq" .,, h,I supt0.1llq", b,I +M." 2 kCVaqo ,l,b,)*-" supt0.lP’,, b,I
-1 k-I :-1

+ (Varto,l[5.b.) b,I.sup[o, 1] P

But the first summand of the double sum is bounded due to the previous arguments for Y. Varto.lq,.,b,
i-I

and supt,, ll q’,., I’,l and the fact that kct’- < for I’1 < 1. Furthermore, the second summand
t=l k-I

is also bounded due to the previous arguments, and by induction as is the first sum. Thus,

supl0.l q" b, is bounded for each n.

Therefore, we may now conclude that it is possible to choose a D > 0 small enough so that

Theorem 1.13 holds for u,, lip,, Theorem 3.5 holds for p, / and p’,, and Theorem 3.1 holds for u,
and p’,,, for each n.
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