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ABSTRACT. In this note we consider several types of gliding hump properties for a sequence space F
and we consider the various implications between these properties. By mceans of examples we show that
most of the implications are strict and they afford a sort of structure between solid sequence spaces and
those with weakly sequentially complete 3-duals. Our main result is used to extend a result of Bennett and
Kalton which characterizes the class of sequence spaces E with the property that I C S whenever F is
a separable FK space containing /2 where Sp denotes the sequences in I* having scctional convergence.
‘This, in turn, is used to identify a gliding humps property as a sufficient condition for £ to be in this

class.
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1. INTRODUCTION.

Over the past eighty years the “gliding hump” technique has been a frequently used tool to esta-
blish results in summability and sequence space theory. Among the more familar examples would be the
Silverman-Toeplitz theorem which gives necessary and sufficient conditions for the regularity of a sum-
mability method [22], the Mazur-Orlicz bounded consistency theorem ([6], [12] and [13]), the theorem
of Kothe and Toeplitz on the weak sequential completeness of the Kéthe dual of a solid sequence space
[11] and the theorems of Schur on the characterization of coercive matrices and the equivalence of weak
and strong convergence in ¢, [19]. Whereas the first three of these have subsequently been argued using
functional analytic techniques (see e.g. [24] and [10]) no such “soft” proofs of Schur’s theorems are known.
Various authors have considered sequence spaces enjoying certain gliding hump type properties. See for
example, (8] for extensions of Schur’s theorems, ([4], [5], [20]) for Mazur--Orlicz type theorems and ([5],
[14]) for weak sequential completeness results. The gliding hump technique has also proven to be a key
ingredient in the solution to problems related to the Wilansky Property ([1], (21], [15]).

In section 3 of this note we introduce various types of gliding hump properties and discuss the im-
plications between them. We give examples in section 5 to show that most of these implications are strict
and they are, in some sense, affording a structure to the set of sequence spaces between the solid spaces

and those with weakly sequentially complete S-duals.
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In [2. Theorem 6], Bennett and Kalton characterized the dlass of sequence spaces [ for which £ C 5,
whenever I is a separable FR space containing £ (here. Sp denotes the elements of F having sectional
convergence). In Theorem 3.6 we extend their result by showing that it suflices to consider only the case
where I is a convergence domain of a matrix. Combining this observation with our main result Theorem
3.5 we obtain in corollary 3.7 the more tractable pointwise weak gliding hump property (sce definiton 3.1
below) as a sufficient condition for E to belong to this class. In section 1 we apply the techniques of this

paper to obtain short proofs of some classical results.

2. NOTATION AND PRELIMINARIES.

Let w denote the linecar space of all scalar (real or complex) sequences. By a sequence space I we
shall mean any linear subspace of w. A sequence space F endowed with a locally convex topology is called
a N -space if the inclusion map @ : E — w is continuous where w has the topology of coordinatewise
convergence. A K-space [/ with a Fréchet topology is called an F K -space. If, in addition, the topology
is normable then E is called a BA -space. We assume throughout this note familarity with the standard
sequence spaces and their natural topologies (see e. g. [24], [9]).

For a sequence space E the multiplier space of £ and the f-dual of E arc given by
M(E) = {zew I zy € E for each yEE}

and

EP = {1: Ew | szyk converges for each y € E}
&

where zy denotes the coordinatewise product. For z € w, n € IN the n'™ section of & is

n
zhl = Z zpek
k=1

where e* = (§,;)%2, is the k*" coordinate vector. For any positive term sequence p = (u;) let

E,,:{a:Ewl (:—:)EE}

If (E,F) is a dual pair then o(E, F), 7(E, F) denotes the weak topology and the Mackey topology
respectively. For a sequence space E and a linear subspace F of E?, (E,F) is a dual pair under the

natural bilinear form
(.’E, y) = Zxkyk .
k

If £ is a K-space containing ¢, the space of finitely non-zero sequences, we let

Lg = {:t €E | {z™|n € IN} is bounded in E}
We = {zek |V —z o, E))
Sg = {zGEIz["]—»zinE}

where E’ denotes the topological dual of E. A K-space E containing ¢ with E = Sg is called an
AK-space.
If A= (a,) is an infinite matrix with scalar entries the convergence domain

64={I€w I Az:(Zankzk) Ec}
k n=1
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admits a natural /'K topology [21]. For & € ¢4 we write limy o = lim Ar.

Il o C ey let ap =lim a,, and define
n

Iy = {.r €4 l Z Aty vxist\} .
¥

Ap : Tp — IK by Ag(r) = limyr — Z a1 (where IK = C or IK = IR) and
3

A ={zetn | Ane) =0}

Further if @ C ey we write L, ,W,.,5, instead of L., ,W.,.S.,. In this case W, =L, N /\f‘ (sce e. g.

21)).

3. THE GLIDING HUMP PROPERTIES.

We begin by introducing several types of gliding hump properties.

DEFINITION 3.1. A sequence (y™) in w \ {0} is called a block sequence if there exists an index
sequence (k,) such that 3™ = 0 for any n,k € IN with & ¢]kn_1,k,]) where kg := 0, and it is called a
1-block sequence if furthermore y,(,") =1 for each k €]k,_,,k,] and n € IN.

Let E be a sequence space containing ¢ .

e E has the gliding hump property (ghp) if for each block sequence (y™) satisfying sup ||y™||s, < 00
neN

and any monotonicly increasing sequence (n,) of integers there exists a subsequence (m;) of (ny)

00
with 3 y™) € E (pointwise sum).
=

e E has the pointwise gliding hump property (p_ghp) if for each z € E, any block sequence (y™)

satisfying sup ||y™||s» < co and any monotonicly increasing sequence (n,) of integers there exists a
neN
00
subsequence (m;) of (n;) with 3" zy(™) € E (pointwise sum).
=1

e FE has the uniform gliding hump property (u_ghp) if the sequence (m,) in the definition of the p_ghp

may be chosen independently of z € E.

e E has the pointwise weak gliding hump property (p-wghp) if the definition of the p_ghp is fulfilled

for each 1-block sequence.

o E has the uniform weak gliding hump property (u_wghp) if the definition of the u_ghp is fulfilled for

each 1-block sequence.
We say that E has the strong p_ghp (u_ghp, p_wghp or u_wghp) if )oi zy(™) € E (pointwise sum) holds
for any subsequence of (m;) in the above definitions; in this case,lvzvle use the notation sp_ghp, su_ghp,
sp-wghp and su_wghp, respectively.

REMARKS 3.2. Let E be a sequence space containing ¢ .
(a) Obviously, the definition of the ghp corresponds with the definition given in {20],{4] and the definition
of the p_wghp corresponds to the weak gliding hump property considered by D. Noll [14].

(b) E has the u_ghp if and only if M(E) has the ghp.

(c) sughp = su_wghp => u_wghp = p_wghp;
su_ghp —> sp_ghp = sp_wghp = p_wghp;
sughp = u_ghp = p_ghp = p_wghp;
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su_wghp = sp_wghp and  spghp = pghp.
(In the last section we provide examples to show that most of these implications are strict.)
(d) Each solid space has the su_ghp and cach monotone space has the su_wghp. (Note, cach solid sequence

space is monotone.)
(e) Examples of spaces [ such that M(FE) has the ghp may be found in [1, Remark 1].

(f) In [1] T. Leiger and the first author proved the validity of theorems of Mazur Orlicz type under the
assumption that M is a sequence space such that M{ M) has the ghp, thatis, M has the u_ghp. Actually,
in cach instance only the fact that M( M) has the p_ghp was used in the arguments.

THEOREM 3.3 . Let F be an FR space containing ¢ . Then S has the strong p_ghp; in particular,
if £ isan FKN-AK space then E has the strong p_ghp.

PROOF. The FK topology of F may be generated by seminorms
P, (r € IN) such that p(z) < p,yi(z) (r€IN and z € E). (o)

Since Sg isan F'RK-AR space we may assume that E is an FR -AR-space.

Now, let z € I be given. Then

sup pr (ZIH’) — 0 (n— oo and 7€ IN). (*)

v2n

Further let (y)) be (a subscquence of ) any block sequence satislying M := SUP,en l¥lss < 0o . There

exist index sequences (v,) and (p,) such that v, <y, <4y (j€IN) and
Yy = Z ye*, thus g =0 for k¢ [v,,p,) .

On account of (o) it is sufficient to prove zy?) — 0 in E. For that end let r € IN be given. Then we

have

By . Ky

pr(zy®) = p, | 3 zyet| < sup p, Z et | |y£” - y£’3.|
E=v K2v, E=v E=v
J 7 J
< M Sup P Z st | =%
K2 k=v,

by (*) which proves zy) — 0 in E. 0O

REMARK 3.4. In general, W fails the p_-wghp. [Example: Let ¥ be the summation matrix and
E := cg-1. Then W fails the p_.wghp since z := e = }_¢’ € W (pointwise sum) and (n,) = (2j) does
not have any subsequence (m;) such that z := ) e™ zpointwise sum) € E since T7!'Z € my\ c.]

THEOREM 3.5. Let E be a sequence spacekconta.ining ¢, and let B be a matrix such that £ C ¢g.
Then E C Sp if E has the p_wghp.

PROOF. Suppose E has the p_wghp. We know from Theorem 6 of D. Noll [14] and Remark 3.2(a)
that (E?,o(E®, E)) is weakly sequentially complete. Therefore, by an inclusion theorem of G. Bennett
and N. J. Kalton [2, Theorem 5] we get E C Wg, in particular E C Lp and E C A}.

Now, assume E C Wp and E ¢ Sp, that is, there exists an 2 € E C Wg = Lp N A§ with z ¢ Sg, thus
limgz = f: bz, sup |E b,.,,:c,,l <oo and sup |Z b,.k:c,,l 0.
k=1

n,reN nreN
r>v Y
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Therefore we may choose an 7 > 0 and index sequences (o). (:3)) and (n,) with «a; <3, such that

/11
I Z b,,,,,‘r‘.l > for cach € IN.

k=a,
Now we emplov a gliding hump argument. Let &y := 1 and choose n} such that

ko

Z bk —bkll-Tkl <27 (n>n}).

k=1

Then there exist a 3, € IN with n,, > n} and a k; > f,, such that (note = € I5)

K+p K+p
max I Z b,,k.r,,l s l Z bk.rkl < 27! (n<my,).
K2k k=K k=h
PENq - -

Choose nj > n,, such that
ki

2

k=1

b = be| Lol <272 (0> m3)

and a k, > k; such that

K+p A +p
max | Z l:,,krkl . | Z b,,z,,l < 272 (n < nj).
K2ka k=K k=h

reENo = -

Proceeding inductively, we get index sequences (k). (7.). (n,) with

ny<n, <ny<ny3<n,<...<n;,_, <0, <ny, <ny, <.
and
ko <o, B, <ki<ky<mn, <...<hkp_a<a,, <3, <hy_y <hy <.

fulfilling

kv

Z b — b,,l |eel <277 (n>m)).

k=1
and

K+p K+p il v is odd and n < n,,
—-v
max I E b,.;,x,,l, I E b,,z,,l < 2 . .
K>k, x i if v isevenand n<nj
PEN, -

Now, we define a subsequence (y)) of a 1-block sequence by
o . {1 ifa,, <k <8,
Y~ = .
0 otherwise

and consider

oo
yz where y:= Z ¥ (pointwise sum).

v=1
Since E has the p_wghp we may assume that yz € E (otherwise we switch over to a subsequence (y(™*))
and adapt the chosen index sequences). For a proof of Theorem 3.5 it is sufficient to prove yz =:z ¢ cp .

For this let ¥ > 2 and n :=n,, . Then (note, ) byz exists)
3

00 0
|3 bueze = 3 busi]
k=1 k=1

kav-3 B o Bye
2 - Z Ibnk—bk||$k|+| Z bnk-’tkl- z ‘ E bnﬂkl
k=1 k=a,, r=v+1 k=a;,

v

n—2"-2""—n>0 forv—oo.
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Now let v > 2 and n:=nj, . Then (see above)

IA

~ o B,
DI N AR S I S A
k=1

r=v+l k=o,,

IZ bk — z ”":"|
k=1 k=1
< 27427 — 0 (v — ).

Altogether we have proved yr € cp. a

Now, an obvious question is whether the statement in Theorem 3.5 remains true if we replace the
domain ey by any separable FK space F with £ C F'. A positive answer is a consequence of the following,
theorem.

THEOREM 3.6 . Let E be a sequence space containing . Then the following statements are equi-
valent:
(i) (E.7(I,E%)) is an AK -space and E’? is a(E?, E) sequentially complete.
(i1) If F' is any separable I'K -space with E C F' then £ C Sg.
(iii) If A is any matrix with £ Ccy then £ C S,4.

PROOF. The equivalence (i)« (ii) is Theorem 6, (i) ¢ (ii) of G. Bennett and N. J. Kalton [2]. The
implication (ii) = (iii) is obviously valid since domains c, are separable F'A-spaces.
We are going to prove (iii)=>(i). Let (iii) be valid. Then E? is o(L®, E)-sequentially complete by [2,
Theorem 5, (iv) = (i)].
Assume, (E,7(E, EP)) is not AR . Thus, we may choose an z € E and an absolutely convex o(E*?, E)-

compact subset A of EP such that
pr(z™ —z) =4 0 (n — 00) where px(z) := sul[\) |Z a,,z,,l (z€ E).
a€R I
Therefore we may choose an index sequence (n,) and a sequence (a®) in A" such that

| ¥ aln|2n>0 @en). (+)
k=n,+1
Since K is o(EP, E)—compact, o(E?, E) and o(E?, ) coincide on K and o(E®,¢) is metrizable we may

assume that (a®)) is o(E®, E)-convergent to an @ € K . (Otherwise we switch over to a subsequence of

(a¥).) If A denotes the matrix given by
ay = al (i,k € IN)
then —in summability language— the last assumption tells us
ECcq (even ECA3).

From (x) we get ¢ ¢ S, which contradicts the assumption that (iii) is true. a

COROLLARY 3.7. Let E be a sequence space containing ¢ and F be a separable FA-space with
E C F. If E has the p.wghp then E C S¢.

PROOF. Theorem 3.6 and 3.5. O

COROLLARY 3.8. Let Y be a sequence space and F be an FK-space with ¢ CY N FE and B be
a matrix with Y N Sg Ceg. Then Y NSg C Sp if Y has the p_wghp.

The statement remains true if we replace cg by any separable FK-space F'.
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PROOF. Corollary 3.7 and the fact that ¥ NSy has the p_wghp. O

COROLLARY 3.9. Let E be a separable 'K space containing ¢ such that Sg g Wy . Then Wy

fails the p_wghp (whercas Sg has the strong p_ghp).

PROOF. Theorem 3.3 and Corollary 3.7. m]

4.  APPLICATIONS.
REMARK 4.1. Let A = (a,x) be a matrix with @ C ¢, and let x € ¢4 . Then

oo
T€S, Z an:x, converges uniformly in n € IN.
k=1
This observation gives us a short proof of the following thcorem containing a Toeplitz-Silverman

theorem.

THEOREM 4.2 (matrices being conservative for ¢o ). For matrices A = (an;) the following state-

ments are equivalent:

(a) e Cea-

(b) ¢ CSa.

() #Ceaand Al = sup f: el < 0.

PROOF. The implication (a)=>(b) comes from the AK-property of ¢, and the monotonicity of
F K-topologies. (This statement follows also by Theorem 3.5 since ¢o obviously has the p_wghp.) Using
standard estimations we may prove (c)=>(a). We are going to prove the essential part (b) = (c).
Let ¢y C S4. Therefore, we can apply the above remark to any z € ¢ .
If ||A]] = co we may choose a sequence (n,) in IN and index sequences (a,) and (f,) with @, < 3, < a,4;

(7 € IN) such that

ﬁ]
Y lansl 243 (GEN).
k=a,

Defining y € ¢y by
1 .
v = {;sgna,.,,, ifa, <k<p,

0 otherwise
we get
pl 1 ﬂl
| S anpme] =33 lanpl2i  Gem).
k=a, J k=a,
00
Thus Y a,xye does not converge uniformly in n € IN which contradicts ¢o C S, . [m]
k=1 .

Using the same method we get also a proof of a theorem containing a theorem of Hahn (equivalence
of (a) and (c)). However, we should mention that the proof of ’(a)=>(c)’ presented in [18, Theorem 4.1,

p. 110] is more elegant.

THEOREM 4.3 (matrices summing each absolute summable sequence) . For matrices A = (a,;) the

following statements are equivalent:
(a) €Cecq.
(b) €CS,4.

(c) ¢Cecs and sup |aq| < o©.
n,keN
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PROOF. (a)= (b) follows from the continuity of the inclusion map and the fact that € isan FK K-
space and the monotonicity of F'A -topologies whereas (¢) = (a) may be proved with classical estimations.
“(b)=(c): Let £ C S4. Thus. obviously, ¢ C ¢4 is true. We assume  sup Ja,| = . Then we may

n keN
choose sequences (ny) and (k;) in IN with &k, < k4, () € IN) such that

[l > 0% (€N

Defining y = (y:) by

1
Ye 1= {Fsg"a"”" ith =k

0 otherwise

we obviously get

IZ an kykl = Ian,k,l >1  (J€IN).

k=k,

The last estimation gives us y € 54 that contradicts £ C S, . a

In the next step we use this method to reprove both the well-known Schur theorem and the Hahn
theorem. (The Schur theorem characterizes the matrices summing all bounded sequences, the Hahn theorem
tells us that a conservative matrix which sums all 2 € x sums also all bounded sequences where x denotes
the set of all sequences with 0 and 1.) Moreover, we take an extended version of Schur’s theorem (see [3])

into consideration.

THEOREM 4.4 (Extended theorem of Schur, theorem of llahn) . Let A = (a,;) be a matrix. Then
the following statements are equivalent:
(a) mCea.
(a*) mCSa.
(b)  Fp=(m),0<pe /oo myCey.
(b*) Fp=(u),0<px /00 : m, C8,.
() x Cca, thatis myCey.
(c*) x C Sa, thatis my C Sy4.
(d) @ Cecyq and kil |ane| converges uniformly in n € IN.
(d*) co Cca and li—mnsup 1:531 |ane — ag] = 0 where a; denotes the limit of the k—th column.
(e) @wCecy and Jpu= (u;) ,0< pup /o0 g:l Helank| converges uniformly in n € IN.
(e*) coCecaand I p=(p),0< px /o0 : limsup i Uel@nr —ar] = 0.
Thereby, we can choose in (b), (b*) and (e) a comr’;lon :Z:luence .
REMARK 4.5 . Originally, Schur proved '(a) < (d*)’ and limys z = i ayz; (z € m) if (a) or (d*) in
4.4is valid. =
In case of conservative matrices the equivalence (a) <« (c) is Hahn’s theorem.

PROOF of 4.4. We are going to check the following chain of implications:
®FEH2 @2 @2 (2B BB D).

The implications (2), (3) and (4) and the equivalences (7) and (9) are obviously true.

The implications (1) and (5) are immediate corollaries of Theorem 3.5 since m, and m, have the p_wghp.
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or a proof of (8) and (10) we refer to [3].

Now, we give a proof of (6). For that we assume that 1 is a matrix with real entries. [In the general case

of complex entries we have to note that 3°, |a,| converges uniformly in n € IN if and only if this is true

for the real part of a,, and the imaginary part of a, .|

Let (c*) be true. Then ¢ C cy .

If kf: |a,x| does not converge uniformly in n € IN then we may choose an 7 > 0, a sequence (n,) in IN
=1

and index sequences (n;) and (3,) with o, < 3, < a,;; such that

B,
Yodanel >0 (2EN).

k=a,

We define y € my by
sgna,; ifa, <k<p,
Yr =

0 otherwise

Since

|zan,kyk|_ lansl2n (G €IN)

k=a, Ic_a,

the series Y @,xyx does not converge uniformly in n € IN. Therefore y ¢ S, which contradicts x C Sy4.
£=1
m]

5. EXAMPLES.
The aim of this section is the presentation of some examples distinguishing almost all of the gliding hump
properties. For that purpose we collect known connections between gliding hump and related properties of

sequence spaces in the following graphic.

[(E’,a(E’,E)) 18 sequentially complete

e

RE, 7(E, E?)) has AK and (E?,0(E?, E)) 18 sequentially completc]
&/

/ @

%
Hes

sp-shp
Figure 1:
Each arrow stands for \G)
‘implies’ and the corre-

sponding number in the momwne sPam su.ghp
circle gives the number of
the example in 5.1 pro- (©)

ving the strictness of the
implication.
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EXAMPLES 5.1. (1) mq is a monotone space, thus it has all of the weak gliding hump properties

27 _wghp. However. it does not have the p_ghp, thus no ?7_ghp and it is not solid.

(2) The sequence space f, ol all sequences almost convergent to 0 has all of the gliding hump propertices.
Furthermore, it is not a monotone space.

For a proof of the first statement we may prove that f; has the su_ghp by modifying Snyders proof of [20,
TheoremT].

(3) k= €,N(co)e, with g = k* (k € IN) has the u_ghp since M(E) has the gliding hump property (see
[23, Theorem 3.3 and 3.1]). We don’t know whether E has the su_ghp. Therefore, it may be a candidate
Lo distinguish the properties su_ghp and u_ghp.

(4a) E := €3Nes has the spghp (thus all 7p_?ghp) since it is an FA° AK- space (Theorem 3.3). Furthermo-
re, with [17, Corollary 4.4] we get that E is a sum space. Thus, by definition of a sum space M(E):= £/ .
Therefore, M(E) = E/ = £,/ + ¢s/ = £, + bv C ¢. From this and the fact that e € M(E) we may derive
that I cannot have the u_wghp (thus ?u_?ghp).

(4b) Considering the James space we get further sequence spaces having the same gliding humps properties

as the example in (4a). For that let w be the space of all real sequences and let

1

(@) = sup [Z(Ip,._. - 2p,)° + Ipf..u]

1=1

where the supremum is taken over all positive integers n and all finite increasing sequences of integers
Pis---sPans1- Then

Sy = {zew [ N(z)(oo}
(together with its natural norm N ) is a BA-space and the closure J = Sy of ¢ in Sy is called
James space (see [16]). We’ll make use of the following facts:
(i) S~ is a BK-algebra with identity e.
(i) J =SvNeco.
(iii) (e, Ei) is a shrinking basis for J/ so, in particular, J/ is AK thus AD.
(iv) Sy =J&(e) = JI.
Now by (i) and (iv) we get M(J//) = J// and by (iii) we get M(J/) = M(J!?) (see (7, Proposition 3.4]).
Therefore by (ii) and (iv) we have

M) = M) =T = J@(e) C c. ()

As in (4a) we conclude that J/ has the sp_ghp (thus all ?p_?ghp) since it is an F k-4 K-space. Furthermore,
by (*) and e € M(J/) we get that J/ cannot have the u_wghp (thus ?u_?ghp).

From (*) we know that J/ is a sum space. Thus by [17, Corollary 4.4] J/ N E will be a sum space too if
E is any FK-space with unconditional basis (e*). Then

M NE)= (J'nE)Y = +E = (J&(e)+E

Now, let E be any FK-space with unconditional basis (e*) such that E/ C c¢. Then, as above we may

conclude, J/ N E has all ?p_?ghp and no 7u_?ghp.
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(5) Obviously. bs docs not have the p_wghp thus none of the gliding hump properties in consideration.

However it is known that (bs.7(bs,bry)) is an AN space and (brg.a(bvg, bs)) is sequentially complete.

(6) Let I be any separable A space with Sp C Wi (for example, the domain of a conull matrix being

not strongly conully and let. £ := Wy Then (L7, a(E7. F)) is sequentially complete (see [ 1. Theorem 1 and

2]) but (£, 7(L, 1?)) is not an AR -space since otherwise from Theorem 3.6 we would get Sp D £ = 1y

thus Sp = We. [m]

Closing the paper we mention, that we don’t know whether there is a difference between the s?_7ghp

and the corresponding ?_?ghp (see Figure 1 and Example 5.1(3)).

10.

11.

12.

13.
14.

15.

16.

17.

18.

19.

20.
21.
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