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ABSTRACT. We consider proper CR-submanifolds of the six-dimensional sphere S¢. We prove
that S° does not admit compact proper CR-submanifolds with non-negative sectional curvature

and integrable holomorphic distribution.
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1. INTRODUCTION. The study of CR-submanifolds of a Kaehler manifold was initiated by
Bejancu [1]. This study generalizes both the complex submanifolds as well as the totally real
submanifolds. For this reason, it has become the subject of interest to many mathematicians (3].
Of all the Euclidian spheres, only $? and S admit the almost complex structure of which $? is
complex and §° is not. It is known that S is an almost hermitian manifold which is nearly
Kaehler but not Kaehler, that is, the almost complex structure is not parallel with respect to the
Riemannian connection on S® [4]. CR-submanifolds of S® have been studied by several
mathematicians. For instance Sekigawa [7] proved that S® does not contain any CR-product
submanifold. Gray [5] has shown that S® does not admit a 4-dimensional complex submanifold.
In this paper, we consider compact proper CR-submanifolds of $6. We obtain the following:
THEOREM. 5% does not admit any compact proper CR-submanifold with non-negative
sectional curvature and integrable holomorphic distribution.
2. PRELIMINARIES. Let C be the set of all purely imaginary Cayley numbers. C can be
viewed as a 7-dimensional linear subspace R” of R®. Consider the unit hypersurface which is
centered at the origin:
S¢(1)={ze€C: <z,z> =1}
The tangent space T,S5° of S® at a point z may be identified with the affine subspace of C which
is orthogonal to z. A(1,1) tensor field J on S® is defined by

JU=XxU

where the above product is defined as in [4] for zeS$® and UeT,S®. The tensor field J determines
an almost complex structure (i.e., J2= —id) on S®. If ¥V is the Riemannian connection on S°,
then (V xJ)X = 0 for any Xe¥(S5°%), i.e., S is nearly Kaehler.
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A(2p + ¢q)-dimensional submanifold M of $® is called a CR-submanifold if there exists a pair
of orthogonal complementary distribution D and i) such that JD = D and Jbeu where v is the
normal bundle of M. The distributions D and ]5 are called the holomorphic distribution and the
totally real distribution respectively with dumD =2p and dvmD* =gq. The normal bundle v
splits as v = Jle @ p where p is invariant sub-bundle of v under J. The CR-submanifold is said
to be proper if neither D = {0} nor D= {0}. A proper CR-submanifold M of S® is said to be a
CR-product submanifold if it is locally the Riemannian product of a holomorphic submanifold
and a totally real submanifold of S®. It is known that there does not exist any CR-product
submanifolds in $° [7].

Let V be the Riemannian connection on (M,g) where g is the induced metric. Then the

curvature tensor R of (M, g) of type (1,3) is defined by

RX,)Y)Z=V xVyZ-VyVxZ-V (xy 2, X,Y,ZeX(M)
The sectional curvature K(X,Y') of the plane section determined by {X,Y} is defined by

KX, Y)=RX,Y,Y,X){[| X|I?|Y||* - g(X,Y)*} " where R(X,Y,Z,W) = g(R(X,Y)Z,W).
The Ricci tensor of (M, g) is defined by

n
Ric(X,Y)= 3 R(e, X,Y,e,), X, Yex(M)
i =
where {ey, - - -,e,} is a local orthonormal frame field on M. On a compact Riemannian manifold
the following integral formula holds for any XeX(M) (cf [8]).

[ {RielX,X)+ | VX |12 =§ ]l dn|* ~ (div X)P)dv =0,
M
where 7 is a 1-form dual to X, i.e., g(X,Z) = n(Z), for

Zex(M)and || VX | %= i g( Ve X, V., X)
i = '

Let k be the second fundamental form. M is said to be totally geodesic if h =0 and M is
said to be totally umbilical if h(X,Y) = ¢(X,Y)H where H is the mean curvature tensor defined
by H = % trace h.

3. PROOF OF THE THEOREM.

Since D is integrable, then the integral submanifold of the distribution D is a Kaehler
manifold. Since M is proper then dimD = 4 is ruled out by a result of Gray [5] namely S® does
not contain a 4-dimensional complex submanifold. Therefore dimD =2. Since v=J b @ p and
M is a proper CR-submanifold of $® we have dimb =1, i.e., M is 3-dimensional. Now let w be
a 2-form on the integral submanifold of D and let 7 be its dual. Since the integral submanifold of
D is Kaehler, w is harmonic (cf. [6]). Using Poincare duality theorem, its dual 7 is also
harmonic, i.e., dp = én = 0.

Now from the hypothesis of the theorem, we get Ric(Z,Z)> 0. Using the integral formula
on this page and Zeb we have

[ {Ricz,2)-ldn)1*+ | V2|1~ (en)dv =0,
M
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from which we get V y Z =0 for all X¢¥(Af) and Zc‘b, i.e., the distribution b is parallel. Also
9(Y,Z)=0 for all YeD gives V x Y =0 for all XeX(M) and YeD. This means that D is also
parallel. D and b being parallel implies that M is a CR-product, which is a contradiction to the
fact that $® does not have any CR-product submanifold [7]. Therefore our theorem is proven.

COROLLARY 1. There does not exist a compact totally umbilical proper CR-submanifolds
of $® with integrable distribution D.

PROOF. Since S is of constant positive curvature, the curvature tensor B of S% is given
by R(X,Y,Z,W) = c{g(X,W)g(Y.Z)— g(Z,X)g(Y,W)}. Using this in Gauss equation

R(X\)Y,ZW)=R(X,Y,Z,W) + g(h(X,W),k(Y,Z)) — g(k(Z, X), k(Y ,W))

with the assumption that M is totally umbilical (i, A(X,Y)=g(X,Y)H) we get
RX,)Y,Y,X)=c+ |H|*>0-X,YeX(M). This implies that M is of positive sectional
curvature. Then the corollary follows from the theorem.

COROLLARY 2. There does not exist a compact totally geodesic proper CR-submanifold of
S with integrable distribution D.

PROOF. Since M is totally geodesic in S®, then it follows immediately from Gauss equation
that M is of positive sectional curvature. Thus the corollary follows from the theorem.

REMARK. If dimM =3, then Corollary 1 holds without the assumption that D is
integrable. This is a result proved previously by Bashir [2].
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