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ABSTRACT. For a monotone convex function f e C[a,b] we prove that the modulus of

continuity w(f;h) is concave on [a,b] as function of h. Applications to approximation theory axe

obtained.
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1. INTRODUCTION.
In a recent paper, Gal [1] the modulus of continuity for convex functions is exactly

calculated, in the following way.

THEOREM 1. (see [1]) Let f 6 C[a,b] be monotone and convex on [a,b]. For any h [0,b-a]
we have:

(i) w(f;h) f(b)-f(b-h), if f is increasing on [a,b],

(ii) w(f;h) f(a)- f(a + h), if/" is decreasing on [a,b],
where w(f;h) denotes the classical modulus of continuity.

Denote

KM[a,b] {f C[a,b]; f is monotonous convex or monotonous concave on [a,b]}
The purpose of the present paper is to prove that for f KM[a,b] the modulus of continuity

w(]’;h) is concave as function of h 6 [0,b-a] and to apply this result to approximation by positive

linear operators and to Jackson estimates in Korneichuk’s form.

2. MAIN RESULTS AND APPLICATIONS.
A first main result is the following
THEOREM 2. For all/" gM[a,b], the modulus of continuity w(f;h) is concave as function

of h [0, b- a].
PROOF. Let firstly suppose that /’ is increasing and convex on [a,b]. If/’ is increasing on

[a,b], by Theorem 1, (i), we have w(f;h)= f(b)- f(b-h). Hence

and
aw(f;hl) + (1 a)w(f; h2) f(b)-af(b- hl)- (1 -oOf(b- h2)

w(f;ch + (1 a)h2) f(b)-f(b-ohl-(1-oOh2)

for all c 6 [0,1] and all hl,h2 [0,b-a].

(1.1)

(1.2)
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Since f is convex on [a,b] we get

f(b ah -(1 ()h2) < f(b hl + (1 a)f(b h2),

wherefrom taking into account (1.1) and (1.2) too, we get

a.(f:hl) + (l- a)w(f;h.2) _< w(f;t,h /(1- a)h2) (1.3)

Now, if f is decreasing on [a.b], since by Theorem 1, (ii), we have u(f.h)= f(a)-f(a+h), we

immediat el)" get

cw(f;hl)+ (1 -)(f;h2) f(a)-cf(a + hi)-(1 -()f(a + h2)
and

u(f;ah + (1- a)h2) f(a)-f(a+ah + (1 a)h2)

for all c, e [0,1] and all hl,h2 e [0,b- a].
Since f is convex on [a,b] we have

f(a + ah + (1 a)h2) < oI(a + hi) + (1 a)f(a + h2)

which together with (1.4) and (1.5) gives again (1.3).
In the following we need the

DEFINITION 1. (see e.g. [2]) Let f C[a,b] be. If (f;h) sup{If(x)- f(Y) l; Ix- Y < h} is

the usual modulus of continuity, the least concave majorant of u(f;h) is given by

"(,;h)--sup{(6-)w(f;fl)+(-’)w(f;) O<o<6<<b_a}.
An immediate consequence of Definition is the

COROLLARY 1. For any f KM[a,b] we have

" (f;h) w(f;h)

PROOF. Putting c in Definition we get

w(/; h) _< (f; h).

Then, taking into account Theorem 2, for 0 _< a _< 6 _< _< b- a we have

wherefrom passing to supremum, we immediately get

(f; 6)

_
,;(f; 6),

which proves the corollary.
REMARK. It is easy to see that Corollary remains valid for all f e_ C[a,b] having a concave

modulus of continuity (f; h).

Now, firstly we will apply the previous results to approximation by positive linear operators.

Thus, investigating the sequence of Lehnhoff polynomials in [3], Ln(f)(x), defined for

f e C[- 1,1], H.H. Gonska [2] proves that

Ln(f)(x)-f(x)l <_ f;V/l x2/
n2 }

Taking now into account Corollary we immediately get the
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COROLLARY 2. If f e KM[ 1, l] then for all e 1,1], N we have

I,.,,::>:.>-:(.>I :,._+

In the sme ppe, for f C[0,1], H.H. GonsR obtains estimates in tems of the modulus

(;h) in the pproimtion by the so-cIIe Shep operator, S(f),l S S. hen by

CooIlry an by Theorem 4.3 in [2] e immediately et the

COROLLARY . For all I RM[0,1] nd II n N e hve

s),(f)- f " f;
ln(2n + 2)

( 1) 1<"<2S(f)- f 5 f;
(n + 1)"-

Finally, we will apply our results to the following so-called Jackson estimate in Korneichuk’s

forln.

THEOM 3. (see e.g. [4], p. 147) For any f C[- ,] we have

E._ () (f; ),. ,, .,

where E(f) denotes the best approximation by polynomials of degree ! .
Now, we will prove the

THEOM 4. If f C[-I,i] has a concave modulus of continuity w(f;h),h[O,2], then we

hv

Extending to [0,=] by taking w(f;h)=w(f;2),hE[2,=], obviously w remnsPROOF.
concave on [0, r].
Denote w(h) w(f;h),h [0, Tr] and

A {g C[- 1,1];w(g;h) <_ w(h),Vh [0, r]}.

Obviously f e Aw. Then by [5, Theorem 8 and Lemma 2, p. 122-123], as in the proof of Theorem

9, p. 123 in [5], there is g LiPM1 such that

IlY-all <1/2(L ) rM
2

Now by Theorem V, (ii), in [4, p. 147], there is Pn- polynomial of degree <_ n- such that

Hence we get

IIg-Pn 111 < ’M

II/-P._I < IlY-oll + Ila-Pn_l -<1/2 (f; )

which proves the theorem.

REMARK. For f E KM[- 1,1], Theorem 4 remains valid.
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