Internat. J. Math. & Math. Sci. 551
VOL. 18 NO. 3 (1995) 551-560

TRANSCENDENTALITY OF ZEROS OF HIGHER DERIVATIVES OF FUNCTIONS
INVOLVING BESSEL FUNCTIONS

LEE LORCH and MARTIN E. MULDOON

Department of Mathematics and Statistics
York University
North York, Ontario
Canada M3J 1P3

(Received September 2, 1995 and in revised form February 2, 1994)

ABSTRACT. C.L. Siegel established in 1929 [Ges. Abh., v.1, pp. 209-266] the deep results that
(i) all zeros of J,(z) and J.(x) are transcendental when v is rational, z # 0, and (ii)
J.(z)/J,(z) is transcendental when v is rational and z algebraic. As usual, J,(z) is the
Bessel function of first kind and order v. Here it is shown that simple arguments permit one to
infer from Siegel’s results analogous but not identical properties of the zeros of higher derivatives
of z7#J,(z) when pu is algebraic and v rational. In particular, J/(++/3) = 0 while all
other zeros of J{”(z) and all zeros of J!(z),v? # 1,z # 0, are transcendental. Further,
J8(+£v/3) = 0 while all other zeros of JM(z), z#0, and of J¥(z), v#0,z#0, are
transcendental. All zeros of J{"(z), z # 0, are transcendental, n = 5,...,18, when v
is rational. For most values of n, the proofs used the symbolic computation package Maple V
(Release 1).
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1. INTRODUCTION.

Carl Ludwig Siegel established [3; 2, Ch. 6, §2, p. 217] the deep results that when v is
rational the zeros of J,(z),J)(z),z # 0, are transcendental and that the ratio J.(z)/J.(z) is
transcendental for = algebraic. Here J,(z) is, as usual, the Bessel function of the first kind
and order wv.

From these properties, as will be shown below, analogous (but not always identical) results

can be inferred by quite simple arguments for the zeros of higher derivatives of
Tou(z) = 27 (2),

when p is algebraic and v rational.

For p = 0, this gives full information on the transcendentality of zeros of J(")(z),n =
2,...,18. Other standard special cases are u = %, v=m+1i, m=0,%1,%2,..., the
familiar spherical Bessel functions (a multiplicative constant aside), and u = v which presents

the standard entire function A,(z), again disregarding a multiplicative constant.
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The transition from Siegel’s theorem to these results is via minor manipulations of the
differential equation for y = J,,.(z) [5, §4.31(19), p. 98]

2y + 2p+ Day' + (22 =12+ )y =0. (1)
These calculations can be applied equally well to the general form
2%y" + pa(z)zy’ + ga(z)y = 0, (2)

where p;(z) and go(x) are algebraic polynomials.
For y satisfying (2), it follows by induction that y also satisfies, for n = 2,3,4,...,

2"y + pa(z)zy’ + gulz)y = 0, 3)

where pa(z), ¢n(z) arealgebraic polynomials. The subscript n does not suggest the degrees
of these polynomials. (In fact, deg(p,) = 2[(n — 1)/2] and deg(q,) = 2[n/2].) It records only
their association with the differential equation (3) of order n.
The induction from order n to order n +1 leads to
eyt + [zpn(a) + pa(z){1 = n = pa(2)} + ga(2)]zy’ (@)
+ [zgn(2z) — ngn(z) — g2(z)pn(z))y = 0,

where the coefficient functions are again polynomials. The passage is achieved by differentiating
(3), multiplying through by z, then replacing z"y(™ from (3) and z2y” from (2). From (4),

we have
Prt1 = 2p,(2) + pa(2){1 — n — p2(2)} + ga(2), (5)
nt1 = 24,(2) — ngn(2) — g2(2)pn(2)- (6)
Thus, (3) and (4) express the higher derivatives of J,.(z) in terms of J,,.(z) and
Tou(T)-
This will permit the application of Siegel’s theorems to J{")(z), since

Tiuls) _ Ia) -

Toul) B J(z) = ’

Hence, J;,(z)/Juu(z) is transcendental whenever z(#0) and p are algebraic and v
is rational, since this is the case for J)(z)/J,(z). One observation is immediate from Siegel’s
work and does not require an appeal to the differential equation:

THEOREM 1. If v is rational and pu  algebraic, then any zero of
J,u(z),z #0, is transcendental.

PROOF. Let ¢ # 0 be any arbitrary zero of J;,(z). From (7),
L _»

L) €

If ¢ were algebraic, then this equation would imply that J.(€)/J,(£) is algebraic. But [2,
Ch.6, §2, p.217] this is false when v is rational as here.
Proofs of the remaining results will use special cases of (3). The next theorem, however, will

be phrased more generally so as to make it potentially applicable to yet other cases.

THEOREM 2. Let y(z) be a non-trivial solution of the differential equation (3) where
Pna(z), gn(z) are algebraic polynomials. Suppose for each algebraic z # 0, that (i) y(z)#0
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and that (i) y'(z)/y(z) is transcendental. Then a zero £ # 0 of y(™)(z) is algebraic if
and only if p,(£) = ¢a(§) = 0.

PROOF. It is obvious that ¢ # 0 is an algebraic zero of y™(z) if pn(£) = ga(£) = 0.
What remains, then, is to show that y(™(£) =0, ¢ # 0, implies pn(£) = gn({) =0 when
¢ 1is algebraic.

With € # 0 algebraic, it is immediate from hypotheses (i) and (ii) that y’(¢) # 0. From
(3), €EPa(E)¥'(€) + an(€)y(§) = 0. If pn(£) #0, then

¥ _ _

(&) &pald)
The right hand side is algebraic for ¢ # 0 algebraic but, by hypothesis, the left hand side is

not.

Hence p.(£) =0 and so ¢n(£)y(§) = 0. Furthermore, g,(¢) also vanishes, according to
(i), and the proof is complete.

Thus, the algebraic zeros other than 0, if any, are the common roots of p,(z) and g¢.(z).
The search for such can be made via various methods of elimination, going back, say, to Euler,
Bézout and Sylvester.

An application of Theorem 2 to J,,(z), into which Theorem 1 is incorporated, can be

formulated as follows:

COROLLARY. If v is rational and p algebraic, then all but a finite number (perhaps
none) of the infinitely many zeros of J,f,"')(z) are transcendental, ¢ #0, n=0,1,2,....

The remaining results use the specific differential equations (1) and (4).

THEOREM 3. If v is rational and g is algebraic, then any zero ¢ # 0 of J,(z)
is transcendental unless u = —% and »? # %. In the latter cases there are precisely two

algebraic zeros, £ # 0 where {2 =0v2-1.

REMARK. Note that these algebraic zeros are imaginary when v? < 1/4.

COROLLARY. All zeros, other than 0, of J/(z),[J.(z)/z%]” and [J,(z)/z*]" are tran-
scendental when v is rational.

PROOF. Applying Theorem 2 to differential equation (1) shows that a zero & # 0 of
J...(z) is algebraic when and only when p(¢) = 2p+1 and g(€) = €% — v® + y? vanish
simultaneously. This establishes Theorem 3. (It may be noted that /zJ 1 (z) = y/2/7sinz and
\/.;J_%(I) =4/2/mcosz. The zeros, other than 0, of their respective second derivatives are all
non-zero rational multiples of 7 and hence transcendental.) The Corollary is immediate.

For J.(z), non-zero algebruic zeros arise even when p =0, i.e., for J)'(z). Specifically,
J"(£+/3) =0 when v? =1. All other zeros, of J(z) are transcendental for any rational v
including £1.

THEOREM 4. If v is rational and p algebraic, each zero ¢ # 0 of J)(z) is
transcendental except when v? = p? + (u + 1)(2p +1)2 = 4p3 + 9p® + 54 + 1, with ¢2 =
(4 +1)(2p +1)(21 + 3) and with (4% + 9u2 + 54 + 1)? rational.

COROLLARY. For v rational, (i) any zero £ # 0 of J.'(z) is transcendental except
when »? =1 with £2=3, (i) any zero £ #0 of [J,(z)/z%]"” is transcendental except
when v? = % with ¢? = 12, and (iii) all zeros (other than zero) of [J,(z)/z**]" and of

[J.(z)/z*!]" are transcendental without exception.
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PROOF. When n =2 and y = J,,(z), the differential equation (4) becomes

By +afe? = + -2 +1)(2e + 1))y
— [2p+ 1)+ (2p + 3)(p? - v¥)]y = 0. (8)

The coefficients of y and zy’ vanish simultaneously when and only when »? = p? + (u +
1)(2p + 1) with 2% = (u +1)(2¢ + 1)(2¢ +3), as asserted in the theorem. In addition, since
v is rational, so too must be [u? + (p + 1)(2u + 1)?]5.

This establishes the theorem. Parts (i) and (ii) of the corollary are immediate. When
u? = v?, the foregoing shows that coefficients of y and zy’ vanish only when u = —1, —%
so that z = 0. This verifies the assertion in (iii) when g = +v. If g =1, then »? =19,
so that v cannot be rational as required. If u = —1, then z? = 0. Together these last two
sentences verify the remaining assertion in part (iii) of the corollary.

The well-known relation Ji(z) = —Jj(z) makes it obvious that J$*(+v/3) = —J/"(+V/3) =
0, so that J(*(z) possesses a pair of algebraic zeros (other than zero) for a specific ratio-
nal v, namely v = 0. It will be seen that all other zeros (other than zero) of J{¥(z) are
transcendental when v is rational, including those for which v =0, z%#3.

This will emerge from the following theorem.

THEOREM 5. If v is rational and u algebraic, then any zero & # 0 of J{!)(z) is

transcendental except when

o= pt -2+ 1)[4p + 120+ 7 9)
+ (324 + 16043 + 28442 + 2044 + 49)%)
with

€ = —1(2u + 3)[—4p® — 124 — T + (32u* + 16043 + 28447 + 204y + 49)¥) (10)

and with

L

{W? = 120 + 1) [(407 + 12 + 7) & (324 + 1604° + 2844% + 204p + 49)}]} (11)

rational.

COROLLARY. For v rational, (i) each zero ¢ # 0 of J{(z) is transcendental except
when v =0 with ¢2 =3, (ii) eachzero £ #£0 of [J,(z)/z%%]® is transcendental and (iii)
each zero £ #0 of [J,(z)/z**]™) is transcendental except when v =0 with ¢2 =3.

PROOF. When n =4, and with X = p2—v?, the differential equation (3) has as respective

coefficients of zy’ and y
pa(z) = =2(2p + 1)z — 2(2u + 3)A + 2(p + 1)(2¢ + 1)(21 + 3)

and
qa(z) = =z + [(2 + 1)(2u + 3) — 2\ 2% + (4p® + 12p 4+ 11)) — A2

These expressions are calculated by applying (4) with n =3 to (8).

The algebraic zeros of J{%)(z) arise from the common zeros of ps(z) and g4(z), z #0.

When p = -1, ps(z) can be zero only when X =0 so that in this case g4(z) = —z4,
which vanishes only when z =0. Thus, when p=—1, 7{)(z) has no algebraic zeros other
than perhaps z = 0. Henceforth, we consider g # —}. To determine the common zeros of
ps(z) and qy(z), p# -3, z#0, thevalueof z? for which ps(z) =0 is substituted in

g4(z). On simplification, g4(z) =0 then becomes

407 —2(2p + 1)(442 + 12 4+ T)A — pp + 1)(2 + 1)*(2 + 3)2 = 0. (12)
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Since A = p?—v?, the solutions of the quadratic equation (12) vield (9). The values (10) result
from replacing in the equation ps(r) =0 the expression for v? given by (9). The restriction
(11) merely restates the hypothesis that v is rational. This proves the theorem. The assertions
in the corollary are easy consequences in light of (12).

Remark. Condition (11), like the corresponding restriction in Theorem 3 implies the non-
existence of algebraic zeros in many cases. For example,if 4 =1.2,3, these requirements are

not met and so neither 7. (z) nor J{¥(z) have algebraic zeros when p=1,2,3,7 # 0.

2. RESULTANTS AND MAPLE V.
Evenin the special case p = 0, the polynomials p,, g, become substantially more complicated

as n increases. For example:

ps(z) = —at 4+ (202 + T)r? — v* — 3502 — 24,

and
gs(z) = 2[z* — 6(+% + 1)z? + 502 (v? + 5)),
pe(z) = 3[z* — (60 + 11)x% + 50 4 7507 + 40),
and
go(r) = 2% = 3(v? + 3)x* + 3(v* + 2607 + 20)2% — v© — 850% — 27404,
pr(z) = 28 — 3(v? + 5)z* + 3(v* + 500 + 64)% — 15 — 17504 — 162407 — 720,
and

gr(z) = 3[—2° + (9% + 172%) — (150 + 19002 + 120)x? + 7v° + 2450* + 5882).

The method of §1 is, in principle, still applicable. In the case n = 8, for example, we find that
ps(z) and gs(z) have a common zero if, and only if,
—3190711910413° — 847042707456128
—4180678680576126 — 6144942588272641%
—4099235438453760*2 — 167975856007286401/2°
—44622481560865120-'8 — 7460541986410369011¢
—5222796683567676011 + 89924792224537360012
+340011463648979674v'° + 54704410388583506118
+549201731824654896° + 359020825792238369,*
+144928821192067000» + 3040143522850000 = 0.
This equation has precisely one positive root. It is located between 1.25 and 1.3, the polynomial
being positive when v = 1.25 and negative when v = 1.3. For the root to be rational

(expressed in lowest terms), its numerator must be a factor of the constant term
3040143522850000 = 24(3°)(7°)(53°%),
its denominator a factor of the leading coefficient
31907119104 = 2%°(32)(72)(23).

One can show by checking that no such rational root is possible, so J{&(z) has no algebraic
zero, except possibly r =0, for v rational.
Rather than giving more and more complex ad hoc arguments for larger values of n, we will

use the concept of resultant. The resultant (or eliminant) [4] of two polynomials p and ¢ is a
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function r of the coefficients which vanishes if and only if the polynomials have a common root.
The resultant may be expressed as a determinant involving the coefficients or it may be found
[6] using the Euclidean (greatest common divisor) algorithm. The proofs of Theorems 3, 4 and
5 may be rearranged by finding the values of p and v for which resultant r,(u,v) of p, and ¢,
vanishes. We then substitute these values back into p, and ¢, and check to see whether they
have a common non-zero root, i.e., whether their g.c.d. is anything other than a power of z.

For example, in Theorem 3, the resultant of p;(z) and g¢,(z) is 2u + 1 which vanishes for
pu = —1/2. For p = —1/2, we get po(z) = 0 and ¢z(z) = 2 — v? + 1/4 which have a common
non-zero root only if v? # 3.

For n > 5, we concentrate on the special cases p = 0,1/2,v and —1/2.

2.1 The case y = 0. We used Maple V (Release 1) to form the polynomials p, and g,, and
to set up [1, pp.178-179] and factor their resultant r,,, a polynomial in v. Here is the procedure
used on a SUN 4/75 at York University.

p := proc (n)
p(1) := [1,1];
p(2) :=[2*m+1, x**2-nu~2+m~2];
if n <= 2 then RETURN(p(n)) fi;
for i from 2 to n-1 do
p(i+1) := [x*diff(p(i)[1], x) + p(i)[11*(1-i-p(2)[11) +p(i)[2],

x*diff(p(i) [2],x) -i*p(i)[2] -p(2) [21*p(i)([1]];

od;

RETURN(p(n)); end;

r := proc(n) resultant(p(n)[1],p(n)[2],x) end
rr := proc(n) factor(r(n)) end
The following expressions were obtained for the first eight resultants factored over the rationals.
r(v) =1, r(v) =1,
ra(v) = 4(v = 1)*(v +1)?,
ra(v) = 6404(7 + 20%)?,
rs(v) = 16(877v% + 493v* + 448,° + 432)?,

re(v) = 11664(—10000 — 16723v> — 48749*
— 47208/° — 125760% + 25607°)2,

rr(v) = T46496(108000** + 104574402 — 3311540'° — 51138608/°
~ 10385351705 — 105987611v* — 48750264v% — 12150000)%,

rg(v) = 47775744(18464768v'® + 3517009921 + 20996299776,
+ 1853716205441 + 2786687777441 — 72563241789,°

— 7478051260381° — 10123036749974* — 6267169710001 — 204205050000)2.
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Hence v = +1 are the only (rational) roots of r3(v). This is consistent with part (i) of the
Corollary to Theorem 4. We carried out the computation as far as n = 18 and there are no
further rational roots of r,,(v). Hence, for these values of n, there 1s no possibility of a common
root of p, and g, and hence no non-zero algebraic root of J{™(z), when v is rational. Our
results for 4 = 0 can be summarized as follows:

THEOREM 6. If v isrational and  # 0, then all zeros of J{"(z), n=0,1,2,...,18
are transcendental' with the exception of the zeros ++/3 which occur in the cases n = 3, v = +1

and n =4, v =0.
2.2. The case p = 1/2. We used Maple V again to set up the polynomials p, and ¢, and
their resultant r,,, factored over the rationals. The first few results are as follows:

r(v) =1, ro(v) =4,

r3(v) = 3(21/ —5)%(2v + 5)?,
ra(v) = (21602 — 247 + 160%)%,
rs(v) = 4(36324v% + 9909 + 30560 + 121615)?,
re(v) = (729/4)(8v* + 13)*(2561° — 299525 — 155808, — 168482 — 845743)?,

rr(v) = (729/1024)(110592000' + 21059870720'2 — 311262709761'° — 4105477064018

— 18785895566720° — 3941745164000 — 31835162580120%2 — 3944054162017)2,

rg(v) = T729(5754585088,'% 4 1462183526400'¢ + 24293948915712,1
+ 1792973784514561'2 — 6280566586163201'° — 8129678421220864°
— 311072752636236801° — 71858687471992512v* — 82804731870624480"

— 55560127536055125)°.

The calculations were carried as far as n = 18. The only case where a rational root exists is
the case n = 3, ¥® = 25/4; the corresponding roots of [x~1/2J,(z)]® are at £+/12. This agrees
with part (ii) of the Corollary to Theorem 4.

We summarize our results as follows:

THEOREM 7. If v is rational and z # 0, then all zeros of [z~Y/2J,(z)]™, n =
0,1,...,18 are transcendental with the exception of the roots ++/12 occurring for n = 3, v =
25/4.

2.3. The case p = v. In contrast to the situation encountered in Theorems 6 and 7, here
the functions r,(v) appear to have rational roots for every n > 2. So we have to check further
to see if these rational roots correspond to non-zero common roots of p.(z) and gn(z). We
again have recourse to Maple V, first to evaluate the roots of r,(v), then to find the greatest
common divisor (using ged [1, pp. 100-101]) of the polynomials p,(z) and ga(z) in the special
cases when these this roots are substituted for v. The Maple procedure of §2.1 was augmented

as follows:
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[n ] v root | gcﬂ [n [vroot | ged |
_ 3
2] -2 < ’ _1{2 ;2 [n ] vroot [ ged]
31 -1/2 1‘2 32 | 8 1] -1/2 1.120
4 _O1 Z‘T_ 3 -2 1'4 ':‘};2 1‘8
-1/2 ) 4 -5/2 | «* - A 1‘4
-1 12 -3 72 -;) . 1‘6
—-3/2 zz —7/2 | z? —_é ie
5 1 Iz p 15 9 —1/2 z: _'-/2 1‘4
-1 T
. 4 N .
1{2 iz -3/2 | =8 9?2 iz
_ 3 9 B
- 2 ? :
3/2 1'2 _5/2 174 5 _7;12
-2 = Rl I VARSYZ -
6| —1/2 22 —7/2 | 22 -1 Zm
-1 = A iy o
-3/2 z A .
10 _1/2 710
— 2 B .
S| 1|2 5/2 | =
= 5 -3/2 | 28 ‘
7| —1/2 12 A : 772 :1:4
-1 14 -5/2 | z¢ —4 1-4
-3/2 z A . Yy 12
- 4 —
2 "l‘2 _7/2 4 5 12
52 I —4 22 -11/2 | «
— 2
? - -9/2 | z?

Table 1: Case p = v

rrr := proc(n) roots(r(n)) end
rrrr := proc(n)

for i to nops(rrr(n)) do

a := subs(m = op(1,op(i,rrr(n))),p(n)[11);
b := subs(m = op(1,0p(i,rrr(n))),p(n)[2]);
c := gcd(a,b);

print(n,i,op(1,0p(i,rrr(n))),c)
od

end

Table 1 gives the output of this procedure in the case u = v.

The left column contains values of n. The second contains the rational values of v for which
the resultant of p, and g, vanish and the third column contains the corresponding gcd’s for p,
and g,. The only gcd’s with a root other than 0 in the table correspond to the casesn =4, v =0
and z% = 3 (see part (i) of the Corollary to Theorem 5) and n = 5, v = 1 and z? = 15. We
have carried the table to n = 13 without encountering any other exceptional cases. This proves

the following:
THEOREM 8. If v isrationaland z # 0, then all zeros of [z7¥J,(z)]™, n=1,...,13

are transcendental except for zeros at +v3incasen =4 and v = 0 and at +v/15 in casen = 5

and v = 1.

The Table and its continuation suggest a number of conjectures:
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(a) That r,(v) is a polynomial of degree n(n — 1) in v.
(b) That r,(v) has exactly n — 1 rational roots in case n # 4,5 and n rational roots in case

n =4,5.

(c) That the rational roots of r,(v) are —m/2,m =1,...,n — 1 plus the additional root 0 in

case n = 4 and 1 in case n = 5.

2.4. The case = —1/2. In this case, we get
1’2(!/) = 0,

ra(v) = %(2./ C 17w 1),
ra(v) = (2v — 1)*(2v + 1)*,
rs(v) = 324(2v — 1)*(2v + 1) (4v? +1)?,
re(v) = T29(2v — 1)8(2v + 1)8(—2240% + 16v* — 457)?,
r7(v) = (18225/1024)(2v — 1)%(2v + 1)8(200% — 29)%(4320* + 1620002 — 7277)* (40 + 17)?,

ra(v) = 59049(2 — 1)3(2v + 1)8(2606460448v* + 446301025612 + 4314561883

3464491521° + 222563841% + 1605632'°)2.

What appears to be happening here is that, for each n > 3, the polynomial r,(v) has exactly
two rational zeros 1 and —J, but these never give rise to common zeros of p, and gn. This has
been verified for n = 3,...,15 using a procedure similar to that used in the proof of Theorem

8. Taking into account the special case arising in Theorem 3, we have:

THEOREM 9. If v isrationaland z # 0, then all zeros of [z'/2J,(z)]™, n=1,...,15,
are transcendental, except for zeros at &4/v? — 1/4 in case n = 2 and v? # e

3. CLOSING REMARKS.
The results reported here suggest the following two questions (for which we expect negative

answers):

1. Is there any pair of values v,n, where v is rational and n = 19,20,..., such that

J{"(z) has an algebraic zero other than z = 0?

2. Is there any pair of values v,n, where v is rational and n = 19,20,..., for which
there is more than one algebraic £ # 0 such that J{™(££) =07

Theorems 7, 8 and 9 suggest analogous questions and conjectures for the zeros of [z/2J,(z)]("),
[z=¥J.(z)])™ and [z~'/2J,(z)]"™), respectively.

The degrees of the polynomials p,, ¢, corresponding to J,,.(z), # # —% , can be de-
termined precisely: They are deg (p.) = 2[(n — 1)/2] and deg(gn.) = 2[n/2], where [-] denotes
the greatest integer function. These values provide upper bounds for the numbers of possible

algebraic zeros of J{")(z), but presumably quite wide of the mark.
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