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ABSTRACT. Doeblin [1] considered some classes of finite state nonhomogeneous Markov chains
and studied their asymptotic behavior. Later Cohn [2] considered another class of such Markov
chains (not covered earlier) and obtained Doeblin type results. Though this paper does not
present the “best possible” results, the method of proof will be of interest to the reader. It is

elementary and based on Hajnal’s results on products of nonnegative matrices.
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1. INTRODUCTION.

Let {X,:2 >0} be a non-homogeneous Markov chain with finite state space E = {1,2, -,S}
defined on some probability space (£, %, P). Let (P,) be the sequence of transition probability (s
by s) matrices such that (P,),,= the entry on the :th row and jth column of
P=PX,, =71 Xy=0),(Pr )y =(Pmy1Puyz - Pa)yy = P(Xpy1 =7 X1 =2),0<m<
n. [It will be assumed that the matrices P, are all stochastic. i.e., every row sum is one; this
means that when P(X, =1) =0, the ith row of P, can be defined in any way as long as it is
nonnegative and has sum 1.] In [1], Doeblin considered classes of non-homogeneous Markov
chains satisfying condition (A):3 a positive number § 3 V(4,7) € EX E, either (P,),,>é V n or
(P,),, =0V n. He also studied more general chains:

CONDITION (B). 3m é > 0 and some positive integer N 3 V(z, 5) € E x E, either (P,),, > ¢
for n > N or lim(P,),, = 0 as n—oc.

Cohn [2] made a detailed study of Doeblin’s paper [1] and these conditions in the context of
Doeblin type results. Cohn [2] also studied chains satisfying conditions even more general than
Doeblin’s. The most general condition studied in Cohn’s paper is:

CONDITION (B*). 36> 053 lim maz{(P,),, |43 (P,),, <6} =0 as n—oo.

The aim of this paper is to study non-homogeneous Markov chains satisfying conditions
essentially different from the above conditions (where one does not require any kind of limit for
the sequence (P,),, or the sequence maz ((P,),;:(1,5) ¢ A,), 4, in E) in the context of Doeblin
theory. For example, if one considers a non-homogeneous Markov chain where the transition
matrices (P,) satisfy for some (z,5) € ExE the condition:(P,,),, > & >0, k(n)=k", n>0,
where k is a prime integer and lim ¢, = 0 as k—oo, then this chain does not belong to the classes
of chains studied in [2,3]. As one will see shortly, these chains (for ¢, = 1/log k)) are a type of
chains that will satisfy the condition (=) below that define the chains studied in this paper.

In this paper. Doeblin type results are obtained for non-homogeneous Markov chains satisfying
the following condition:

CONDITION (). For any (z,7) € EX E, either (P,),,; =0 V n, or for n sufficiently large,
(Pp),; = 1/(log n).
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As will be clear from the proof, results of this paper actual holds under conditions more general
than (*). The present method of proof is different, and will be of interest to the reader.
2. PRELIMINARIES.

Throughout this and the next section, we will assume that the P,’s have the same skeleton,
i.e., either (P,),, =0V n>1or (P,),,>0V n>1 Define that :—jif P(X,=j|Xo=1)>0 for
some n > 1. If 1>, ¢ is self-communicating and define the period of ¢,d(i)= g.cd
{n | (Py 1 +n) >0 for some k>0}. In the parenthesis above the phrase “for some k> 0” can be
replaced by “V k> 0" without changing the definition since the P,’s have the same skeleton.
Note that it is easily proven that the set F = {i € E|i—1} is a nonempty subset of E(since E is
finite). A state 1, as usual, is called essential if i—j=>)—1. A state which is not essential is called
unessential. All states in E — F are unessential. As in the homogeneous case, F' is partitioned
into equivalence classes with respect to the equivalence 1elation irj iff :—j and j—:. Then it is
easily verified that all states within the same class have the same period. Also, in class G, with
period d, and any two states i,j € G,, Ir,,;30<r,,<d, and (P, n),, > 0=n—m =r, (mod
d,). [Recall: P, =P, Pnys -P,m<n]. Also, each class G, with period d, can be
partitioned  into  sub-classes C,j=1,2,---d,,> if i€C, and j€C, then
(Pm,n)sy > 0=n —m = t, — ty(modd,). [The proofs of the above assertions are the same as the
homogeneous case in Chung’s book [3]]. In the proof of our theorem, we need to apply Hajnal’s
weak ergodicity result in [4]. We explain what it is. A nonnegative square matrix is called
allowable if I at least one positive entry in each row and each column. For an allowable matrix
P, Hajnal (4] defined $(P) as :

P,P

P I Vi 5.k, 2 if P has all entries positive,

®(P) =mau .
(P) =min P,

3
=0, otherwise

A sequence of szs nonnegative matrices is called weakly ergodic if for each m > 0 and any ¢, 5,k
Pronhy
P, ndk;
the following theorem: Theorem (Hajnal). A sequence of allowable matrices is weakly ergodic if
3 a strictly increasing sequence of integers (r,,) 3 2, -, m = o0.

3. MAIN RESULTS.

We now state the main theorem:

THEOREM 3.1. Let (P,) be a sequence of sX s stochastic matrices with state space S such
that they all have the same skeleton. Let us assume the following condition: “For each i € S, let
E,={j € S:i—j}. Then for any two states u,v € E;, either (P,),, = 0 for all n or for sufficiently
large n, (P,)y, =>1/(log n). “Then the following results hold: the state space S can be
partitioned as S = ToU(UE,)U(UIg), where T, contains all the non-self communicating elements,
E_’s the essential self-communicating classes and the I4’s the inessential self-communicating

classes. Each E, can further be partitioned into cyclical subclasses E, = |J4@), E, ., d(a) being

(
in the state space 7 — V™ as n—oo, where the V('"),k’s are independent of j. We need

the period of E,. Similarly, each I can be partitioned as I = (J2) I,, Where d(f) is the
period of I5. Also

(i) lm(P, ,); = form >0 forall 4, if j in T as n—oo

(1) (Pm,nh,=0form<nifiin E, and j not in E,,.

(i) (Pm,m)ij =0 of n —m # v —u(mod d(a)), whenever j in E,,,i in E,,,.
A similar result holds when i in I, and j in I,

(iv) If i€E,,, j€E,, and n—m=v—u(mod d(a)), then (P,,),, = (Pr); + (Em,n)iys

where lim(€, )., = 0 and lim L‘_”EM(P,,),J =1 as n—oo.
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(v) If ,ke€lg, and j€lg,n—m=v—u(mod d(3)), then im{(P, o)0)/(Po, i) = o™
as n—00.

(vi) Let j€ Eyy, 1 <u<d(a) Thenforz€ S, (P, )., =(P,), EkeEQu(P,,,’,,),k + (Em, n ik
+ (Em, n)y and im(e,, ), = 0 as n—oo.
The idea of the proof is the following. First, to find a useful cstimate of the integer N (and thus
is one of the crucial steps in my proof) with the following property: (P x4 na) >0 whenever
n > N where d is the period of the element 1,2 ¢ Ty. (The estimate is in terms of d and the
number a which is the number of elements in the class containing :). The second step is to
consider restrictions of the sequence of blocks (each block is a product of length d(a)) P,, .. 4 d(a)
to an essential class (with period d(a)); these restrictions are allowable nonnegative matrices and
then use Hajnal’s theorem to this sequence after estimating the ® function (given in Hanjals
theorem) based on the estimate that I have obtained in the first step. The third step is consider
a similar procedure for the unessential classes.

PROOF. We discuss the proof in several parts.

(1) Let a,b be positive integers and 0 < a <b, g.cd {a.b} =(a,b) =d. Then there exist
integers u and v such that ua+vb=d and |v| <u<b.

PROOF of (1). With no loss of generality, we can assume that d =1. It is known that
there are integers s and ¢ such that

sa+th=1. (3.1)

Let z be the greatest integer less than or equal to b Z 3. We claim that

|t—az| <s+bz <b. (3.2)

Notice that (3.2), once established, will complete the proof of (1), for

(s+bz)a+ (t—az)b=1. (3.3)
To establish (3.2), note first that
—s—1 -5 t—s b—s
F-a S Sar6 S T (3.4)
Write, |s| =bg+r,0 <r <b, where g and r are integers. Let s > 0. Then
b=s_j_,_r b—s_ T 1 _b—s_t=s
5 =1—¢q bsotha.t 5 r<l1 bSl Ha+b) 5 aTb =
t—s b—s
arbSTsS T (3.5)
If s<0 then b—5=1+q+£=‘>b_s—m=£<1——1—- (Since
) b b7 b b= (a+b) ’

rla+b) <bla+b)=>r(a+b)< —1+4b(a+b)). This means (3.5) holds. Note that (3.5) implies
that

t—ar<s+bx<b. (3.6)
Also, (3.4) implies that 7) S_;t <zor
ar —t < s+ bz (3.7)
This establishes (3.2) and (1) is proven.
(2) Let d=g.cdfn,ny - ,ng}, where 1<n; <n,< - <mn, are positive integers.
Then 3 positive integers ¢y,cy, * - -, ¢, such that

B a2z 2¢

(i) eny—cng— - —gnp=d
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(i) Ifd, = g.c.d{n;ny, - - -,n,},1 <2<k, then ¢ S?Tk, 1 < Z"Z"" etc.
k Kk -1
nn 1M
Pk 2 k
“=qd, - d

PROOF OF (2). The proof follows easily using induction on k and (1).

(3) Let d be the period of a self-commniunicating class F and let a be the number of
elements in this class. For a state ¢ in this class, define the set A(z) = {n € z*:(Py_t 4 o)., >0 for
all K}. Also, let A(a)={n€zt:n<aandn€ A(j)for yin F}. Then, d = g.c.d. A(a).

PROOF OF (3). Notice that d = g.cd. A(j) for each j€ F. Hence, d|d, where
dy = g.cd.A(a). Now, let n € A(2). Then, (Py x,,), >0 Ifn<a, then n € A(a) and do [ n. Let
n > a. Since i cannot lead to a state j outside F (the class countaining ), which can then lead to
a state in F, it is clear that one can write n = n, + ny+ - - - +n,; , where eachn,1<t<1l,isin
A(a). To see this, let 7= j,; then notice that (P, y.,,.), = E(Pkﬂ)ul(PkH)Jm‘ .-
(Pk 4 n)in-1Jn I m is the smallest integer such that j,, appears at least twice and j,, = jm 4 ps

then a>p and n=p+(n—p), where(Pyym ksm+p) >0 and (Py n-p4k) >0 This

ImIm
process is repeated. So dg|n since dg|n,, 1 <t<1.

(4) Let d be the period of a self-communicating class with a elements and N ={[§Pa}2.
Vn > N,(Py k4 na)s > 0,Vk and states i in this class.

PROOF of (4). Let i be a state in this class. First, consider the shortest path from ¢ to :
through all the other states in this class which can be described as follows: j, =1 to j, to j, to

e
etc. s,-steps sy-steps
e dated =
N et
3, 4 1-Steps

where all the j; ’s are distinct and each s; < a. If the length of this shortest path is b, then d |b
and b < a®. Note that the corresponding shortest path for any other state j in this class has also

length b, since, for example, if j = j;, then:

jitojptojs to----etc. ---to itoyg;.
N e N —
Sy-steps  s3-steps $,-steps

This information will be used later. Now, by step (3) d =g.c.d. {n;,ny, - - -,n,}, n,’s being
distinct, each n; <a and for each n, 1 <1<¢ there is some state i in the given class
(equivalent) 3 (Py,k+mny), >0. By part (2), 3 positive integers ¢; >¢c;> - -+ >¢;2d =¢jn;
—Cy— + - — Ny Let Ngd=cny+ - - - +en, Let n> Ny(No-1). Then
n = a;No(No— 1)+ a;Ng + a3 where a; > 1,a, > 0,0 < a3 < Ny. Thus,

t t t
nd=a;(No—1) Y eny+a, Y eng +aglen— Y eny
1=2 1 =2 1 =2

2{“1(N0 —1)+a; —ag}e; ny +azeyny.

1 M

1
Note that by part (2),

a
cls%.%. %Szd_&;—t{ﬁs[ﬂ!

3 Nod(No—1) = (e — d)(eyn, —2d)} < (8]a -4y 1

Note that if md =1i 1cl("')nl , & (™) >0, then (P, k + md +b)ss > OV states 7 in the class. [The

reason is the following: Considering the shortest path of length b from ¢ to i through all the
states in the class ¢ to j; to j, to - - -etc- - -to j, to &. Attach to this path an extra m.d steps in
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the most obvious manner, i.e., for each j;, there is an n; such that (P (m) )J] 0> 0, so
- - koyk + ¢ n 171
2
that the new path looks like
ito jytoj, to J,toj, to ----to},tod.
N———r N—

cl("')nl-stepb ¢, n,osteps

Since, b < a? and d | b, Ny +2% <—( 4a - ) +E< ([ ]’a)

Therefore, if n Z([ ]'a) then n.d=md +b m>NyNyg—1),v ¢ m the class,
(Pr,k+nd)u > 0.

(5) Let Gy ={y€S}lim(P,, )., =0,¥Ym >0,V states i as n—oo}.

Since § is finite, G§# ®. Let k€G%. J ¢, €85, 3 lim(P,,, n ik > 0 for some m as t—oo. Or
gf’l';) > 0. Since ~
g™k = > ™ g eI > noe gl > 0.

r=m+1
Thus k is recurrent and k—k.

(6) Let Ty={jin s:j»j}. Then Tyin Gy The set T§ can be partitioned into equivalence
classes with respect to the equivalence relation “«”. The equivalence classes in T§ has either all
essential or all unessential states.

(7) Let {E,E,, -,E.} be all the equivalence classes of T§ consisting of only essential
states. Each E, can also be partitioned into subclasses {E,;, Eop, - - *y Eqq(a)}. Where d(a) is the
period of the class E, as follows: For a fixed i in E_ E,, = {jeE, (P, m+n), >0)=n
=r(modd(a)))}, 1 <r<d(a). Clearly, for j in Eg bk in E_,(Pp mqyn) >0 implies that
n=1"—1(mod d(a)). Note that the restriction of P, .., 4(a) to_Ead(a), e, P mtdo)| Eadia)
is an allowable non-negative matrix because (P, m4a(a)); =0V jin E, g, for some i € E 4,
and for some m, so that (P, . 4(a))s =0V n, which is a contradiction. Similarly, no column of
P, im+d(a)| Ead(a) €30 be a zero column. For i,j € E y,), 3 a positive integer k,, _[d(a)]a Vm,
(P, ™k, d(a))t] > 0. This means that n > N (where N is as in (5))=(P,, m + nd(a) + k, d(a,)),J > 0.
Let M = max{N+k %,j in E 4} Then M < N+[d( )] By the assumption in the theorem,
when (P,),, > 0 for 1,5 € E,, and n sufficiently large,

1
()P n)!] = Wwe(avd(a)) = (N +|:d_(angd(a)

{Notice that for 4,7 € Eoya)} (Prn,m+ Mae)ss = (P (N 4 (M - N K, ld(a) + K, d(a))t] >0, and
Vk > 1 and n sufficiently large, by condition (), we have

P Joy o = b
n+kMd(a),n + (k+1)Md(a)/1s = 5 + (k + l)Md(a)

It is clear that for n sufficiently large ®(P, . prd(a) | Ead(a)) > (—nm.

Also, P i md(e)| Bada)= PrnsMa(@)| Bad@)” Pt (n-1)Md(a),m + nMd(a) | Ead(a)  Thus,
using Hajnal’s theorem observe that the chain P, . nmd(a)| Ead(a) is Weakly ergodic. That is
the chain P, .4 nd(a) | Fad(a) is also weakly ergodic, because for n> >n', P i nd(a) | Fadia)

= P"wl )M E gy ) times. Due to weak ergodicity, i, j € Eqyay | (Pm,n)i; = (Pm,n);;) [0

as n—oo. If n=r(n)(mod d(a)),0 < r(n) <d(a), then for m > d(a) 3 n = m(mod d(@))(P,(n) 4);;
= . E (Pr(n),m)jl (Pm,n)lj 3 fOI‘ n= m(mOd d(a)) a‘nd as Nn—oo ‘(Pr(n),n);,] - (Pm,n)n'
10 E g,
—0. For 4,5 € Eyy() and n = m(mod d(a))(Pp,, 1)y = (Py(n), n)sy T (Em, n)syy Where lim(e,, ,),, =0
as n—oo. Writing (P')), = (P,(,),n),, then Izm E (Pn),=1lasn—oo. Leti€ B, ,j€E %
ad(a)

m<n,d3n—m=1 -1(modd(a)),l1<1 <1°<d(a). Then
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m+ 1 'l,n)"]

(Pm,n)x] = Z (P . P
seE . mym+ 1 _l)U(

= (P . - ,
SSEZ . mym 41 —1)" [(P”)JT(v'“'*ll—l,n)”J:(P")J+(E""")'J
al

\\'hCl‘e (5 m,n)‘] = Z (Pm‘m +]_’_l ),, (6m+Ll—]_,n)3] = 117]1(5’,,1"'),) = 0 as n—0o0.
scE .
aL
(8) Let {I,I,---,I;} be all the equivalence classes consisting of unessential self-
communicating states. Let I be a class with period d(f). Partitioning it into further subclasses
{Isi 50 - - I a05)} as before, Vm > 1, P, . i | I is an allowable non-negative matrix. Also

IMsn=m+ (L ~1)(mod d(8))=(Py, n+ ard(s)s = nﬁ——ﬂlfdm for iel g and jelg -
So (Pm,n1+1qu(ﬂ))t] - ‘/(,,,)'L
(Pm, m+nMd(B)/k3

as n—00 for 1,7, kel gy [From Hajnal]. Vm >0,k €Iy and jel, »n—m=1 —1 (mod d(8))

(Pm,m-i-n 1]

one has ( — V™, as nooo.

m,m+n k3

(9) Let ¢ be any state and j€UE, 44 Let n=r(n)(mod d(a)) Then

(Pm’")’J = (P'(")a")“(va")’Ead(q) + (Em, ), Where lim(em,n)” =( as n—oo. A similar statement

holds for jeE .1 <u <d(a). To prove this, assume the opposite. Then 3r31 <r <d(a)and a

sequence of positive integers (n,) > if t > 1,
(*) 0< é < I (Pm, nt)u - (Pr, nt)]](Pm,nt)and(a) |

where each n, = r(mod d(a)), and Vk >0, Pr = Qi Qi@ = @1, @, —Q = Q% Clearly, jis in a
C-block of @. (Note that C-blocks of Q are strictly positive stochastic blocks with identical
rows). If not then the j-th column of @ is a zero column, hence a zero column of @,, and Q,, and
this will contradict (). Since, (@), =0 for 1 €T (=the zero columns of Q), for t > 1,
1):T(P,,,’ nthi <3 Also, since each n, = r(mod d(a)),(P )p =0forl ¢ E 4y=>Q, =0. If

.
nt, nt

i ¢ E,4(a)UT, then Q,; =0 and therefore Q, , = 0= for ¢ large and
n, > >ng 3 (P, h,< g.
1 ¢ TUEad(u)

nt, nt

Thus Z ( ) Z (
(P,,,,.')u= P"'yn)'.l.(Pn nLs P"‘" g
e l G T\Ead(a) t’ ‘ _1_ G Ead(a) ’ ')'l (p"")"t )l ’

+ E (Pm, nt)ll (Pm, nl’)l 7
1 ¢ TUEad(a)

From (weak ergodicity result) (8)

I (Pm,n',)l'_l - (Pr’ nt,)-”(Pm, "t’)'Ead(a) l <é

This is a contradiction.
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