Internat. J. Math. & Math. Sci. 579
VOL. 18 NO. 3 (1995) 579-590

ACOUSTIC-GRAVITY WAVES IN A VISCOUS AND THERMALLY
CONDUCTING ISOTHERMAL ATMOSPHERE

(Part li: For Small Prandtl Number)

HADI Y. ALKAHBY

Department of Mathematics and Computer Science
Mllard Umversity
New Orleans. LA 70122

(Received July 27, 1993)

ABSTRACT: In part one of these series we investigated the effect of Newtonian cooling on acoustic-
gravity waves in an isothermal atmosphere for large Prandtl number. It was shown that the atmosphere
can be divided into two regions connected by an absorbing and reflecting layer, created by the exponential
increase of the kinematic viscosity with height, and if Newtonian cooling coefficient goes to infinity the
temperature perturbation associated with the wave will be eliminated. In addition all linear relations
among the perturbation quantities will be modified. In this paper we will consider the effect of Newtonian
cooling on acoustic-gravity waves for small Prandtl number in an isothermal atmosphere. It is shown that
if the Newtonian cooling coefficient is small compared to the adiabatic cutoff frequency the atmosphere
may be divided into three distinct regions. In the lower region the motion is adiabatic and the effect of
the kinematic viscosity and thermal diffusivity are negligible, while the effect of these diffusivities is more
pronounced in the upper region. In the middle region the effect of the thermal diffusivity is large, while
that of the kinematic viscosity is still negligible. The two lower regions are connected by a semitransparent
reflecting layer as a result of the exponential increase of the thermal diffusivity with height. The two
upper regions are joined by an absorbing and reflecting barrier created but the exponential increase of the
kinematic viscosity. If the Newtonian cooling coefficient is large compared to the adiabatic cutoff frequency,
the wavelengths below and above the lower reflecting layer will be equalized. Consequently the reflection
produced by the thermal conduction is eliminated completely. This indicates that in the solar photosphere
the temperature fluctuations may be smoothed by the transfer of radiation between any two regions with
different temperatures. Also the heat transfer by radiation is more dominant than the conduction process.
KEY WORDS: Acoustic-Gravity Waves, Atmospheric Waves, Wave Propagation
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1 INTRODUCTION

Upward propagating small amplitude acoustic-gravity waves in an isothermal atmosphere will be reflected
downward if the gas is viscous or thermally conducting. This type of reflection is most significant when the
wavelength is large compared to the density scale height ( Alkahby and Yanowitch [1989, 1991], Campos
[1983a, 1983b], Cally [1984], Lindzen {1968, 1970}, Webb and Roberts [1980], Lyons and Yanowitch [1974],
Priest [1984], Yanowitch [1967a, 1967b, 1979], Zhugzhda and Dzhallov [1986]).

In part one of this series we considered the the effect of Newtonian cooling on acoustic-gravity waves
in an isothermal atmosphere for large Prandtl number. It was shown that for an arbitrary value of the
Newtonian cooling coefficient the atmosphere may be divided into two distinct regions, which are connected

by an absorbing and reflecting layer produced by the exponential increase of the kinematic vicosity with
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height In the lower region the motion is adiabatic if the Newtonian cooling coefficient 1s small compared to
the adiabatic cutoff frequency On the other hand, :f the Newtoman cooling coefficient 1s sufficiently large
the motion will be driven towards an 1sothermal one Consequently all linear relations among perturbation
quantities will be modified In particular, 1t decreases the amplitude of the wave and thereby the energy
flux as well. In the upper region the solution will decay exponentially with altitude before 1t 1s influenced
by the effect of the thermal conduction

In this paper we will study the effect of Newtonian cooling on upward propagating acoustic gravity
waves 1n an isothermal atmosphere for small Prandtl number. It is shown that, 1f the Newtonian cooling
coefficient is small compared to the adiabatic cutoff frequency, the atmosphere may be divided into three
different regions. In the lower region the effect of thermal diffusivity and kinematic viscosity is negligible,
the oscillatory process is adiabatic and for frequencies greater than the adiabatic cutoff frequency the
solution can be written as a linear combination of an upward and a downward travelling wave. In the
middle region the effect of the thermal diffusivity is large while that of the kinematic viscosity is still
negligible. Consequently, the motion in the middle region is isothermal and these two regions are connected
by a semitransparent reflecting layer, allowing part of the energy to be transmitted upward, while the
remaining part is reflected downward. The reflecting layer now separates two regions with different sound
speeds, and therefore different wavelengths, which account for the reflection process. In the upper region,
where the kinematic viscosity and thermal diffusivity are large, the amplitude of the velocity oscillations
approaches a constant value. The two upper regions are connected by an absorbing and reflecting layer,
through which the kinematic vicosity changes from small to large value. The existence of two reflecting
layer will influence the reflection process in the lower region and the final conclusion depends on their
relative locations.

When Newtonian cooling is large compared to the adiabatic cutoff frequency the oscillatory process
in the adiabatic region is driven towards an isothermal one and this will decrease the wavelength from
the adiabatic to the isothermal values. Thus, the wavelengths below and above the lower reflecting layer
are equalized. As a result, the reflection, produced by the thermal conduction, is eliminated altogether.
This indicates that Newtonian cooling influences only the adiabatic regions in the atmosphere and if the
heat exchange, due to radiation, is intense the temperature perturbation associated with the wave will
be eliminated in a time small compared to the period of oscillation. Consequently, the effect of thermal
conduction will be excluded.

From the above discussion we may conclude that in the solar photosphere the temperature fluctuations
associated with vertically propagating acoustic-gravity waves may be evened out by the transfer of radiation
between any two regions with different temperatures. Also, high emissivities in the presence of an open
boundary allow rapid loss of radiation to space. In addition this result indicates that the heat transfer by
radiation is more dominant than that of the conduction process which is the case in the hot regions of the
solar atmosphere.

We conclude by reconsidering the case of the effect of Newtonian cooling alone in section (3). Three
ranges for the frequency are identified, above the adiabatic cutoff frequency, below the isothermal cutoff
frequency and in between. The results of section (3) are used in section (4). Finally the problem in section
(4) is described by a fourth-order differential equation which is solved by matching procedure, in which

inner and outer expansions are matched in an overlapping domain.
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2 MATHEMATICAL FORMULATION OF THE PROBLEM

We will consider an 1sothermal atmosphere, which 1s viscous and thermally conducting, and occupies the
upper half-space z > 0 We will investigate the problem of small vertical osaillations about equilibrium,
1.e oscillations which depend only on the time t and on the vertical coordinate 7

Let the equilibrium pressure, density and temperature be denoted by P, pn. and 7. where P, and 1)
satisfy the gas law P, = RTypo and the hydrostatic equation P\; + gpo = 0. Here R is the gas constant, g
1s the gravitational acceleration and the prime denotes differentiation with respect to z. The equilibrium

pressure and density,
Po(z) = Po(0)ezp(—2z/H), po(z) = po(0)ezp(-2/H),

where H = RTy/g is the density scale height
Let p, p, w, and T be the perturbations in the pressure, density, vertical velocity, and temperature.

The linearized equations of motion are:

powr + Pz + gp = (4/3)pw,,, (2.1)

pt + {pow). = 0, (2.2)
po(ev(Te + qT) + gHw,) = T, (2.3)
P = R(poT + Top). (2.4)

These are, respectively, the equation for the change in the vertical momentum, the mass conservation
equation, the equation for the rate change of the x-component of the magnetic field, the heat flow equation
and the gas law. Here cy is the specific heat at constant volume, q is the Newtonian cooling coefficient
which refers to the heat exchange and « is the thermal conductivity, all assumed to be constants. The
subscript z and t denote differentiation with respect to z and t respectively. Equation (4) includes the heat
flux term cy pogT, which comes from the linearized form of the Stefan-Boltzman law. We will consider
solutions which are harmonic in time i.e w(z,t) = W(z)ezp(—iwt) and T'(z,t) = T(z)ezp(—wwt), where w
denotes the frequency of the wave.

It is more convenient to rewrite the equations in dimensionless form; z' = z/H, w, = ¢/2H, W' = w/c,
W' = wlwe, t = tw,, £ = 2xfcycHpo(0), T' = T/2yTo, ¢ = q/wa, whete ¢ = /7RTo = \/79H is the
adiabatic sound speed, and w, is the adiabatic cutoff frequency. The primes can be omitted, since all
variables will be written in dimensionless form from now on.

One can eliminate p, and p from equation (1) by differentiating it with respect to t and substituting

equations (2.2-2.5) to obtain a system of differential equations for W(z) and T (z),
(D? - D +yw?/4)W(2) + ype*D*W(z) + iy(D - 1)T(z) = 0, (2.5)

(y — 1)DW(z) = 7(iw — q)T(z) + vxe*D*T(z), (2.6)

where D = d/dz. If, furthermore, W(z) is eliminated from the differential equation (2.6) by applying D to
it and substituting for DW(z) from differential equation (2.7) one obtains a single fourth-order differential
equation for T(z):

[yw(D? — D + w?/4) +:q(D* - D + Yw?/4) — ke*D*(D? + D + yw?/4)

— iy(w + 2q)ue*(D? + D) — yure®*D¥(D + 1)(D + 2)iT(z)=0 (2.7)
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In addition 1t 1s convenient to introduce the dimensionless Prandtl number P, = p/k. which measures the
relative strength of the the viscosity with respect to the thermal conduction. Consequently the differential

equation (2 8) becomes
~w(D?* = D+ w?/4) + 1q(D? - D ~~w?id)— ke’ D} D2+ D - At

— 1Py (w~19)ke* D(D + 1) = vP,(ke*)?D*(D + 1)(D = 2)iT(z3 = 0 (2.8)
Finally the first two terms of equation (2 9) may be combined to give the following equation,
{(D* - D + tw?/4) — o(k/m)e* D} D? + D + yw?/4)
—1Pomr(k/m)e* D(D + 1) - (yP,m)(ke* /m)?D*(D + 1)(D + 2)|T(z) = 0 (2.9)
where 7 = y(w + 1q)/(vw + 1q) = Y(w + 1q)/m and m = yw + 1q.
Boundary Conditions : To complete the formulation of the problem certain boundary conditions must be
imposed to ensure a unique solution. The exact nature of the exciting force need not be specified since our
object 1s to investigate the reflection and dissipation of the waves which, for small x and Pr, take place at
a high altitude.
Boundary conditions are required at z = 0, and we shall adopt the iower boundary condition (LBC): In

a fixed 1nterval 0 < z < zo, the solution of the differential equation (2.10) should approach some solution

of the limiting differential equation ( kK — 0 and g — 0),
[D? - D + 7w?/4]T(2) = 0. (2.10)

Considering the lower boundary condition is simpler than prescribing 7'(z) and W(z) at z = 0. To first
order the boundary layer has no effect on the reflection and dissipation process, which takes place at a
high altitude.

Two further conditions which refer to the behaviour of the solutions for large z are required and we shall
call these conditions the upper boundary conditions. The first one is the Entropy Condition (EC), which
is determined by the equation for the rate of change of the entropy (see Alkahby and Yanowitch[1991],
Lyons and Yanowitch[1974]). From which it follows that

(e <]
n/ |T.|%dz < co. (2.11)
0

The second condition is the Dissipation Condition (DC), which requires the finiteness of the rate of change
of the energy dissipation in an infinite column of fluid of unit cross-section ( Alkahby and Yanowitch[1991],
Campos[1983a,1983b], Lyons and Yanowitch[1974]). Since the dissipation function depends on the squares

of the velocity gradients, the dissipation condition is equivalent to

y/w]W,]2d2<oo, (2.12)
0

Both of the upper boundary conditions are necessary and sufficient as an upper boundary condition if

#,k > 0. Finally if K = p = 0 the Radiation Condition is sufficient to ensure a unique solution.

3 THE EFFECT OF NEWTONIAN COOLING ALONE

In this section we will consider the effect of Newtonian cooling alone on acoustic-gravity waves in an ideal
atmosphere. The results will be used in section (4). For this case, the differential equation can be obtained

by setting k = p = 0 in the differential equation (2.10). The resulting differential equation is

[D? - D+ 70%/4]T(z) = 0. (3.1
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where 7 = y(w + 2¢)/m, and m = yw + 1¢ The solution of the above differential equation can be written

in the following form
T(z) = crexp{(1+ V1 - 7w?)z/2] + cpexp((1 — V1 — Tw?)2z/2], (3.2)

where ¢; and ¢, are constants and they will be determined from the boundary condition. To investigate
the nature of the effect of Newtonian cooling on the wave propagation in an isothermal atmosphere, it is
convenlent to consider the following two limiting cases

CASE A: when q = 0, the parameter 7 reduces to 1 and for frequencies greater than the adiabatic cutoff

frequency w, = 1, equation (14) has the following form

T(z2) = crezp|(1/2 + tha)z] + coexp|(1/2 — tky)z], (3.3)

where 2k, = vVw? — 1 is the adiabatic wave number.
CASE B: when ¢ — oo, the parameter 7 — v and for frequencies greater than the isothermal cutoff

frequency w, = 1/,/7, the solution of the differential equation (13) can be written like
T(z) = c1ezp((1/2 + 1k,)2] + czexp[(1/2 — ik,)z], (3.4)

where 2k, = \/yw? — 1 is the isothermal wave number.
To investigate the effect of Newtonian cooling on the behaviour of the wave propagation for an arbitrary

value of q, it is convenient to write 7 in the following form
T=[(7+1) = (7 - 1)(cos26, — i51n26,)]/2 (3.5)
where 0, = arctan(q/w), 0 < §, < 7/2 . For w > w, we have
V1= 70?2 = £(-s(q) + ika), (3.6)
where s(q) is the attenuation factor. Consequently the solution in equation (3.2) becomes
T(z) = crezp[(1/2 — s(q) + ik.)z] + coexp[(1/2 + s(q) — ik,)z], (3.7)
To obtain the behaviour of s(q), it is convenient to write
1-7w? =[(1-(7+ 1)w?/2]+ [(7 - 1)w?(cos28, - isin26,)]/2, (3.8)

It is clear that equation(3.8) represents a semicircle in the complex plane with center at 1 — (v + 1)w?/2
and radius (v — 1)w?/2 as 6, varies from 0 to 7 /2.

1t follows from equation (3.7) that the solution can be described in the following way: the first term
on the right represents an upward travelling wave, its amplitude decaying with altitude like exp( -s(q)z),
while the second term is a downward travelling wave decaying at the same rate. We have to indicate the
the upper boundary conditions (2.11) and (2.12) cannot be applied because u = k = 0. A unique solution
can be determined by the radiation condition which requires ¢; = 0. Also there are three ranges for the
frequency w. The first one is for w > w, = 1, the second one for 1/{/7 = wy < w < w,, and the third one
for w < w,. They are denoted, respectively, by R;, R; and R;.

From this observation and the three ranges of the frequency we have the following conclusions.

( A) When w belongs to R; the attenuation factor s(q) is positive and equals to zero at the extreme
limits ¢ = 0 and ¢ — oo. It increases to its maximum value, s(q) = 0.1, when (g/w) = O(1) and decays

to zero as q— oo.
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( B ) When the frequency 1in R, and for small value of q, a decaying wave exists and changes to
undamped travelling wave as g— oo

(C ) If w belongs to R3 and for small value of q, a weak damped wave exists As ¢ — oc the travelling
wave changes to a standing one

(D) In (A), (B), and (C) the wave number increases monotically from 1its adiabatic value k, to the
1sothermal one k,, as ¢ — oo, because of the change of the sound speed from 1ts adiabatic value to the
isothermal one. Thus the attenuation factor remains positive, s(q) > 0, for all values of q. At the same

time the oscillatory process is transformed from the adiabatic form to the isothermal one.

4 EFFECTS OF THERMAL CONDUCTION, VISCOSITY AND
NEWTONIAN COOLING

In this section we will investigate the singular perturbation boundary value problem for the following

differential equation
[(D? - D +7w?/4) — o(r/m)e* D} (D? + D + yw?/4)

—tP,mr(k/m)e*D(D + 1) — (yPom)(ke®/m)*D*(D + 1)(D + 2)]T(2) = 0, (4.1)

where 7 = y(w + 1¢)/(Yw + 1q¢) = ¥(w + ig)/m and m = yw + 1q, subjected to the boundary condition
(2.11), (2.12), and the lower boundary condition. At the outset we have to indicate that the parameters p
and & are sufficiently small and proportional to the values at z=0 of the kinematic viscosity and thermal

diffusivity. Prandtl number P, can be written like
P, = p/r = (r/po)/(k/po) = |(1/mpo)(K/mpo)] (4.2)

Thus for small P, we have ue* < ke*. As a result, for |x/m|e* << 1 and small values of q the atmosphere
may be divided into three distinct regions connected by two different transition layers in which the reflection
and the wave modification take place. In the lower region, 0 < z < 2; = —log|mk|, the motion is adiabatic,
because the effect of thermal diffusivity is negligible, and the solution of the differential equation (4.1) can

be approximated by the solution of the following differential equation
[D? - D + rw?/4]T(2) = 0, (4.3)

the solution of which is investigated in section (3). In the middle region, z; < z < 2 = —logp, the
oscillatory process is an isothermal, because the influence of the thermal diffusivity is large, and the

solution of the differential equation (4.1) can be approximated by the solution of
[DY(D?* + D + yw?/4)|T(2) = 0. (4.4)

The two lower regions are connected by a semitransparent reflecting layer in the vicinity of z;. In the
upper region the oscillatory process is influenced by the combined effect of the thermal conduction and
the viscosity and the solution of the differential equation (4.1) can be approximated by the solution of the

following differential equation

[D*(D +1)(D + 2)IT(€) = 0. (4.5)
The two upper regions are joined by an absorbing and reflecting transition region in the vicinity of 2, =
—log(yu), above it the solution which satisfies the upper boundary conditions must behave as a constant

as z — 00.

To obtain the solution of the differential equation (4.1) it is convenient to introduce a new dimensionless
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variable ¢ defined by

§ = ezp(-z)/(1k/m) = exp[-z — log|x/m| + 16m + 3m2/2], (4.6)

where 6, = arg (m), which transforms the differential equation (4.1) into
[£2(67 + 6 + 7w /4) - €6%(6 - 6 + 70?/4)

- mP,7£(6% - 0) + yP,m6*(6 — 1)(6 — 2)IT(¢) = 0. 4.7)

where 8 = £d/df. It is clear that the point £E=0 corresponds to linz = oo, the point
o = exp [ - log|x/m| + i( s+ 37/2)] to z = 0 and the segment connecting these points in the complex
&-plane to z > 0. As |k/m| — 0 the point & tends to oco.

It is clear that the point £ = 0is a regular singular point of this differential equation (4.7). Consequently,
there are four linearly independent solutions, which in the neighbourhood of ¢ = 0 can be written in the

following form

Ti(£) = Y an(es)e™, To(6) = Y a,,(e2)€™* + Ty(£)log(£),

"

T5(€) = 3 an(es)™=, Tu(€) = 3 an (ea)6™* + Ta(€)log(§), 4.8)
where e; = 2, e; = 1, e3 = e4 = 0. The prime denotes differentiation of a, and the sums are taken from n
= 0 ton = oo. The coefficients ay(e,) are determined from the following three term recursion formula

Po(n + 24 €)ansz + pr(n+ 1+ €)any1 + pa(n + €)an, = 0, (4.9)
where
po(z) = yP,mz%(z — 1)(z — 2),
pi(z) = —mrPz(z — 1) — 2(2% - z + yw?/4),
pa(z) = (2% + T + Tw?/4).

To determine which of the solutions defined in equation (4.8) satisfies the upper boundary conditions (2.11)
and (2.12) for large z, the solutions must be transformed to the variable z by means of (4.6). Thus for
|«/m| >0 and P, >0 we have

Ti(z) = 0(e7%), Ty(z)=0(e*), Ts(z)=0(1), Ti(z)=0(2). (4.10)

It is clear that Ty(z) is the only solution which does not satisfy the entropy condition (2.11).
To apply the dissipation condition (2.12), equation (2.7) must be used to determine the the amplitudes

of the velocity corresponding to the solutions defined in (4.8). As a result we have
DWy(z) = O(e™*), DW,(2) = O(1), DW3(z) = O(e™*), DWy(2) = O(2). (4.1
It is clear that Wy(z) and DW,(z) do not satisfy the boundary condition (2.12). As a result, we obtain
T(z) = a1Ty(z) + c2Ts(2) W(z) = c,Wi(2) + c;Wa(2). (4.12)

To determine the linear combination of T(z) in equation(4.8), the behaviour of T;(2) and T3(z) for small z
must be found. Recall that small z corresponds to large |£| with arg(§) = 37/2 + 6,,. Thus the asymptotic
expansions of T3(£) and T3(£) about infinity should be found.

The point £ = oo is an irregular singular point of the differential equation(4.7), and there are four

linearly independent solutions whose asymptotic behaviour, to the first order, is governed by
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Ty(6) ~ €51+ hi€ ' + hia€ ™2 4 ), (4.13)
Ty(€) ~ €221+ hy €7 + hoaf % + ..., (4.14)
Ty(€) ~ €A1 + hy €7V 4 ... jeap(—€1/2), (4.15)
Ty(€) ~ VA1 + h7 Y2 4+ Jezp(£'/?), (4.16)
where a; = —1/2 - s(q) + tka, az = —1/2 + s(q) — tk,. Reintroducing the dimensionless variable

z by means of (23) we have
Ty(2) ~ ezp((1/2 + s(q) — tka)2), Ty(z) ~ expl(1/2 - s(q) + ika)2],

Ty(2) ~ ezp[~(Im/2x|)"/%2],  Ty(z) ~ exp|(Im/2x])*/2).

As a result of that  Tj(z) represents a downward propagating wave, its amplitude decaying like
exp(-s(q)z), while T;(z) is a upward propagating wave decaying at the same rate. Also T3(z) corresponds
to the boundary layer term. It is important only near z = 0 for any small fixed value of z and it decay:
with z like ezp[—(|m|/4x)1/2z]. It follows that, for fixed value of z, Newtonian cooling reduces the width
of the boundary layer. Thus it is more convenient to use the lower boundary condition, from which it
follows that the solution of the differential equation (4.7) , when k — 0 and small value of q should behave
asymptotically like a linear combination of T}(£) and Ty(£), i.e

The determination of the asymptotic behaviour of T;(§) and T3(€) from the solution (4.8) is difficult
because the coefficients ay(e,) are determined from three terms recursion formula (4.9). Instead we will dc
it by matching procedure, in which the inner and the outer expansions for the solutions will be matched

in an overlapping domain.

To find the inner approximation, assume there exists a regular perturbation expansion of the form
T(€) = I1(§) + P-L(€) + O(P?). (4.17)

Substituting (4.17) into the differential equation (4.7) and setting P, = 0. We obtain the following differ-

ential equation
(6067 + 6 + 7w?/4) — 6%(6% — 0 + yw?/4)I(£) = 0, (4.18)

where 6 = ¢d/d¢. The second step of the matching procedure begins with the stretching transformation,
=Py, (4.19)

of the complete differential equation (4.7). The resulting differential equation is:
[ym6%(8 — 1)(6 - 2) — ¥62(6% — 6 + yw?/4)

+ Pyp(¥(6* + 6 + 7w? /4) — m7 (6% - 6))|T(y) = 0, (4.20)

where 6 = vd/dy. To obtain the outer approximation, assume that there exists a singular perturbation

expansion of the following form
T(¢) = U(%) + P.UL(y) + O(P?), (4.21)
substituting this expansion into the differential equation (4.7) and letting P, = 0, we have

[ym6(8 — 1)(6 - 2) ~ $62(6* - 6 + yw?/4)]U () = 0. (4.22)
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The solutions of this differential equation will approximate the solutions of the differential equation (4.20)
if £ = P,% is small. Since 9 — oo for any fixed [¢| as P, — 0, the asymptotic behaviour of U(%) as
1 — oo must be matched with the asymptotic behaviour of I({) as £ — 0. Hence, the main task is the
determination of the family of the solutions of the singular perturbation differential equation (4.22), which
satisfy the upper boundary conditions (2.11) and (2.12). The differential equations (4.18) and (4.22) are
similar to the differential equation (4.6) and (4.9) in Lyons and Yanowitch [1974]. The procedure for finding
the asymptotic behaviour of the solution is the same. However, the physical nature of the solution is quite
different in the two problems. Consequently the details need not be repeated, and we merely indicate the
results.

Now we will study the behaviour of the solution in the atmosphere for z > 0. It is convenient to start
with the upper region.

UPPER REGION: In this region the solution of the differential equation (4.1) is approximated by
the solution of the differential equation (4.5). It follows from equation (4.10) that the solution which
satisfies the upper boundary conditions must behave as a constant as z — oo.

MIDDLE REGION: In the middle the solution of the differential equation (4.1) is described by the

solution of the differential equation {(4.4), which can be written like

T(z) ~ const. exp[(—1/2 + ik,)2] + RCm ezp[(—1/2 — ik,)z], (4.23)

where RC,, denotes the reflection coefficient in the middle region and defined by
RC,, = exp[—7k, + 2i(8; — k,log(yp))], (4.24)

0, = arg(1/2 — ik,) + argT( 2ik,) + 2argT(3/2 — 1k,) (4.25)

It is clear that |RC,,| = ezp(—mk,). Consequently the two upper regions are connected by an absorbing
and reflecting layer in which the kinematic viscosity changes from a small to a large value because of the
exponential decrease of the density with height. In addition the middle region will not influenced by the

effect of Newtonian cooling.

LOWER REGION: For |k/m|e* << 1,w > w, and small value of the Newtonian cooling coefficient

q, the solution of the differential equation (4.1) can be written in the following form
T(z) ~ const. exp[(1/2 — s(q) + ika)z] + RCL exp[(1/2 + s(q) — ika)z], (4.28)

where RCy, denotes the reflection coefficient defined by

Ly — Lyezp[—2k,log P, + 18* + 2k,0m]
L3 — Lsezp(—2k,logP, + 10 + 2k,6,]

RCL = ezp[-7k, + A, - B.] C.

A, = 2s(q)log|k/m| = 2kabm, B, = 2kglog|k/m| + 75(q) + 25(q)bm,
C. = T2(1/2 + s(q) — tka)T[s(q) — 1(k, + ka)]T(—25(q) + 26ka)T[1 + s(g) + 2(k, — ka)
* T TT2(1/2 - s(q) + ika)D[—5(q) + i(k. + ka)]T(25(q) — 2ika)T[1 — s(q) — i(k. — ka)
L, = exp(27k,) — exp(27k,)[cos(27s(q)) + isin(27s(q))],

]
]1

L, = exp(27k,)[cos(27s(q)) + wsin(2ns(q))] — ezp(—27k,),
Lj = exp(27k,) — exp(—27ks)[cos(27s(q)) — isin(27s(q))],

Ly = ezp(—27k,)[cos(2m5(q)) — wsin(2ms(q))] — ezp(27k,),
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(1/2 = 1k,)T2( 2ik,)T(1 + s(q) ~ 2(k, + ka))T(1 — s(q) — 2(k, — ka))
(1/2 7 k)T (23R )T(1 = 5(a) + 2k, + ke))T(1 T a(0) & 2(Fs — %))’
6* = argD, — 2k,logy.

D, = -

In addition to the conclusions of part one we have the following observations

(I) When q = 0, we have s(q) = A, = 6, = 0 and B, = 2k,log(x), and we recover the result
obtained in Lyons and Yanowitch [1974]. In this case the reflection process is more complicated because
of the existence of two reflecting layers and the final conclusion depends on their relative locations. The

magnitude of the reflection coefficient is
ezp(—7k,) < |RCL| < 1.

(II ) For fixed k, small q and w > w, the solution is given by equation (4.26) and its behaviour
is described in section (3). The atmosphere is divided into three distinct regions. The lower region is
approximately adiabatic and the middle one is isothermal. In the upper region the solution is influenced
by the combined effects of the thermal diffusivity and the kinematic viscosity.

(III ) When q — o0 and w > w, one obtains Ly = Ly = 3(q) = 0 = As = 0, kg — k,, C.D, —
0, L —» L3z and RCr, — RC,,. Consequently the lower reflecting layer will be eliminated because the
wavelengths below and above the this layer become equal. In addition we have x/m — 0 and the solution

of the differential equation (4.1) can be approximated by the solution of the following differential equation
[(D? = D 4 yw?/4) - iype*(D* + D)IT(z) = 0.

the solution of which is investigate in ( Compos [1983a, 1983b], Yanowitch [1967]).
( IV ) The above conclusions indicate that, in the solar photosphere the temperature fluctuations could
be smoothed by the transfer of the radiation between any two regions , with different temperatures. In

addition the heat transfer by radiation is more dominant than the conduction process.
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