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ABSTRACT: In this paper we will investigate the effect of Newtonian cooling on the propagation

of acoustic-gravity waves in a viscous and thermally conducting isothermal atmosphere for large

Prandtl number and for an arbitrary values of Newtonian cooling coefficient. This problem leads

to a singular perturbation problem which is solved by matching inner and outer approximations.

It is shown that the viscosity creates an absorbing and reflecting layer. Below it the oscillatory

process is adiabatic, for small Newtonian cooling coefficient, and above it the solution will decay

"to constant before it is influenced by the effect of the thermal conductivity. Newtonian cooling is

a volume effect and influences mainly the lower adiabatic region, in which it causes attenuation in

the amplitude of the wave. Finally it is shown that when Newtonian cooling coefficient goes to

infinity it acts directly to eliminate the temperature perturbation associated with the wave and the

attenuation factor in the amplitude of the wave. Accordingly the wavelength changes to the one

consistent with the Newtonian sound speed. The reflection coefficient and the attenuation factor of

the amplitude of the wave are derived for all values of Newtonian cooling coefficient.
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1 INTRODUCTION

The propagation of acoustic-gravity waves in isothermal and non-isothermal atmospheres has been

extensively studied in recent years. Much of the motivations of these studies comes from their rele-

vance to phenomena in compressible ionized fluids, such as solar, stellar, earths atmospheres and to

certain phenomena in ocean dynamics Alkahby and Yanowitch[1989,1991], Campos[1983a,b], Deb-

nath and Basu[1984], Lyons and Yanowitch[1974], Lindzen[1968,1970], Parker[1979], Priest[1982],
Roberts[1968], Soward[1986], Webb and Roberts[1980]).

The reflecting properties of a viscous and thermally conducting isothermal atmosphere for small

Prandtl number were investigated in Lyons and Yanowitch[1974]. It was shown that there are three
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distinct regions connected by two different reflecting layers. The lower region is adiabatic and in

it the effects of the viscosity and the thermal conductivity are negligible, while the effects of these

quantities are large in the upper region. In the middle region the effects of the thermal conduction

is large while that of the viscosity is still negligible. The lower two regions are connected by a

semitransparent reflecting layer, created by the exponential increase of the thermal diffusivity with

height, allowing part of the energy to propagate upward and the remaining part to be reflected

downward. The upward propagating waves in the isothermal region will be reflected downward by

a second reflecting layer created by the exponential increase of the kinematic viscosity with altitude,

which acts like an absorbing and reflecting barrier. Below it the oscillatory process is isothermal

and above it the motion will decay to a constant value. A similar problem is considered by Alkahby

and Yanowitch [1991], in which the combined effects of the thermal conduction and a horizontal

magnetic field are inv-.estigated. In these two problems the existence of two reflecting layers will

influence the motion in the lower region and the final conclusions depend on the relative locations

of the two reflecting layers.

Newtonian cooling, which refers to the heat exchange proportional to the temperature pertur-

bation, is important enough to be considered in, many acoustic gravity wave and magneto acoustic

gravity wave problems (Alkahby and Yanowitch[1989], Cally[1984], Mihalas and Toomre[1981,1982],
Lindzen[1968,1970], Zhugzhda[1979], Webb and Roberts[1980]). The motivation for investigating

the effects of Newtonian cooling on the wave motions relate to the energy balance in the solar

atmosphere. Thus to estimate the mechanical energy flux that some type of waves can transform

from the convective zone into the chromosphere, we have to estimate both energy flux initially

generated by the convective zone and the fraction of that flux dissipated in the photosphere by

radiative damping.

In this paper we will investigate the effects of Newtonian cooling on the vertical propagat-

ing acoustic-gravity waves in a viscous and therrr[ally conducting isothermal atmosphere for large

Prandtl number and an arbitrary values of Newtonian cooling coefficient. This problem leads to a

singular perturbation problem which is solved by matching inner and outer approximations for the

solutions in an overlapping domain.

It is shown that viscosity creates an absorbing and reflecting layer. Below it the motion is

adiabatic and for frequencies above the adiabatic cutoff frequency the solution can be represented

by a linear combination of an upward and downward propagating wave. Above it the the solution

will decay exponentially with the altitude to a constant value before it is influenced by the effects

of the thermal conductivity. Thus the effects of the thermal conduction on the wave propagation

will be negligible. We have concluded that as the viscosity tends to zero the reflecting layer recedes

to infinity, but the ratio of the amplitudes of the reflected to the incident wave tends to a limit.

The solution, however, does not approach a limit at fixed values of the vertical coordinate z, for the

shift of the reflecting layer causes a change in the relative phase between the two waves.

Newtonian cooling, on the other hand, is a volume effect and will influence mainly the adiabatic

region. It is shown that if Newtonian cooling coefficient is large compared to the adiabatic cutoff
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frequency, the heat exchange due to the radiation will be intense enough to eliminate the magnitude

of the temperature perturbation associated with the wave in a time small compared to the period

of oscillations. At the same time the adiabatic region will be transformed to an isothermal one and

the wave number will change from the adiabatic value to the isothermal one and this will account

for the reflection. Because Newtonian cooling adds a new term to the linearized energy equation,

damping modifies all linear relations among perturbation quantities. In particular, it decreases the

wave amplitude and thereby the energy flux as well.

The nature of the dissipation introduced by Newtonian cooling is completely different from those

of the viscosity and the thermal conduction. It exists only when there is a heat exchange between

hotter and cooler regions in the atmosphere. Also the physical properties of the reflecting layer,

created by the visc,sity, will stay the same, i.e absorbing and reflecting, but the magnitude of

the reflection coefficient will be changed from the adiabatic value to the isothermal one. Thus the

attenuation in the amplitude of the waves and the changing factor in the magnitude of the reflection

coefficient will vanish if the atmosphere is adiabatic or isothermal because these two regimes are

dissipationless.

2 STATEMENT OF THE PROBLEM

Suppose an isothermal atmosphere, which is viscous and thermally conducting, occupies the upper

half-space z > 0. We will consider small oscillations about equilibrium which depend only on the

time and on the vertical coordinate z. Let p, p, w, and T be the perturbations in the pressure,

density, vertical velocity and temperature and P0, p0, and To are the equilibrium quantities. The

equilibrium pressure and density,

Po(z)/Po(O) po(z)lpo(O)= e-’In,

are determined by the gas law, P0 RTopo and the hydrostatic equation, P’+ gpo 0 where R
is the gas constant, g is the gravitational acceleration, and H RTo/9 is the density scale height.

The linearized equations of motion are:

pow, + p= + g 4/zw==/3 (2. !)

p + (pow) 0, (2.2)

po(cv(T, + qT) + gHw,) x,T,,, (2.3)

P R(poT + Top). (2.4)

Here # is the dynamic viscosity coefficient, , is the thermal conductivity, cv is the specific heat at

constant volume and q is the Newtonian cooling which refers to the heat exchange and proportional

to the temperature perturbation associated with the wave, all assumed to be constants. Equation

(2.4) includes the heat flux term CvpoqT, which comes from the Stefan-Boltzman law. The subscripts

z and denote differentiations with respect to z and respectively. We will consider solutions which

are harmonic in time i.e w(z, t) W(z)exp(-iwt) and T(z, ) T(z)ezp(-iwt).
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It is more convenient to rewrite the equations in dimensionless form; z" z/It, wa c/2It,
w" ,1, o" o1oo, " ,o, ," 2,lcvcIlpo(O), q" qlo=, #" 2#/(a0(0)H), ’"
T/2.rTb, where c v/VR/b v@gH is the adiabatic sound speed, 7 is the ratio of the specific

heats and cos is the adiabatic cutoff frequency The stars can be omitted, since all variables will be

written in dimensionless form from now on.

oOne can eliminate P and p to obtain two equations for l/V(z) and T(z) by applying bi to equation

(2.1) and substituting equations (2.2- 2.4)

(D D + yw/4)W(z) + "Ve*DW(z) + 7(D 1)T(z) 0, (2.5)

(/ 1)DW(z) /(iw q)T(z) + "/ae*DT(z), (2.6)

where D d/dz. Finally, W(z) can be eliminated to obtain an equation for T(z) only by differen-

tiating equation (2.5) with respect to z and substituting for D W(z) from equation (2.6):

[’w(D D + w/4) + iq(D D + "w/4) iaeZD2(D + D + "wl4)

i’(w + iq)#eZ(D + D) -"/a#e=’D=(D + 1)(D + 2)]T(z) 0. (2.7)

In addit;on it is convenient to introduce the dimensionless parameter e a/#, e (x 1/Pr where Pr is

the Prandtl number, which measures the relative strength of the effect of the viscosity with respect

to that of the thermal conductivity. Consequently equation (2.7) becomes

[’w(D D + w/4) + iq(D D + -o/4) ie#e*D2(D + D + w*/4)

-i(w + iq)#e*(D + D)- "e(tte")D2(n + 1)(D + 2)IT(z)= 0. (2.8)

Equation (2.8) can be written in the following form

[(D D + Qw/4) Qi#e*(D + D)

+ D + "w/4) /(#e*)D(D + 1)(D + 2)IT(z) 0, (2.9)

where Q (’w + i/q)/(’w + iq) and s "w + iq.

Boundary Conditions To complete the formulation of the problem, certain conditions must be im-

posed to ensure a unique solution. Physically relevant solutions must satisfy the following boundary

conditions as z co:

IW=l=dz < oo, IT.l"dz < oo. (2. 0)

These are, respectively, the Dissipation Condition (DC) and the Entropy Condition (EC). The first

one requires the finiteness of the rate of change of the energy dissipation in an infinite column of

fluid of unit cross-section per period of oscillation. The second one requires the rate of change of

the entropy in a column of fluid to be finite. Both of these conditions are necessary but not always

sufficient.

Boundary conditions are also, required at z 0 and we shall adopt the lower boundary condition

(LBC): In a fixed interval 0 < z < z0, the solution of the differential equation(2.9) should approach
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some solution of the limiting differential equation, (D D + Qw:/4)T(z) 0. Considering the lower

boundary condition is simpler than prescribing T(z) and W(z) at z 0, which necessitates the

computation of the boundary layer near z 0. To first order the boundary layer has no effect on the

reflection process, which takes place at high altitude. It will be seen that these boundary conditions

determine a unique solution to the boundary value problem to within a multiplying constant.

We are interested in the problem when the viscosity is small but its effect is large compared to

that of the thermal conduction and Newtonian cooling may take any positive value, i.e for small

and q > 0. For small # the solutions of the the differential equation (2.9) will behave in the

following way. There will be an "invicid region ", 0 < z << Za -loglz, in which the kinematic

viscosity #e and the thermal diffusivity e are small. As a result of that the solutions of the

differential equation (2.9), in the invicid and above the boundary layer, can be approximated by

the solutions of the following differential equation

[D D + Qw=/4]T(z) 0. (2. I1)

For any ;z 0, no matter how small, there will be a viscous region in which the kinematic

viscosity #e is large while the thermal diffusivity is still small. Consequently the viscous terms will

dominate for large z because of the exponential decrease of the density with altitude as z cxz and

the solutions of the differential equation (2.9), in the region zl < z < oo, can be approximated by

the solutions of the differential equation

[D:(D + 1)(D + 2IT(z)= 0. (2.12)

The "invicid" and the "viscous" regions are connected by a transition region, in the vicinity of Zl,

in which the kinematic viscosity changes from small to large values and in it the reflection and the

wave modification take place. As a result of that the solution of the differential equation (2.9) for

small e, can be approximated by the solutions of the following differential equation

[(D D + Qw/4) Q(ie’)(D + D)- ’7(#ez):(D:(D + 1)(D -t- 2)IT(z) 0. (2.13)

It is clear that when q c the parameter s-, too and Q -),. Consequently the last two terms

of the differential equation (2.9) will vanish. Thus, in the limiting case, we expect the solution of

the boundary value problem to be governed by the solutions of the following differential equation.

[(D D + Qw:/4) Q(ile)(D + D)]T(z) O. (2.14)

Our main problems are the connection of the solutions of the boundary value problem across

the transition region, the investigation of the behaviour of the solution for large Prandtl number

and the study of the influence of Newtonian cooling on the propagation of the waves when q _> 0.

The first problem will be considered in section (3) and the second one will be studied in section (4).
The problem of the effect of Newtonian cooling on vertically propagating acoustic gravity waves in

viscous and thermally conducting isothermal atmosphere for small Prandtl number and q may take

any positive value will be considered in the second part of this series.
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3 SOLUTION OF THE PROBLEM

In this section we will investigate the problem of the connection of the solutions across the transition

region. To do that it is convenient to introduce a new dimensionless variable

X ex,p(-z)/,# ezp(-z- log# + 3;,r,/2), (3. I)

which transforms the differential equation (2.9) into

[x( + + Q/4) Qx( )

e-(X((I)= + "7w/4)+ "7( --1)( 2))=]T(x)= 0, (3.2)

where (I) xd/dx and arg X 3r/2. For fixed # > 0, the point X 0 corresponds to z oo,

the point X0 1/i# to z 0 and the segment with arg 3r/2 connecting these points in the

complex-X plane to z > 0. It is evident that the differential equation (3.2) leads to a singular

perturbation problem. We will solve it by matching inner" and "outer approximations of

the solutions in an overlapping domain. The differential equation for the outer approximation is

obtained by letting T(X) U(X) + O(e) and setting 0 in the differential equation 3.2 ), the

resulting equation is

[X((I, + + Qw/4) Q(: 0)]U(x) 0. (3.3)

where U(X) denote the outer approximation. Let X Q( and substitute for (I) then the differential

equation (3.3) will be written in the following form

[((1 ()n" 2(D Qw:/4]U(() 0, (3.4)

where D didO. This differential equation is a special case of the hypergeometric equation with

c 0, a + b 1, and ab Qw:/4. Also it has three regular singular points at ( 0, ( and

( oo. The intermediate singular point ( corresponds to the transition layer. For I([ < its

solution is a linear combination of

Ua() F(a + l,b+ 1,2,(),

where F is the hypergeometric function,

For ]] > it is convenient to choose

U2() Ul()Iog + (1/ab) + Y],=0A,,"+’

a- 1/2+v/1-Qw and b- 1/2-v/1-@o

(3.5)

U,() (-)-’F(a,a + 1,2a,-1) Ub() (-)-’F(b,b+ 1,2b,-x). (3.6)

The analytic continuations of Ua() and U() for small can be written in the following form

Abramowitz and Stegun, 1964, 15.3.14)

Ua f[A(f)- mA,(a)f"+], U(f) f[A(f)- mA,(b)("+l], (3.7)

A() (1lab)- log(-)Ui(), fa br(2a)/r(a), f, ar(2b)/r’(b). (:).8)
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The dfferential equation for the inner approximation can be obtained by introducing the stretching

variable X er/, letting T(X) el(r/) + O(e=) and retaining the lowest terms in the differential

equation (3.2). We obtain the following differential equation

[r/=D r/D sr/]V(r/) 0, (3.9)

The differential equation for V(r/) can be transformed into the Bessel equation and it has two

linearly independent solutions of the form

v() 4(.v@) v,.() }(2-), (3.

where & and } are Bessel functions of the first and second kind of order two. From the behaviour

of & and I) for small argument, one can obtain the behaviour of the corresponding solutions of

I(), (Abramowitz and Stegun, 1964, 9.1.9)

Ia() = ezp(-2z), I=() 1o9 z. (3. II)

It is clear that I satisfies the boundary conditions (2.10) while Ia does not. The behaviour of the

solution for large argument may be obtained from the asymptotic form of the Hankel functions H)

and H). Reintroducing the independent dimensionless variable z, via (3.1), we have approximately

(Abramowitz and Stegun, 1964, 9.2.3, 9.2.4)

(z) ezp[-(1 + r)z + irz], V ezp[(1 r)z irz]. (3.12)

where r @s[/4 when q 0r w/(2)). The first of these solutions corresponds to the

boundary layer and it is significant only near z 0. It has no effect on the reflection process

which takes place at high altitude and it is clear that Newtonian cooling reduces the width of

the boundary layer. In fact, for fixed z the boundary layer will tend to zero when q+ m. The

second solution increases exponentially with z and cannot be matched with any solution of the

differential equation(3.4). The remaining solations of differential equation (3.9) are the solutions of

the differential equation =D=I 0. They are Cx and i.e C and e-’/i. No one of these solutions

satisfies the boundary conditions (2.10), but the linear combination

I(r/) C, + Cr/= + sr/, (3. 3)

does if C2 sCa. This can easily be shown from the dissipation condition and the differential

equation (2.6). For simplicity we set C1 1.

Finally the solution to the boundary value problem (equation 2.9) can be obtained by matching the

solutions of the differential equation (3.9) as r/ cx3 which satisfy the boundary conditions (2.10)
with the solutions of the differential equation (3.4) as X 0 0). The term U,()log(-) is

matched in the second step of the matching procedure. Consequently we have

qUa + chUb(x) (fca + cbf)/(ab) + [fAo(a)c + fAo(b)]x/Q e(1 + sx/e) e + sX.(3. !



378 H.Y. ALKAHBY

In the limiting case as e 0 we obtain

<, -sQ/(mf:), c sQ/(mA), (3. i5)

m Ao(b)- Ao(a) (a + 1) + (a- 1)- (b+ 1) (b- 1), (3.16)

() r’()/r().

As a conclusion of this section the solution of the boundary value problem equation 2.9), in the

region 0 < z < zl, can be written in the following form

T(X) c=Ua(z) + csUb(x) c:(-X) + c,(-Z) -i’. (3.17)

4 THE BEHAVIOUR OF THE SOLUTION

In this section will investigate the behaviour of the solution of the boundary value problem (equation

2.9) below and above the reflecting layer produced by the viscosity. In section three we have

concluded that the solution can be written in the form of equation (3.17). Reintroducing the

dimensionless variable z via (3.1) and substituting in equation (3.17) we have

T(z) c,[exp(az) + Rc e=p(bz)], (4.1)

where a 1/2 + x/1 Qw/2, b 1/2 v/1 Qw/2, 0 arg(br"(b)r(2a)), and

Rc ex.pli’x(a- b)12 + (- a)log(#Q) + 2i0].

Here and elsewhere a,b, Rc and 0 denote constants which can assume different values in different

expressions).

It is well known that radiative damping is a dissipative process. To investigate the nature of the

dissipation and its effects on the behaviour of the solution for positive q, it is convenient to write

the parameter Q in the following form

Q .(w + iq)/(’Tw + iq)= + i(qlw)(’7- 1)/- (4.2)

Thus for w > w,, we have

V/1 Qwl2 iy/4k + iqw(’7 1)/3, + ...... +(-a(q) + ik,), (4.3)

where a(q) denote the attenuation factor. Consequently the solution has the following form

T(z) o[e[(/2 a(q) + ik,)z] + ncq exp[(1/2 + a(q) ik,)zl] (4.4)

where the reflection coefficient RCq defined by

RCq exp[N + iM- rk,] (4.5)

N 2[a(q)loglgQI + k:O], M 2[0 + a(q)O<- k=loglgQI- ra(q)12], (4.6)
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and 0q arg(Q), its maximum is (3’ 1)/(2v/’) and attains when wlq V"
The first term on the right of equation (4.4) represents an upward propagating wave, its ampli-

tude decaying with altitude like exp[-a(q)z], while the second term is a downward travelling wave

decaying at the same rate. Equation (4.4) describes the behaviour of solution, the reflection process

and the attenuation in the amplitude of the wave for all values of q below the reflecting layer. Above

the reflecting layer the solution will decay with altitude to a constant value. The reflection takes

place in the vicinity of zl -IogltQI. The value of the parameter N is small and negative. Its

existence depends on the heat exchange between any two regions with different temperature in the

atmosphere. It will va.nish if the atmosphere is either adiabatic or isothermal. The factor exp[ N

in equation (4.5) represent the attenuation factor in the magnitude of the reflection coefficient.

To put the conclusions of this paper in a more physical setting, it is important to note the

following two limiting cases

CASE A when q 0 the parameter Q reduces to and for frequencies greater than the adiabatic

cutoff frequency w, we have a 1/2 + ik,, b 1/2 ik,, where ko - 1/2 is the adiabatic

wave number, and equation (4.4) will be written in the following form

T(z) c.[e:r,p[(I/2 + ik.)z] + RC. exp[(i/2 ik.)z]], (6.7)

where the reflection coefficient RC’. is defined by

Re. ezp[2i(0. k.log(g))- rk.], lRC.l ezp[-k.]. (4.8)

Equation (4.7) describes the behaviour of the solution in the adiabatic region. It states that the

solution of the boundary value problem below the reflecting layer, created by the viscosity, is a

linear combination of an upward and a downward propagating wave with an adiabatic wavelength, 2lk,.
CASE B: when q the parameter 7 and for frequencies greater than he isothermal

cutoff frequency w, 1/ we obtain a 1/2 + ik,, and b 1/2 ik where k, w 1/2 is

the isothermal wave number. Consequently the solution will be written like

T(z) c.[ezp[(1/2 + ik,)z + RC, ezp[(1/2 iN)z]],

and the reflection coefficient RC, can be written as

(4.9)

From equations (4.5), (4.8), and (4.10) we have

IRG’I- ezp[-rk]. (4. o)

Equation (4.9) has the same interpretation for the behaviour of the solution below the reflecting layer

as that of equation (4.7) except that the wavelength is changed to the isothermal value $, 2n/k,,
which indicates the transformation of the adiabatic region to the isothermal form.
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We observe frorn these two cases that when q 0 or q oo there is no attenuation in the

amplitude of the wave and for fixed w, both reflection coefficients are periodic functions of log(it

tog(,) (o +/- )1: tog(.r,) (o, + ,,)1:,.

In addition to that as q the wave number and the cutoff frequency change from the adiabatic

values to the isothermal ones. Thus Newtonian cooling influences only the adiabatic region and

transforms it to the isothermal form.

5 CONCLUSIONS

Before ending this paper we would like to indicate the main results

(I) For large Prandtl number the viscosity creates an absorbing and reflecting layer. Below it the

oscillatory motion is adiabatic and above it the motion will decay exponentially with the altitude to

zero before it is influenced by the effects of the thermal conductivity. Also as q co the parameter

ico and the last two terms of equation (2.9) will vanish. Consequently, for large Prandtl

number, the effects of the thermal conductivity can be excluded.

(II) The magnitude of the reflection coefficient IR6’=I (IRC, I) tends to its maximum value as

o 2r/k,, co , 27r/k, co), and to 0 as $, 0 (,, 0). The reflection becomes quite

small when ,, (,,) equal to H. Although IRCol (IC,I) tnd to limit as tt --4 0, the solution itself

does not approach a limiting value at any fixed point z of the altitude because of the oscillation of

the phase between the two waves. This can be explained by the fact that the region from which

most of the reflection takes place depends on the kinematic viscosity and shifts upward as It -40.

Of course the same conclusions applied for each fixed value of q.

(III) It is clear from equation (2.6) that, with g 0 and q >> w, we have T IW,/ql. Thu

q co we have T 0. As a result of that when the heat exchange, due to radiation, is intense

enough the temperature perturbation associated with the wave will be eliminated.

(IV) The nature of the dissipation introduced by Newtonian cooling is of a different type from those

of the thermal conduction and vicosity because the existence of it depends on the heat exchange
between hotter and cooler regions in the atmosphere.

(V) The nature of the reflecting layer created by the viscosity will not change as q --, co, but the

magnitude of the reflection coefficient will be reduced from the adiabatic value to the isothermal

one. The reduction in the magnitude of the reflection coefficient will continue until the atmosphere

is transformed from the adiabatic regime to the isothermal one.
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