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ABSTRACT. In this note, we show that if m,n are positive integers and x,j > 0, for

i=l,-..,n, forj=l,...,m, then

i=1 i=1 i=1

with equality, in case (Xll ,Xnl 0 if and only if each vector (Xlj, ,x,),j 1,. .,m, is

a scalar multiple of (xla,...,x,1). The proof is a straight-forward application of HSlder

inequalities Conversely, we show that HSlder inequalities can be derived from the above result.
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MAIN RESULTS.
LEMMA 1. If m, n are positive integers and xO > 0, for 1, ., n, for j 1, ., n, then

i=1 =1 i=1

with equality, in case (x,,,.. ",Xnl 0 if and only if each vector (x,a,... ,x,,),j 1,...,m, is

a scalar multiple of (zl, ,zm).
PROOF. Use induction on m. When m 1, the above inequalities are trivial. Suppose

that the above inequalities hold with m- 1. Then it follows that

n n
g-’xE X’l’" "X’rn < E (X’I" "X’rn- 1) rn-1
z.., f

(by H61der Inequalities)
i=1 i=1 i=

E Xtlm-l"" "Xtm-lm-1 V X m
i=1 i=Zl ;-< Xtlrn
i=l

y ,,--r x,,," m, (by Induction Hypothesis)Xtrn
i=1 i=1

x’i
n

E Xtrn
z=l i--"l /

Therefore the proof is complete
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Note that the above inequalities have been deduced using H61der Inequalities. We can also

deduce HSlder Inequalities by using the above inequalities.
THEOPdgM 1. Given p,,..-,p,(sR with Pk>l, for each k=l,...,n and E=, =1

and given a, .,a. > 0, we have the following inequality

ckPROOF. First we prove this theorem when all p’s are rational. Write p= for some
rn for < k < n. It is clear thatb,ck(5Nfor l<k<n. Let m2.1cm(c,...,c,). Let q=-

qk > 2 for 1 < k < n. Let zk a for 1 < k < n. Let S: R"--,R be the mapping defined by

s(y,,y,... ,y.) (y,,ya,y, .,y,_,)

for (Yl, Y2, ", Y,,) (5 R’. Define m vectors Z1, ., Z,, by

and Z S(Z,_ ) for 2 < < m. Applying the Lemma to the m vectors Z,, ,Z,, we have

m. x,q* x.q" < q x, + + q.. x. (1.1)

and equality holds if and only if x, x for 2 < k < n.

By substituting x’ a(1 < k < n) into both sides in (.), we have

n akaa’’’a.< p--,
k=l

and equality holds if and only if a’ a for 2 < k < n. Now, let us show the theorem when all

p’s are real. We can choose n sequences of rational numbers {r,}, ., {r.,, } satisfying rk, >
1 for each j (5 N and rkj---pk as j--oo, for 1 < k < n. Byfor 1 <k<n, all j(SN and E= ,--j

the above argument, for each j (5 N, we have

Y akPkal...a.<

Taking the limit as joo, the result follows.

H61der Inequalities follow from Theorem 1 in the usual way, that can be found in most text

books. From Lemma 1 and Theorem 1, we know that the following form of inequalities is

essential for the HSlder inequalities: If n is a positive integer and xi, > 0, for 1, n, for

j 1, .,n, then
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