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ABSTRACT. C.L. Siegel established in 1929 [Ges. Abh., v.1, pp. 209-266] the deep results that

(i) all zeros of J(z) and J’(z) are transcendental when , is rational, z :p 0, and (ii)
J’,,(z)/J(x) is transcendental when , is rational and z algebraic. As usual, J(z) is the
Bessel function of first kind and order t,. Here it is shown that simple arguments permit one to

infer from Siegel’s results analogous but not identical properties of the zeros of higher derivatives

of x-UJ,(z) when / is algebraic and v rational. In particular, J"(4-x/)= 0 while all

other zeros of J"(z) and all zeros of J’,,"(z), v # 1, z # 0, are transcendental. Further,
Jo’)(+x/) 0 while all other zeros of Jo’)(z), z =p O, and of J’)(z), v # O,z y O, are

transcendental. All zeros of J")(z), z O, are transcendental, n 5,..., 18, when v

is rational. For most values of n, the proofs used the symbolic computation package Maple V
(Release 1).

KEY WORDS AND PHRASES. Bessel functions, zeros, transcendentality, differential equa-

tions.
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1. INTRODUCTION.
Carl Ludwig Siegel established [3; 2, Ch. 6, 2, p. 217] the deep results that when v is

rational the zeros of J,(x),J(x),x # O, are transcendental and that the ratio J(x)/J,(x) is

transcendental for x algebraic. Here J,,(x) is, as usual, the Bessel function of the first kind

and order v.

From these properties, as will be shown below, analogous (but not always identical) results

can be inferred by quite simple arguments for the zeros of higher derivatives of

3"..(.) z-"J().

when # is algebraic and u rational.

For / 0, this gives full information on the transcendentality of zeros of J(")(x),n
2,...,18. Other standard special cases are t 7, t, m + 7, m 0,+1,+2,..., the

familiar spherical Bessel functions (a multiplicative constant aside), and / t which presents

the standard entire function A(x), again disregarding a multiphcative constant.
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The transition from Siegel’s theoreln to these results is via minor manipulations of the

differential equation for y J,,(z) [5, 4.3a(9), p. 98]

x2y" + (2# + 1)xy’ + (x- v,2 + l:)y O (1)

These calculations can be applied equally well to the general form

xy + p(x)xy’ + q2(x)y O, (2)

where p2(z) and q:(x) are algebraicpolynomials.

For y satisfying (2), it follows by induction that y also satisfies, for n 2,3,4,...,

"y(") + ,.,():y’ + q.(:)y o, (3)

where p,(x), q,(x) are algebraic polynomials. The subscript n does not suggest the degrees
of these polynomials. (In fact, deg(p,) 2[(n 1)/2] and deg(q,) 2[n/2].) It records only
their association with the differential equation (3) of order n.

The induction from order n to order n + 1 leads to

"+U"+’ + [p’.() + p,(){1 -. p()} + q-()]U’
+ [xq(x) nq,(x) q2(x)p,(x)]y 0, (4)

where the coefficient functions are again polynomials. The passage is achieved by differentiating
(3), multiplying through by x, then replacing x"y(") from (3) and x’y" from (2). From (4),
we have

p,+, xp(x) + p,(x){1 n p2(x)} + q,.,(x), (5)

q,,+l xq’,,(x)- nq,,(x) q2(x)p,.,(x). (6)

Thus, (3) and (4) express the higher derivatives of ,]’,u(x) in terms of ,Y’,u(x) and

.L’,.().
This will permit the application of Siegel’s theorems to .7(")(x), since

J’,.() s’() (7),.7,,,u(x) J,,(x) x

Hence, ,’ (x)/,Y’,,,u(x) is transcendental whenever x(# 0) and / are algebraic and v

is rational, since this is the case for J’(x)/J,,(x). One observation is immediate from Siegel’s
work and does not require an appeal to the differential equation:

THEOREM 1. If u is rational and / algebraic, then any zero of

,7’,u (z), x # 0, is transcendental.

PROOF. Let # 0 be any arbitrary zero of ,7,u(x ). From (7),

J()

If were algebraic, then this equation would imply that J’,,()/J,,() is algebraic. But [2,
Ch.6, 2, p.217] this is false when v is rational as here.

Proofs of the remaining results will use special cases of (3). The next theorem, however, will

be phrased more generally so as to make it potentially applicable to yet other cases.

THEOREM 2. Let y(x) be a non-trivial solution of the differential equation (3) where

p,.,(x), q,,(x) are algebraic polynomials. Suppose for each algebraic x # 0, that (i) y(x) # 0
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and that (ii) y’(x)/y(x) is transcendental. Then a zero 0 of y(")(x) is algebraic if

and only if p,(() q,(() 0.

PROOF It is obvious that # 0 is an algebraic zero of y(")(x) if p,() q,() 0.

What remains, then, is to show that y(")() 0, ( : 0, implies p,() q,(() 0 when

( is algebraic

With # 0 algebraic, it is immediate from hypotheses (i) and (ii) that y’() # 0. Fro,n

(3), (p,()y’(() + q,()y() 0. If p,(() # 0, then

y’() q,,()
()

The right hand side is algebraic for # 0 algebraic but, by hypothesis, the left hand side is

not.

Hence p,() 0 and so q,()y() 0. Furthermore, q,() also vanishes, according to

(i), and the proof is complete.
Thus, the algebraic zeros other than 0, if any, are the common roots of p,(x) and q.(z).

The search for such can be made via various methods of elimination, going back, say, to Euler,
Bdzout and Sylvester.

An apphcation of Theorem 2 to ff,,(z), into which Theorem 1 is incorporated, can be

formulated as follows:

COROLLARY. If v is rational and # algebraic, then all but a finite number (perhaps
none) of the infinitely many zeros of .?(")(x) are transcendental, x :/: 0, n 0,1,2,gl

The remaining results use the specific differential equations (1) and (4).
THEOREM 3 If t, is rational and # is algebraic, then any zero # 0 of fl." (z);,gt

and v In the latter cases there are precisely twois transcendental unless # - # .
algebraic zeros, + # 0 where 2 v2_ l_

4"

REMARK. Note that these algebraic zeros are imaginary when v < 1/4.
COROLLARY. An zeros, other than 0, of d’,,’(z), [d,,(z)/z1/2]" and [d,,(:r)/z"]" are tran-

scendental when v is rational.

PROOF. Applying Theorem 2 to differential equation (1) shows that a zero # 0 of

,.7’,’t,(z is algebraic when and only when p() 2# + 1 and q2() 2 v2 + #2 vanish

simultaneously. This estabhshes Theorem 3. (It may be noted that /-dt(z) fi)r sinz and

vJ_}(z) J/Tr cos z. The zeros, other than 0, of their respective second derivatives are all

non-zero rational multiples of r and hence transcendental.) The Corollary is immediate.

For .q’’ (x algebraic zeros arise even when #..,,,,, non-zero 0 i.e for J’"(x). Specifically,

J’"(+CS) o when 1. All other zeros, of J’"(z) are transcendental for any rational ,
including :l:l.

THEOREM 4 If v is rational and # algebraic, each zero # 0 of .q’"(z) ist,t

transcendental except when t #2+(#+ 1)(2# + I) 4#3+9# +5# + I, with 2
(# + 1)(2# + 1)(2# + 3) and with (4#3 + 9# + 5# + 1) rational.

COROLLARY. For v rational, (i)any zero # 0 of J; (x) is transcendental except
when v 1 with 2 3, (ii) any zero # 0 of [J(x)/x1/2]’" is transcendental except
when v2 -i-2s with 2 12, and (iii) all zeros (other than zero) of [J.(x)/x+"] and of

4-1[J,(z)/:r are transcendental without exception.
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PROOF. When n 2 and y J,,,u(x), the differential equation (4) becomes

’" + [- + 2(, + 1)(2 + 1)]u’
[(2t + 1)x + (2 + 3)(. u)]y 0. (8)

The coefficients of y and x’ vanish simultaneously when and only when u + ( +
1)(2 + 1) with x ( + 1)(2 + 1)(2 + 3), as asserted in th theorem. In adtion, since

u is rational, so too must be [ + ( + 1)(2 + 1)].
This establishes the theorem. Parts (i) and (ii) of the corollary are immediate. When

> u, the foregoing shows that coecients of y and xy’ vanish only when -1,-
sothat x 0. This verifies the assertion in (iii) when iu. If 1, then u 19,
so that u cannot be rational as required. If -1, then z 0. Together these last two

sentences verify the remaining assertion in part (iii) of the corollary.
The well-known relation Ja(x) -J(x) makes it obvious that J4)(i) -J"(i)

0, so that J4)(x) possesses a pair of gebraic zeros (other than zero) for a specific ratio-

nal u, namely v 0. It wilt be seen that all other zeros (other than zero) of J)(x) are

transcendental when v is rational, including those for which v O, x # 3.

This will emerge from the following theorem.

THEOREM 5. If u is rational and p algebraic, then any zero 0 of JJ)(x)is
transcendental except when

.- (. + x)[. + 1. + z
(32." + 60. + 284. + 204. + 49)] (9)

with

and with

: -(2p + 3)[-4# 12p 7 + (32# + 160#3 + 284p + 204it + 49)] (10)

{p (2/ + 1)[(4# + 12 + 7) :k (32# + 160#3 + 284# + 204/z + 49)]} 1/2
(11)

rational.

COROLLARY. For rational, (i each zero 0 of JJ4)(x)is transcendentMexcept
when 0 th ( 3, (ii) each zero ( # 0 of [J(x)/x]]() is transcendentM and (iii)
each zero 0 of [J(x)/x](4) is transcendental except when 0 with 3.

PROOF. When n 4, and th A p-u, the differentiM equation (3) has as respective

coefficients of xy and y

p4(x) -2(2p + l)z- 2(2p + 3)A + 2(p + 1)(2p + 1)(2p + 3)

and

q4(x) --x + [(2 + 1)(2 + 3)- 2A]x + (4 + 12 + 11)A A2.

These expressions are calcated by applng (4) with n 3 to (8).
The algebraic zeros of .7()(z) arise om the common zeros of p4(x) and q4(x), x # 0.

When p =-, p4 be onlywhen A=0 so tht in this cse q4(z) =-z
wi.ise o.y w. 0. Z.s,.. -, 2() .o geieo ote

To determine the common zeros ofthan perhaps z 0. Henceforth, we consider # -.
W() ,a q,(), # -, # 0, te a,eo o wm V,() 0 i ,tit,tea i,

q4(z). On simpfication, q4(z) 0 then becomes

4 z(2. + 1)(4. + lZ + z) .(. + 1)(z + )(2u + ) o. ()
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Since A l2-v2, the solutions of the quadratic equation (12) yield (9). The values (10) result

from replacing in the equation p4(.r) 0 the expression for v given by (9). The restriction

(11) merely restates the hypothesis that v is rational. This proves the theorem. The assertions

in the corollary are easy consequences in light of (12).
Remark. Condition (11), like the corresponding restriction in Theorem 3 implies the non-

existence of algebraic zeros in ,nan3’ cases. For example, if p. 1.2, 3, these requirements are

not ,net and so neither .7""’ (z) ,,or .74)(z) have algebraic zeros when / 1 2,3, x # 0.

2. RESULTANTS AND MAPLE V.
Even in the special case/ 0, the polynomials p,,, q, become substantially ,nore complicated

as n increases. For example:

p5(x) -x + (2u + 7)x u 35u 24,

and

and

and

qs(x) 2Ix -6(u + l)x + 5u2(u + 5)],

p6(x) 3Ix (6t2 + ll)x + 5u + 75u + 40],

q(x)- x- 3( + 3), + 3(u + 26u + 20)z us-85u 2744,

p(x) x- 3( + 5)x + 3(u + 50 + 64)x2- us- 175u 1624t 720,

qr(x) 3[-xs + (9r, + 17x*) -(15r, + 190r? + 120)x + 7r,s + 245t, + 588r,].

The method of {}1 is, in principle, still applicable. In the case n 8, for example, we find that

ps(z) and as(z) have a common zero if, and only if,

-31907119104v30 847042707456v2s

-4180678fi80576v2 614494258827264v2’t

-4099235438453760v22 16797585600728640v2

-446224810865120vTM 74605419864103690vs

-52227966835676760v’" + 89924792224537360v’
+3400114fi3648979674v’ + 547044103885835061vs

+549201731824654896vs + 359020825792238369v
+144928821192067000v + 3040143522850000 0.

This equation has precisely one positive root. It is located between 1.25 and 1.3, the polynomial

being positive when v 1.25 and negative when v 1.3. For the root to be rational

(expressed in lowest terms), its numerator must be a factor of the constant term

3040143522850000 24(3 )(7s)(533),

its denominator a factor of the leading coefficient

31907119104 2-(32)(72)(23).

One can show by checking that no such rational root is possible, so J(S)(z) has no algebraic

zero, except possibly z 0, for v rational.

Rather than giving more and more complex ad hoc arguments for larger values of n, we will

use the concept of resultant. The resultant (or ehminant) [4] of two polynomials p and q is a
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function r of the coefficients which vanishes if and only if the polynomials have a common root.

The resultant may be expressed as a determinant involving the coefficients or it inay be found

[6] using the Euclidean (greatest common divisor) algorithm. The proofs of Theorems 3, 4 and

5 may be rearranged by finding the values of p and u for which resultant r,,(tL u) of p, and q,

vanishes. We then substitute these values back into p, and q, and check to see whether they

have a common non-zero root, i.e., whether their g.c.d, is anything other than a power of x.

For example, in Theorem 3, the resultant of p2(x) and q2(x) is 2p + 1 which vanishes for

-1/2. Fo, -1/2, ,v get p2(x) 0 and q2(x) x v + 1/4 which have a common

non-zero root only if u # .
For n _> 5, we concentrate on the special cases # 0, 1/2, u and -1/2.

2.1 The case/ 0. We used Maple V (Release 1) to form the polynomials p, and q,, and

to set up [1, pp.178-179] and factor their resultant r, a polynomial in v. Here is the procedure
used on a SUN 4/75 at York University.

p proc (n)

p(1) := !"1,1];

19(2) :=[2.m+1, x**2-nu’2+m’2]

if n <= 2 then RETURN (p (n) fi;

for i from 2 to n-I do

p(i+l) := [x*diff(p(i)[l], x) + p(i)[l]*(l-i-p(2)[l]) +p(i)[2],
x*diff(p(i) [2] ,x) -i*p(i) [2] -p(2) [2]*p(i) [1]]

od;

RETURN (p (n) end;

r proc(n) resultant(p(n) [1] ,p(n) [2] ,x) end

rr proc(n) factor (r (n) end

The following expressions were obtained for the first eight resultants factored over the rationals.

rl(v) 1, r2(v)= 1,

r3(u) 4(v 1)2(u + 1),
r4(u) 64v(7 + 2u2)2,

rs(u) 16(877u + 493u + 448u + 432)2,

r6(v) 11664(-10000 16723u 48749v4

-47208u 12576vs + 256u’)2,

rT(U) 746496(10800u14 + 1045744v’2 3311544v’ 51138608u8

103853517ue 105987611u -48750264u 12150000)2,

rs(u) 47775744(18464768uis + 351700992u16 + 20996299776u14

/ 185371620544u + 278668777744u- 72563241789u8

747805126038u6 1012303674997u 626716971000u: 204205050000).
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Hence v +1 arc the only (rational) roots of r3(v). This is consistent with part (i) of the

Corollary to Theorem 4. We carried out the computation as far as n 18 and there are no

further rational roots of r,(u). Hence, for these values of n, there ,s no possibility of a common

root of p, and q,, and hence no non-zero algebvazc root of J(")(x), when u is rational. Our
results for 0 can be summarized as follows:

THEOREM 6. If // is rational and x :p 0, then all zeros of J"l(x), n 0,1,2,...,18
arc transcendentaI’with the exception of the zeros +V which occur in the cases n 3, v +1

andn=4, //=0.

2.2. The case # 1/2. We used Maple V again to set up the polynomials p, and q, and

their resultant r,, factored over the rationals. The first few results are as follows:

rl(u) 1, r(u)= 4,

1
r3(/) (2//- 5)2(2//- 5)2,

r4(u) (216v 247 + 16//4),
vs(u) 4(36324u + 9909 + 3056u + 1216u6),

r6(u) (729/4)(8u + 13)2(256us --29952u6- 155808u 16848v --845743),
rT(//) (729/1024)(1105200vTM + 2105987072vI 31126270976vl -4105477640vs

1878589556672v 3941745616400v 3183516258012v 3944054162017),
rs(u) 729(5754585088vTM + 146218352640//’6 + 24293948915712vTM

+ 179297378451456u’2 628056658616320u 812967841220864vs

31107275263623680u 71858687471992512u -82804731870624480v

55560127536055125)2.

The calculations were carried as far as n 18. The only case where a rational root exists is

the case n 3, u 25/4; the corresponding roots of [x-’/2J(x)] (a) are at 4-Vfi-. This agrees

with part (ii) of the Corollary to Theorem 4.

We summarize our results as follows:

THEOREM 7. If v is rational and x # 0, then all zeros of [z-x/2J(x)] ("), n

0,1,..., 18 are transcendental with the exception of the roots 4-v/ occurring for n 3, v

25/.

2.3. The case tt u. In contrast to the situation encountered in Theorems 6 and 7, here

the functions r,(u) appear to have rational roots for every n > 2. So we have to check further

to see if these rational roots correspond to non-zero common roots of p,(x) and q,(x). We

again have recourse to Maple V, first to evaluate the roots of r,(v), then to find the greatest
common divisor (using god [1, pp. 100-101])of the polynomials p,(x) and q,(z) in the special

cases when these this roots are substituted for v. The Maple procedure of 2.1 was augmented
as follows:
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1. oo 1 gcd l rt lgcdl
2 -1/2 x

8 -1/2
3 -1/2 x

-1

-1 x -3/2
4 0 x 3

-2

-1/2 x --5/2
-1 x

-3

-3/2 x -7/2

5 1 x: 15
9 -1/2

-1/2 x
-1

-1 x -3/2

-3/2 x: -2

-2 x -5/2

6 -1/2 x
-3

-1 x
-7/2

-3/2 x
-4

-2 x
10 -1/2

-5/2 z
-1

7 -1/2 x6
-3/2

-1 x
-2

-3/2 Z
-5/2

-2 x
-3

-5/2 x
-7/2
--4

-3 x:
-9/2

Table 1" Case # v

11 -1/2
-1

-3/2
--2
-5/2
--3
-7/2
-4
-9/2
--5

12 -1/2
--1
-3/2
--2
-5/2
--3
-7/2
-4
-9/2
--5

-11/2

rrr := proc(n) root s (r (n) end

rrrr := proc(n)
for i to nops(rrr(n)) do

a := subs(m op(1,op(i,rrr(n))),p(n) [1]);
b := subs(m op(1,op(i,rrr(n))) ,p(n) [2])

c := gcd(a,b);
print (n,i ,op(1, op(i, rrr (n)) ), c)

od

end

Table 1 gives the output of this procedure in the case/ v.

The left column contains values of n. The second contains the rational values of v for which

the resultant of p, and q, vanish and the third column contains the corresponding gcd’s for p,,
and q,. The only gcd’s with a root other than 0 in the table correspond to the cases n 4, v 0

and z 3 (see part (i) of the Corollary to Theorem 5) and n 5, v 1 and x 15. We
have carried the table to n 13 without encountering any other exceptional cases. This proves
the following:

THEOREM 8. If v is rational and z # 0, then all zeros of [z-,’J,,(z)]O}, n 1,..., 13

are transcendenta! except for zeros at +/ in case n 4 and v 0 and at 4- in case n 5
and v= 1.

The Table and its continuation suggest a number of conjectures:



ZEROS OF DERIVATIVES OF FUNCTIONS INVOLVING BESSEL FUNCTIONS 559

(a) That ,’,,(v) is a polynonfial of degree n(n- 1)in u.

(b) That r,,(v) has exactly , rational roots in case n y 4,5 and n rational roots in case

n- 4,5.

(c) That the rational roots of r,(v) are -m/2, m 1,..., n plus the additional root 0 in

case n 4 and in case n 5.

2.4. The case IL -1/2. In this case, we get

() =0,

r3(u) (2u- 1)2(2u + 1)2,

r4(u)- (2u- 1)4(2u + 1)4,

rs(v) 324(2v- 1)(2v + 1)(4v + 1)2,

r6(v) 729(2v- I)6(2v + i)6(-224v + 16v4- 457),
r(v) (18225/I024)(2v i)6(2v + i)6(20v 29)(432v + 16200v 7277)2(4v + 17),

rs(U) 59049(2u 1)s(2u + l)s(Z606460448u + 4463010256u + 4314561883

346449152u6 + 22256384us + 1605632u’).
What appears to be happening here is that, for each n _> 3, the polynomial rn(v) has exactly

and -1/2, but these never give rise to common zeros of p, and q,. This hastwo rational zeros

been verified for n 3,..., 15 using a procedure similar to that used in the proof of Theorem

8. Taking into account the special case arising in Theorem 3, we have:

THEOREM 9. If v is rationaland z :# 0, then all zeros of [z’/2J(z)]("), n 1,..., 15,
are transcendental, except for zeros at 4- 1/4 in case n 2 and v y g.

3. CLOSING REMARKS.
The results reported here suggest the following two questions (for which we expect negative

answers):

1. Is there any pair of values v,n, where v is rational and n 19,20,..., such that

J")(z) has an algebraic zero other than z 07

2. Is there any pair of values v,n, where v is rational and n 19,20,..., for which

there is more than one algebraic 0 such that J(")(4-) 07

Theorems 7, 8 and 9 suggest analogous questions and conjectures for the zeros of [z/J,.,(z)]O),
[z-"J,,(z)](") and [:r-a/2J,,(z)]O"), respectively.

The degrees of the polynomials p,, q, corresponding to J,,.u(x), p # --] can be de-

termined precisely: They are deg (p,) 2[(n- 1)/2] and deg(q,) 2[n/2], where [-] denotes

the greatest integer function. These values provide upper bounds for the numbers of possible

algebraic zeros of ,.7,,(,u)(:r), but presumably quite wide of the mark.
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