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ABSTRACT: In part one of these series we investigated the effect of Newtonian cooling on acoustic-

gravity waves in an isothernal atmosphere for large Prandtl number. It was shown that the atmosphere

can be divided into two regions connected by an absorbing and reflecting layer, created by the exponential

increase of the kinematic viscosity with height, and if Newtonian cooling coefficient goes to infinity the

temperature perturbation associated with the wave will be eliminated. In addition all linear relations

among the perturbation quantities will be modified. In this paper we will consider the effect of Newtonian

cooling on acoustic-gravity waves for small Prandtl number in an isothermal atmosphere. It is shown that

if the Newtonian cooling coefficient is small compared to the adiabatic cutoff frequency the atmosphere

may be divided into three distinct regions. In the lower region the motion is adiabatic and the effect of

the kinematic viscosity and thermal diffusivity are negligible, while the effect of these diffusivities is more

pronounced in the upper region. In the middle region the effect of the thermal diffusivity is large, while

that of the kinematic viscosity is still negligible. The two lower regions are connected by a semitransparent

reflecting layer as a result of the exponential increase of the thermal diffusivity with height. The two

upper regions are joined by an absorbing and reflecting barrier created but the exponential increase of the

kinematic viscosity. If the Newtonian cooling coefficient is large compared to the adiabatic cutoff frequency,

the wavelengths below and above the lower reflecting layer will be equalized. Consequently the reflection

produced by the thermal conduction is eliminated completely. This indicates that in the solar photosphere

the temperature fluctuations may be smoothed by the transfer of radiation between any two regions with

different temperatures. Also the heat transfer by radiation is more dominant than the conduction process.
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1 INTRODUCTION

Upward propagating small amplitude acoustic-gravity waves in an isothermal atmosphere will be reflected

downward if the gas is viscous or thermally conducting. This type of reflection is most significant when the

wavelength is large compared to the density scale height Alkahby and Yanowitch [1989, 1991], Campos

[1983a, 198:b], Cally [1984], Lindzen [1968, 1970], Webb and Roberts [1980], Lyons and Yanowitch [1974],
Priest [s41, Yanowitch [1967a, 1967b, 1979], Zhugzhda and Dzhallov [1986]).

In part one of this series we considered the the effect of Newtonian cooling on acoustic-gravity waves

in an isotherrnal atmosphere for large Prandtl number. It was shown that for an arbitrary value of the

Newtonian cooling coetcient the atmosphere may be divided into two distinct regions, which are connected

by an absorbing and reflecting layer produced by the exponential increase of the kinematic vicosity with
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height In the lower region the motion s adiabatic if the Newtonlan coohng coefficient Is small compared to

the a&abatc cutoff frequency On the other hand, f the Newtoman cooling coefficient s sufficiently large

the motion will be driven towards an isothermal one Consequently all linear relations among perturbation

quantities wll be modified In particular, it decreases the ampiitude of the wave and thereby the energy

flux as well. In the upper region the solution wll decay exponentially wth alt:tudc before t :s nfluenced

by the effect of the thermal conduction

In ths paper we will study the effect of Newtoman cooling on upward propagating acousnc gravity

waves n an isothermal atmosphere for small Prandtl number. It is shown that, if the Newtonian cooling

coefficient is small compared to the adiabatic cutoff frequency, the atmosphere may be divided nto three

&fferent regions. In the lower regmn the effect of thermal diffusvity and kinematic viscosity is negligible,

the oscillatory process is a&abatic and for frequencies greater than the adiabatic cutoff frequency the

solution can be written as a linear combination of an upward and a downward travelhng wave. In the

mddle region the effect of the thermal diffusivity is large whale that of the kinematic viscosity is still

negligible. Consequently, the motion in the middle region is isothermal and these two regions are connected

by a semitransparent reflecting layer, Mlowing part of the energy to be transmitted upward, while the

remaining part is reflected downward. The reflecting layer now separates two regions with different sound

speeds, and therefore different wavelengths, which account for the reflection process. In the upper region,

where the kinematic viscosity and thermal diffusivity are large, the amplitude of the velocity oscillations

approaches a constant value. The two upper regions are connected by an absorbing and reflecting layer,

through which the kinematic vicosity changes from small to large value. The existence of two reflecting

layer will influence the reflection process in the lower region and the final conclusion depends on their

relative locations.

When Newtonian cooling is large compared to the adiabatic cutoff frequency the oscillatory process

in the adiabatic region is driven towards an isothermal one and this will decrease the wavelength from

the adiabatic to the isothermal values. Thus, the wavelengths below and above the lower reflecting layer

are equalized. As a result, the reflection, produced by the thermal conduction, is eliminated altogether.

This indicates that Newtonian cooling influences only the adiabatic regions in the atmosphere and if the

heat exchange, due to radiation, is intense the temperature perturbation associated with the wave will

be eliminated in a time small compared to the period of oscillation. Consequently, the effect of thermal

conduction will be excluded.

From the above discussion we may conclude that in the solar photosphere the temperature fluctuations

associated with vertically propagating acoustic-gravity waves may be evened out by the transfer of radiation

between any two regions with different temperatures. Also, high emissivities in the presence of an open

boundary allow rapid loss of radiation to space. In addition this result indicates that the heat transfer by

radiation is more dominant than that of the conduction process which is the case in the hot regions of the

solar atmosphere.

We conclude by reconsidering the case of the effect of Newtonian coohng alone in section (3). Three

ranges for the frequency are identified, above the adiabatic cutoff frequency, below the isothermal cutoff

frequency and in between. The results of section (3) are used in section (4). Finally the problem in section

(4) is described by a fourth-order differential equation which is solved by matching procedure, in which

inner and outer expansions are matched in an overlapping domain.
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2 MATHEMATICAL FORMULATION OF THE PROBLEM

\Ve wll consider an isothermal atmosphere, which is viscous and thermally conducting, and occupies the

upper half-space z > 0 We will investigate the problem of small vertical oscillations about eqmlibrium,

1.e oscillations which depend only on the time and on the vertical coordinate

Let the equihbrlum pressure, density and temperature be denoted by Pc,, po. and 7o. where Po and /}

satisfy the gas law Po RToPo and the hydrostatic equation P + gPo 0. Here R is the gas constant, g

is the gravitational acceleration and the prime denotes differentiation with respect to z. The equilibrium

pressure and density,

Po(z) Po(O)exp(-z/H), po(z)- po(O)exp(-z/H),

where H RTo/g is the density scale height

Let p, p, w, and T be the perturbations in the pressure, denmty, vertical velocity, and temperature.

The linearized equations of motion are:

pow, + p + gp (4/3)zw=,, (2.1)

Pt + (pow) 0, (2.2)

po(cv(Tt + qT) + gHw=) (2.3)

p R(poT + Top). 2.4

These are, respectively, the equation for the change in the vertical momentum, the mass conservation

equation, the equation for the rate change of the x-component of the magnetic field, the heat flow equation

and the gas law. Here cy is the specific heat at constant volume, q is the Newtonian cooling coefficient

which refers to the heat exchange and is the thermal conductivity, all assumed to be constants. The

subscript z and denote differentiation with respect to z and respectively. Equation (4) includes the heat

flux term cvpoqT, which comes from the linearized form of the Stefan-Boltzman law. We will consider

solutions which are harmonic in time i.e w(z,t) W(z)ep(-iwt) and T(z,t) T(z)exp(-wt), where w

denotes the frequency of the wave.

It is more convenient to rewrite the equations in dimensionless form; z’ z/H, w= c/2H, W’ w/c,

w’ w/w=, t’ tw=, ’ 2/cvcHpo(O), T’ T/27To, q’ q/w=, where c x/TRTo x/-gH is the

adiabatic sound speed, and w= is the adiabatic cutoff frequency. The primes can be omitted, since all

variables will be written in dimensionless form )rom now on.

One can eliminate p, and p from equation (1) by differentiating it with respect to and substituting

equations (2.2-2.5) to obtain a system of differential equations for W(z) and T(z),

(D D + "w/4)W(z) + 7#e=DW(z) + iT(D 1)T(z) 0, (2.5)

(7 1)DW(z) 7(iw- q)T(z) + 7ae=DT(z), (2.6)

where D d/dz. If, furthermore, W(z) is eliminated from the differential equation (2.6) by applying D to

it and substituting for DW(z) from differential equation (2.7) one obtains a single fourth-order differential

equation for T(z):

[Tw(D D + wu/4) + zq(D D + 7w/4) zeD(D + D + 7w2/4)

iT(w+ zq)#eZ(D + D)-ae2=D2(D + 1)(D + 2)iT(z)= 0 (2.7)
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In addition 11 s convenient to ntroduce the dmens,nless Prandtl number P tz/n, which measures the

relative strength of the the vscoslty with respect to the thermal conduction. Consequently the differential

equation (2 8) becoznes

.ww’(D D + w2/4) zq(D" D ’w2/4) zeD2( D D

--zPq(w- zq)ge’D(D. 1)- wP,(ge*)2D2(D. 1)(D -2)7"(:) 0 (2.8)

Fnallv the first two terms of equation (2 9) may be combined to gve the following equatxon,

(D D + /4)- (/,)*D:(D + D + :/4)

zPmr(/m)eD(D + 1)- (q’Pm)(xe/m)2D2(D + 1)(D + 2)]T(z)= 0 (2.9)

Boundaw Condztzons To complete the ormulaton of the problem certain boundary conditions must be

imposed to ensure a unique solution. The exact nature of the exciting force need not be specified since our

object s to investigate the reflection and dissipatmn of the waves which, for smM1 and Pr, take place at

a high altitude.

Boundary conditions are required at 0, and we shl adopt the lower boundary condition (LBC): In
a fixed anterval 0 < z < z0, the solution of the differential equation (2.10) should approach some solution

of the limiting differential equation 0 and # 0),

[D D + r=/4]T()= O. 2. 0)

Considering the lower boundary condition is simpler than prescribing T(z) and W(z) at z 0. To first

order the boundary layer has no effect on the reflection and dissipation process, which takes place at a

high altitude.

Two further conditions which refer to the behaviour of the solutions for large z are required and we shM1

call these contions the upper boundary conditions. The first one is the Entropy Condition (EC), which

is deterned by the equation for the rate of change of the entropy (see Alkahby and Yanowitch[1991],
Lyons and Yanowitch[1974]). From which it follows that

The second contion is the Dissipation Condition (DC), which requires the fiteness of the rate of change

of the energy dissipation in an infinite column of fluid of unit cross-section Alkahby and Yanowitch[1991],
Campos[1983a,1983b], Lyons and Yanowitch[1974]). Since the ssipation function depends on the squares

of the velocity gradients, the ssipation condition is equivMent to

IW12dz < oo, (2.12)

Both of the upper boundary conditions are necessary and sufficient as an upper boundary condition if

/, > 0. Finally if z 0 the Radiation Condition is sufficient to ensure a unique solution.

3 THE EFFECT OF NEWTONIAN COOLING ALONE

In his section we will consider the effect of Newtonian cooling alone on acoustic-gravity waves in an ideal

atmosphere. The re:ults will be used in section (4). For this case, the differential equation can be obtained

by setting a # 0 in the differential equation (2.10). The resulting differential equation is

[D ) + /4](z)= 0. (3. )
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where T ’( + zq)/m, and m /w -+ zq The solution of the above dfferential equation can be written

in the following form

T(z) clexp[(1 / v/1 -a,’2)z/2. / c2exp[(1 v/1 "rw2)z/2l, (3.2)

where cl and c2 are constants and they will be deterrnned from the boundary condition. To investigate

the nature of the effect of Newtoman cooling on the wave propagatmn n an isothermal atmosphere, it is

convement to consider the following two limiting cases

CASE A: when q 0, the parameter " reduces to and for frequencies greater than the adiabatic cutoff

frequency w 1, equation (14) has the following form

T(z) cexp[(1/2 + zka)z] + c:exp[(1/2- zka)z], (3.3)

where 2k= v/w is the adiabatic wave number.

CASE B: when q oo, the parameter V and for frequencies greater than the isothermM cutoff

frequency w 1/, the solution of the differenti equation (13) can be written like

T(z) cezp[(1/2 + zk,)z] + caezp[(1/2- ik,)z], (3.4)

where 2k ?w2- is the isothermM wave number.

To investigate the effect of Newtonian cooling on the behaviour of the wave propagation for an arbitrary

vMue of q, it is convenient to write in the following form

, [(7 + 1)- ( 1)(cos20g ism2eq)]/2 (3.5)

1 / (-4q) + ik,), (.6

where s(q) is the attenuation factor. Consequently the solution in equation (3.2) becomes

T(z) [(/- (q) + i,)z] + [(1/ + (q) ik,)z], (.

To obtNn the behaviour of s(q), it is convenient to write

rw [(1 -(7 + 1)w/2] + [(7 1)(co20, isin20,)]/2, (3.8)

It is clear that equation(3.8)represents a secircle in the complex plane with center at ( + 1)w/2
and radius ( 1)w/2 as 0 varies from 0 to /2.

It follows from equation (3.7) that the solution can be described in the following way: the first term

on the right represents an upward travelSng wave, its amplitude decaying with Mtitude like exp(-s(q)z),
while the second term is a downward travelSng wave decaying at the same rte. We have to indicate the

the upper boundary conditions (2.11) and (2.12) cannot be applied because 0. A unique solution

can be determined by the radiation condition which requires c 0. Also there are three ranges for the

frequency w. The first one is for w > w, 1, the second one for 1/ w, < w < w., and the third one

for w < w,. They are denoted, respectively, by R, R and

From this observation and the three ranges of the frequency we have the following conclusions.

A When w belongs to Rm the attenuation factor s(q) is positive and equMs to zero at the extreme

limits q 0 d q . It increases to its mimum value, s(q) 0.1, when (q/w) O(1) and decys

to zero as q .
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B When the frequency n R2 and for smM1 value of q, a decaying wave exists and changes to

undamped travelling wave as q o

C If 02 belongs to R3 and for small value of q, a weak damped wave exists As q oc the travelling

wave changes to a standing one

(D) In (A), (B), and (C) the wave number ncreases monotically from ts adiabatic value k,, to the

isothermal one k,, as q ec, because of the change of the sound speed from its adtabatic value to the

isothermal one. Thus the attenuatmn factor remains positive, s(q) _> 0, for all values of q. At the same

time the oscillatory process is transformed from the adiabatic form to the isothermal one.

EFFECTS OF THERMAL CONDUCTION, VISCOSITY AND
NEWTONIAN COOLING

In this section we will investigate the sngular perturbation boundary value problem for the following

differential equation

[(D D 4- -r022/4)- z(n/m)eD2(D + D + "),022/4)

-zPmr(/rn)eD(D+ 1)-(TPm)(e/rn)2D2(D+ 1)(D+ 2)JT(z) 0, (4.1)

where r "(w + ,q)/(Tw + ,q) "(w + iq)/m and m -02 + zq, subjected to the boundary condition

(2.11), (2.12), and the lower boundary condition. At the outset we have to indicate that the parameters #

and are sufficiently small and proportional to the values at z=0 of the kinematic viscosity and thermal

diffusivity. Prandtl number P, can be written like

P,- I/ (lz/po)/(’c/po) I(.lmpo)(,qmpo)l (4.2)

Thus for small Pr we have #e << e. As a result, for I/mle << and small vMues of q the atmosphere

may be divided into three distinct regions connected by two different transition layers in which the reflection

and the wave modification take place. In the lower region, 0 < z << z -loglrnl, the motion is adiabatic,

because the effect of thermal diffusivity is negligible, and the solution of the differential equation (4.1) can

be approximated by the solution of the following differential equation

[D D + -w2/4]T(z)-- 0, (4.3)

the solution of which is investigated in section (3). In the middle region, z < z < z. -log#, the

oscillatory process is an isothermal, because the influence of the thermal diffusivity is large, and the

solution of the differential equation (4.1) can be approximated by the solution of

[D2(D q- D + ?022/4)]T(z)= 0. (4.4)

The two lower regions are connected by a semitransparent reflecting layer in the vicinity of z. In the

upper region the oscillatory process is influenced by the combined effect of the thermal conduction and

the viscosity and the solution of the differential equation (4.1) can be approximated by the solution of the

following differential equation

[D2(D + 1)(O + 2)]T() 0. (4.5)

The two upper regions are joined by an absorbing and reflecting transition region in the vicinity of z2

-log(/#), above it the solution which satisfies the upper boundary conditions must behave as a constant

To obtain the solution of the differential equation (4.1) it is convenient to introduce a new dimensionless
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variable ( defined by

ezp(-z)/(,/rn)= exp[-z loglc/rn + ,8,, + 3r,/2], (4.6)

where m arg (m), which transforms the differential equation (4.1) into

[( + + /4)- (( + /4)

mP,.’r(O -0) + "P,.mO2(O- 1)(0- 2)]T() 0. (4.7)

where O d/d. It is clear that the point 0 corresponds to linz oo, the point

0 exp [- logic/m] + i( ,+ 3r/2)] to z 0 and the segment connecting these points in the complex
-plane to z > 0. As I/rnl 0 the point 0 tends to o.

It is clear that the point 0 is a regular singular point of this differential equation (4.7). Consequently,
there are four linearly independent solutions, which in the neighbourhood of 0 can be written in the

following form

T3(() a’’e.t31’t"+" T,() a:’(e,)"+’’ + T()log(), (4.8)

where el 2, e 1, e3 e4 0. The prime denotes differentiation of and the sums are taken from n

0 to n . The coecients (e,) are deterned from the following three term recursion formul

o( + 2 + e)+ + ,( + + e)+, +( + e) o, (.)

where

,o(=) -P,,,,="(= )(= ),

Pl(=) -m’rP,.m,(m,- 1)- z(z=- m +

(=) (= + = + /4).
To determine which of the solutions defined in equation (4.8) satisfies the upper boundary contions (2.11)
and (2.12) for large z, the solutions must be transformed to the riable z by means of (4.6). Thus for

]/m >0 and P, >0 we have

T(z) O(e-2"), T:(z) O(e-’), T3Cz) O(1), T4(z) ocz). (4.10)

It is clear that T4(z) is the only solution which does not satisfy the entropy condition (2.11).
To apply the dissipation condition (2.12), equation (2.7) must be used to determine the the amplitudes

of the velocity corresponding to the solutions defined in (4.8). As a result we have

DW(z) O(e-*), DW2(z)= O(1), DW3(z) O(e-’), DW4(z) O(z). (4.11)

It is clear that W2(z) and DW4(z) do not satisfy the boundary condition (2.12). As a result, we obtain

T() T()+ ,T() W() ’W() + ’W(). .
To determine the linear combination of T(z) in equation(4.8), the behaviour of T(z) and T3(z) for small z

must be found. Recall that small z corresponds to large I1 with arg() 3/2 + ,. Thus the asymptotic

expansions of TI() and T3() about infinity should be found.

The point o is an irregular singular point of the differential equation(4.7), and there are four

linearly independent solutions whose asymptotic behaviour, to the first order, is governed by
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T() =’[i + h:(- +h- + ], (4. ]3)

T() ’[i + h2- + h22-2 + ], (4.14)

T(() (-/4[1 + h(-/ + ]ezp(-(/), (4. ]5)

T() -1/411 + h41-1/2 + ]exp(l/2), (4.16)

where a -1/2 s(q) + ,k,, a -1/2 + s(q)- k,. Reintroducing the dimensionless variabh

z by means of (23) we have

T;(z) e[(/ + (q)- .)z], T(z) [(/ (q) + .)],

T(z) e[-(]/,)/], T(z) [(/)/].
As a result of that T(z) represents a downward propagating wave, its amplitude decaying lik

exp(-s(q)z), while T(z)is a upward propagating wave decaying at the same rate. Also T(z) correspond

to the boundary layer term. It is important only near z 0 for any smM1 fixed vMue of z and it decay

with z like ezp[-(m]/4)/2z]. It follows that, for fixed vMue of z, Newtonian cooling reduces the widt

of the boundary lyer. Thus it is more convenient to use the lower boundary condition, from which

follows that the solution of the fferentiM equation (4.7), when 0 and smM1 vue of q should behave

asymptoticMly like a nnear combination of T() nd T(), i.e

The determination of the asymptotic behaviour of T() and T3() from the solution (4.8)is difficult

because the coefficients (e,) are determined from three terms recursion formula (4.9). Instead we will dc

it by matcng procedure, in which the inner and the outer expansions for the solutions will be matched

in an overlapping domn.

To find the inner appromation, assume there ests a regular perturbation expansion of the form

T() I() + PI() + O(P). (4.

Substituting (4.17) into the differentiM equation (4.7) and setting P 0. We obtn the following differ-

entiM equation

[( + + /4) ( # + /4)]I() 0, (4.

where 8 d/d. The second step of the matching procedure begins with the stretching transformation,

=P’, (4. 9)

of the complete differentiM equation (4.7). The resulting differentiM equation is:

[( )(- )-( +/4)

+ P(( + + /4)-( ))]T()= 0, (4 .0)

where 8 Cd/d. To obtn the outer appromation, assume that there exists a singular perturbation
expansion of the following form

T()= ()+ Pbh()+O(P]), (4.)

substituting this expansion into the differentiM equation (4.7) and letting P 0, we have

[#( )(- 2) ( + /4)]v() 0. (4.)
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The solutions of this differential equation will approximate the solutions of the differential equation (4.20)
if ( Pr is small. Since oo for any fixed 1 as Pr 0, the asymptotic behaviour of U() as

oo must be matched with the asymptotic behavlour of I(() as ( 0. Hence, the main task is the

determination of the family of the solutions of the singular perturbation differential equation (4.22), which

satisfy the upper boundary conditions (2.11)and (2.12). The differential equations (4.18) and (4.22) are

similar to the differential equation (4.6) and (4.9) in Lyons and Yanowitch [1974]. The procedure for finding

the asymptotic behaviour of the solution is the same. However, the physical nature of the solution is quite

different in the two problems. Consequently the details need not be repeated, and we merely indicate the

results.

Now we will study the behaviour of the solution in the atmosphere for z _> 0. It is convenient to start

with the upper region.

UPPER REGION: In this region the solution of the differential equation (4.1) is approximated by

the solution of the differential equation (4.5). It follows from equation (4.10) that the solution which

satisfies the upper boundary conditions must behave as a constant as z oo.

MIDDLE REGION: In the middle the solution of the differential equation (4.1) is described by the

solution of the differentia/equation (4.4), which can be written like

T(z) cons*, ezp[(-1/2 + ik,)z] + RC, cap[(-1 ik,)z], (4.23)

where RC, denotes the reflection coefficient in the middle region and defined by

RCrn ezp[-k, + 2i(0 k,log(?D))], (4.24)

o =(/- i,) + =r(i,) + =r(a/- ,) (4.2s)

It is clear that IRCI ezp(-k,). Consequently the two upper regions are connected by an absorbing

and reflecting layer in which the kinematic viscosity changes from a smM1 to a large vMue because of the

exponentiM decrease of the density with height. N addition the midge region will not influenced by the

effect of Newtonian coo5ng.

LOWER REGION: For I/m]e << 1,w > w= and small vMue of the Newtonian cooling coefficient

q, the solution of the differentiM equation (4.1) can be written in the following form

T(z) cons$, ezp[(1/2- s(q) + ik,)z] + RCL ezp[(1/2 + s(q) ik,)z], (4.26)

where RCL denotes the reflection coefficient defined by

L L=ezp[-2k,logP + 0" + 2k,O]
RCL ezp[-vka + A, B,] C,

La Lezp[-2k,logP + 0" + 2k,Om]’

A. 2s(q)logl/m 2k=O,, B. 2kalogl/ml + rs(q) + 2s(q)0,,

C. r2(1/2 + s(q) ,ka)r[s(q)- ,(k, + k.)]r(-2s(q)+ 2iko)r[1 + s(q) + ,(k,-
r2(1/2 s(q) + ik)r[-s(q) + i(a, + ka)lr(2s(q) 2ik.)r[1 s(q) i(k, k.)]’

L1 ezp(2rk,) ep(2rk)[cos(2rs(q))+ isi(2rs(q))],

, ,,(,ao)[o(,(q))+ i,(.,(q))]- -,(--,a,),

L3 ea:p(2rk,) exp(-2rk)[cos(2rs(q))- isin(2rs(q))],

,,(-.,o)[o((q))- i,(,(q))]- ,p(,a,),
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D. (1/2 z/’)[’2( ,)r( + ()- (, + o))r( ()- (,- =))
(1/ + ,k,)r=(-ik,)r( s(q) + ,(k, + k.))r(1 + s(q) + ,(k,- k.))’

O* argD. 2k,log.

In addition to the conclusions of part one we have the following observations

When q 0, we have s(q) A. 0 0 and B. 2k=log(n), and we recover the result

obtned in Lyons and Yanowitch [1974]. In this case the reflection process is more complicated because

of the existence of two reflecting layers and the fin conclusion depends on their relative locations. The

magnitude of the reflection coefficient is

(II) For fixed , smM1 q and w > w= the solution is given by equation (4.26) and its behaviour

is described in section (3). The atmosphere is divided into three distinct regions. The lower region is

appromately adiabatic and the middle one is isothermM. In the upper region the solution is influenced

by the combined effects of the thermM diffusivity and the kinematic viscosity.

Ill When q and w > w, one obtns L L4 s(q) 8 A. O, ka k,, C.D., L L3 and RCL RCm. Consequently the lower reflecting layer will be minated because the

wavelengths below and above the this layer become equM. In addition we have /m 0 and the solution

of the differential equation (4.1) can be approximated by the solution of the following differenti equation

[(D D + ?w/4) ive*(D + D)]T(z) O.

the solution of which is investigate in Compos [1983a, 1983b], Yanowitch [1967]).
IV The above conclusions indicate that, in the solar photosphere the temperature fluctuations could

be smoothed by the transfer of the radiation between any two regions with different temperatures. In

addition the heat transfer by taxation is more dominant than the conduction process.
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