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ABSTRACT. Wave forces and moments due to scattering and radiation for a vertical circular

cylinder heaving in water of finite depth are derived analytically. These are derived fi’om the total

velocity potential which can be decomposed as two velocity potentials; one due to scattering in the

presence of an incident wave on fixed structure (diffraction problem), and the other due to radiation

by the heave motion on cahn water (radiation problem). For each part, the velocity potential is

derived by considering two regions, namely, interior region and exterior region. The complex matrix

equations are solved numerically to determine the unknown coefficients to compute the wave loads.

Some numerical results are presented for different depth to radius and draft to radius ratios.

KEY WORDS AND PHRSES. Scattering, radiation, heave motion, velocity potential.

1992 AMS SUBJECT CLASSIFICATION CODES. 76B5.

1. INTRODUCTION.

The estimation of hydrodynamic forces on an offshore structure has received considerable at-

tention from the designers. Accurate prediction of the wave loads exerted by surface waves on

rigid structures is absolutely necessary to design offshore structures. A rigid floating structure may

undergo six degrees of freedom three translational and three rotational. Assuming a suitable

coordinate system, OXYZ, the translational motions in the x,y and z directions are referred as

surge, sway and heave respectively; and the rotational motions about x,y and z axes are referred

as roll, pitch and yaw respectively. Here z axis is considered to be vertically upwards from its still

water level. Often the structure is restrained to have fewer degrees of freedom due to the type

of mechanical connection used to fasten it to the seafloor. The problem of scattering of surface

waves by a circular dock was carried out by Miles and Gilbert [8] and then by Garrett [3]. Garrett

presented the results for the horizontal and vertical force and moment on the dock. Black, Mei and

Bray [2] have calculated the wave forces on a truncated cylinder which either extends to the free

surface or rests on the seabed. Isaacson [6] extended Garrett’s method for a submerged truncated

cylinder sitting on the sea-bed. The hydrodynamic interactions due to wave scattering between

the numbers of an array of stationary, truncated cylinders have been investigated by Williams and

Demirbilek [10].

Numerical results for the added mass and damping coefficients of semi-submerged two-dimensional

heaving cylinders in water of finite depth were presented by Bai [1]. He showed that the added mass

is bounded for all frequencies in water of finite depth. He ’tudied the limits of the added mass and
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damping coefficients for high and low frequencies. Yeung [12] presented a set of heoretical added

masses and damping coefficients for a floating circular cylinder in finite-depth water. Sabuncu and

Calisal [9] obtMned hydrodynamic coefficients for vertical cylinders at finite water depth. Williams

nd Abul-Azm [11] investigated the hydrodynamic interactions between the members of an array of

floating circular cylinders which occur when one member undergoes prescribed forced oscillations.

Numerical results for the added mass of bodies heaving at low frequency in water of finite depth

were also presented by Mclver and Linton [7]. Garrison [4] presented a numerical method for the

computations o determine wave excitation forces as well as added mass and damping coefficients

for large objects in water of finite depth. He [5] presented a numerical analysis for the motion of

large free-floting bodies.

We assume that the fluid is incompressible, the fluid motion is irrotational and the waves are of

small anaplitude. Here we consider the coefficients related to the motion with one degree of freedom,

namely, translational motion in the z direction, i.e. heave. In this paper we hve presented the

analyticM solution for the boundary value problem to evaluate the forces and the moments for a

vertical circular cylinder heaving in water of finite depth. Numerical results are also presented.

2. MATHEMATICAL FORMULATION.

We consider n surface wave of amplitude A incident on vertical circular cylinder of rdius a in

water of finite depth h. The body is assumed to be heaving with heave amplitude in the presence

of incident wave with angular frequency a. The wave is parallel to x-axis at the time of incidence

on the cylinder and propagating along +ve direction. The draft of the cylinder in water is b. The

geometry is depicted in Figure 1. We consider the cylindrical coordinate system (r, 0, z) with z

vertically upwards from the still water level SWL ), r measured radially from the z- axis and 0

Y

//A

FIGUBJB 1. Deqnition skecth.
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from the positive x -axis. For an incompressible and inviscid fluid, and for small amplitude wave

theory with irrotational motion, we can introduce a velocity potential d(r, O, z, t). This can be

written as

+(,.,O,z,t) R[(,.,O,z)-"’].

From Bernoulli’s equation we get pressure, P(r, O, z, t), as

P -p---.
The force components F., Fu, F. along x, y, z directions are given by

F [" [ P(a,O,z,t)acosOdzdO
Ja--=O

Sill Odzd

F, P(r,O,-b,t)rdrdO
=0

respectively. Since the incident wave is parallel to x-axis at the time of incidence, the nonzero

horizontal component is F. The moment M, arising due to the forces on the sides on the cylinder

about sea-bottom and M arising due to the forces at the bottom of the.cylinder about z-axis are

given by

M. + h)P(a, ,z, t)acosSdzd
=o

M P(r, O,-,

respectively. Because of the linearity of the situation, the velocity potential can be decomposed

into two velocity potentials e and , where e is the velocity potengial due to the

problem of an incident wave acting on the fixed cylinder, nd , due to the redigion problem

the cylinder forced to oscillete in oherwise still water. Thus can be writgen

where Re e-i’ ]. Now by dividing the whole fluid domain into two domns, (a) inerir

domain region below the cylinder i.e. r -h -; (b) exterior domain region for

r a and -h O, we write ghe velocity potential for the interior domain i and the velocity

potential for the exterior domain ". hen F ,F,, M., M can be written the real

fe-i,f,e-i, m.e-i, me-ie rpecively where f, f,, m., m ere ven by

-ipaa {(a, 8, z) + :(a,,z)} cosSdzd (1)
=0

B ipa {(r,O,-b) + i(r,O,-b))rdrdO (2)
=0

m, -ipaa (z + h){,(a,O,z) + :(a,O,z)} cosOdzd# (3)
=0

m, ioa {(r,O,-b) + (r,O,-b)}r’drdO (4)
=o

respectively.
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Now the boundary value problem to be solved here is

XT 0

0a-gT;: 0 on z=0 r>_a

O 0 on z -h
Oz
0 -ir o z -b
Oz
o
07"

0 on r= a

()

0<,< (8)

b < z < 0. (9)

The boundary condition (8) can be separated into two conditions by writing as

0Ca
Oz

0 on z -b 0 < r< a (10)

0
Oz

-ia on z -b 0 < r < a. (11)

Now we consider this problem by separating it into two problems, diffraction problem and radiation

problem. The diffraction problem will give us the exciting force and from the radiation problem we

will get the radiated force in terms of added mass and damping coefficients.

3. DIFFRACTION PROBLEM.

In this case the velocity potential satisfies the governing equation (5) and the boundary condi-

tions (6), (7), (9), and (10). Also scattered potential Cs where +s) must satisfy the

radiation condition"

linoo V:{ O0s- iA0s} 0

where A0 is the wavenumber and 1 is the incident wave velocity potential. We solve this boundary

value problem by constructing the representation of Ca in the interior domain under the cylinder

and the exterior domain r > a in the following section. Let us assume a product solution

(, 0, z) Z(z)R(,.) os.0

m 0, 1,2, Now we present solutions for the interior region and exterior region.

3.1 Interior and exterior solutions.

Using the method of separation of variables, a physically acceptable general solution for the

interior region can be constructed as follows

[_()
,(.), =. o + .,.(.) o .(z + )l o.0

m=O n=l

valid for -h _< z _< -b and r _< a; where p (n 0, 1,2, ,m 0, 1,2, ....) are arbitrary con-

stants. Here k,, ,n 1,2, are the eigen values aad/,,, (k,,r) is the modified Bessel function

of first kind and order m. It is to be noted here in obtaining this expression for that we have

discarded the terms involving ()’,ln(), because of their singular nature near the origin. It will

be convenient later if we define

(:i,, (,’, z) p,,,0(r__),,,+ p
I,,,(k,,a)
cosk,,(z + h)

such that at r a it becomes a half-range Fourier cosine series expansion
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C:’,,(.,z)
2 + Ev o,,(z + )

defined in -It < z < -b.

Here p ’s are the Fourier coefficients and these coefficients are obtained from

(13)

,i,,(a,z)cosk,,(z + h)dzP h- b h
(14)

n 0, 1,2,. with ko 0. To obtain the exterior solution, the boundary conditions (6), (7), (9)
and (11) are to be satisfied. The incident wave potential can be written as

gA__cosh Ao(z + h)eixox
a cosh Aoh
z__ osh o(z + h)

,,,i’",,,(o,.1 cos m0
a cosh Aoh o

in which eo 1, e,,, 2, (m > 1) and Ao is the wavenumber. Here r and Ao are related by the

dispersion relation a gAo tanh Aoh and J,,,(Aor) is the Bessel function of first kind and order rn.

Because of the presence of an object we need to consider the scattering of waves. Therefore the

appropriate satisfying the radiation condition can be constructed from and is given by

where q,i’s are arbitrary constants. Here H)(A0r) is the Hankel function of first kind of order rn

and K,,, (Air) is the modified Bessel function of second kind and order m. Also A satisfies the relation

a -gA tan

j 1,2,3,... This equation has infinite number of roots corresponding to j=1,2, It is to be

noted here that we have used the symbol i not to confuse with the symbol k,,(= -) used to

represent the eigen values for the interior solution. Thus the velocity potential is given by

_, e.,i"[{J.,(Aor) + q,,,oH)(Aor)} cosh Ao(z + h)
,,,=o cosh Aoh

g,,(;) o.( + h)
/ q,,,j ]cos toO. (15)K(A.a) COS

The set of functions {cosh Ao(z + h), cos A(z + h)}, 1, 2, forms an orthogonal set defined in

the interval -h < z < 0 due to the relation a gA0 tanh Aoh -gAj tan Ajh. Thus the orthonor-

mal set can be constructed provided

where

zo(z) --N;o1/2 oh ao(z + )
-1/2z(z) g, o( + h)

(t6)

(17)
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sinh 2Aoh]Nxo [1 + 2Aoh
sin2Ajhg [ + --;-I.

Thus with these definitions (15) can be written as

(8)

(19)

where B,, 4e,,i’". This is valid for -h _< z _< O, r >_ a.

For convenience let us define

Then we have

(20)

Also we get at r a

m=0

:,(=,z) a,.(o=)z() z()
Zo(0) + Z:q=o Z(0)

This equation can eily be recognized the expansion of ((a, z) in the orthonormal series defined

in -h z 0. Therefore the unknown coefficients re obtained follows

Multiplying (21) by ,j 0,1,2, and integrating with respect to z from -h to 0, we obtn

using the orthogonal property

-h h
Z.(z)(a,z)dz J,,(Aoa)+ q,,,,o o

dz
Zo(0)

h h
Zx(z):,(a z)dz q’j x(z) dz.

Z(O) h

In view of the orthonormafity of the set {Zxo(z),Z(z)} in -h z O,f m(*}dz d

fh (*)dz 1, we obtain

zo(o)
j_ Zo()(,,,)d-q,,o

h

q,,o
a Zx.z. -....a, z.dz

where 1, 2,

3.2 Determination of the unknown coefficients.

To preserve the continuity of the two solutions at the imaginary interface r a, it is required

to satisfy

,(, z) :,(, ), (a)

Or Or
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for -h _< z < -b. Also body surface condii, namely, ;t" It=, O, i.e.

is to be satisfied. Using the gradient condition (23) valid in -h z -b, we have

-,,,,o + o,,
2. l,,,(k,,)

H2)’(Aoa)}s,,,[o{J,,,(o.) + %,0

,’,,(.)z,()

in -h z -b. Equation (24) yields

(24)

(25)

Z,o (.)H)’(Aoa) }Ao{J,,,(Aoa) + %,0 H,(1)(Aoa) Zxo(O)
g’,.(.) z(z) o+

.=
q"J g,n(ja)Z(O)

in -b N 0. Equations (25) and(26) can be rewritten in compact form follows"

(26)

in -h < z < -b.

(27)

in -b _< .z _< O.

where

S,,,],moZ,% (z) Bm E qmj"]"(mjZ(z) (28)

X:.,o oJ:,(o)
zo(o)

1C,,,,,-
k,,al’(k,,a)

o H(o.)Z(0)
$iaK($ia)
K(a)Z(O)

Now from the functional matching (22), equation (14) yields

P"’’ h- b t,
B,(a,z)cosk.(z + h)dz

2B,,, J.,(Aoa) Zo(z cos k.(z + h)dz
h [ z:(o)

qmj /_-b+
o’.= Z,(O z(z) cos k,(z +

n 0,1,2,. If we define

(29)
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/_- Z,(z)cos k,,(z + h)"= h-b h Z(0)
dz

where v takes the value Aj, then (29) can be rewritten as

Now simplifying we get

p 2B,,,[J,,,(Aoa),,Xo +
j=O

(30)

r-]_b N- 1/2 cosh Ao(Z + h) cos
(h-)Zo(O) o

(- )"(h b)o sinh Ao(h b)
(h )o +. osh oh

nr(z + h)dz
h-b

n 0, 1,2, and

f-’ _1/2 nr(z+ h),x, (h b)Z.b(O .,-h Nx cos Aj(z + h)cos
h b

dz

.sin((h b)j + nr) sin((h b)i
2(h b) cos Ah Aj + Aj -b

(-1)"(h b)jsini(h b)
((h b) .}oh

n 0, 1,2, and j 1,2, Equations (27) and (28) are defined in two domains. The unknowns

q,,,= ’s can be determined provided we multiply by and integrate with respect to z over the

region of validity. This yields

Adding these two equations we get

h b
BIC,,,o,5,o, B, E qmJT"’mJ6".ir + mp,,o

2h

h
(31)

where Sx. is Kronecker delta. Inserting the expression of p,,,, equation (31) can be written as

ICo6,o,. J,,,(Aoa)
h b

Z,.(O)(mooo,- + 2 IC,,,,,o,,.r }
h

[7-/,,,i6, +hb
Z,(Ol{m:o,o + 2 ’ ]Cmn...n.r..n,.i}lqm

j=0 n=l

i.e.

Djqmj A
j=o

where Dj, and A,,, ’s are given by

(32)



WAVE LOADINGS ON A VERTICAL CYLINDER DUE TO HEAVE MOTION 159

n=l

A ,,,00 J,,, (A0a)
h z,(0){,00 + 2 ,,,,,,,,,, }.

n=l

Equation (32) is a complex matrix equation. The unknowns are the coefficients q,1 ’s. The infinite

matrix D should be truncated at certain term to solve (32) numericMly. Commercially available

natrix solution routines can be used to obtain the solution of the modified equation. Once these

coefficients are known the diffraction problem is conpletely known.

4. RADIATION PROBLEM.

In this case the boundary value problem is

V2r 0

--a2r 0 at

0 at
Oz

Oz
0 0 at
07"

z=0

on r < a and z -b

r a and b < z < O

and the radiation condition

liAn v(--r -iA0,) 0

where Ao is the wavenumber. We assume that takes the form

(r,O,z) ,,(r,z) cos
n-’O

Now we obtain the interior solution and exterior solution.

4.1 Interior and exterior solutions.

To obtain the interior solution for , we write ,,=0 ,/(r, z) cos m/9. Expanding -ia in

Fourier cosine series, we can write -ia ,,=o a,,, cos m/ where a,,,’s are the Fourier coefficients.

Then we have

m
V ,,, --,,, 0 (33)

OZ
0 at z=-h (34)

Oz a,,, on z=-b (35)

where V is 2-D Laplacian in r and z. Decomposing ,, into homogeneous and nonhomogeneous

part we write

where Ckh and i,,p satisfy the equations (33) and (34). The boundary condition (35) can be

decomposed as

0i 0 on z=-b
Oz
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and

a o7 25 .
Oz

For homogeneous part, by method o seperon o vfib]es we ge
a I,,(k,,r),,,, (,,,o ),,, +

,,=, i.,(,,.)
cos ,,(. + h)

where a ’s are constants and k,, . To obtain particular solution, we sume

,i,,p Ao,3 + Bor(z + h) + Co(z + h)
where Ao, Bo, and Co are constants to be determined from the given conditions. Applying boundary

conditions, we get Bo 0, Ao 2(h-b), and frown the governing equation we get 2Ao + 4Co 0.

Thus Ao =-2Co- a.
2(h-0" Hence the particular solution is

am r,,(,., z) 2( [(z + ) F].
Hence we get, a,,,o r)., a l,,,(k.r) a,=

b)[(z
r2

--’( + I,,,(k,,a)
cos k.(z + h)+ 2(h- + h)2- 1"n=l

At r a we have

(.,) o
)[(z "+ .=, a. cos k,,(z + h) + 2(h + hI2 l- (36/

Multiplying both sides of this equation by cos k.(z + h) and then integrating both sides from

-h to -b (and using the orthogonal property of the functions cos k( + h)), we get an expression

for a,,, in the following form

’" h-
’(a,)co,,(z + h)d-

where

and

am a
Ion,

(h b)/_:[(z + h)- -]dz
am b) a- [( 3 2

)1

For exterior region, the boundary value problem is

m
v(,z)- ,,(,z) o

g-gT- o
o o
Oz
o, o
07"

at z=0

at

at

z= -h

r=a and -b<z<0

(37)

(38)

(39)
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where V is 2-D Laplacian in )" and z. For large argument H,(,) and K,n satisfy the radiation

condition. Applying boundary conditions we arrive at an expression

,K,,,(s,’)O,],(r,z) ,,,oU,)(Ao,’)H,)(Aoa)
Zxo(z) + .= K,,(Aia) Zx,(z)

where Zx,(z) and Nx, take the forms defined in (16), (17), (18) and (19). j 0, 1,2, Now at

r a we hve

,:,(, )= z,,,z().
j=o

Multiplying both sides of this equation by and then integrating both sides from -h to 0 (and

using the orthogonal property of the functions Za(z)), we get an expression for ,i in the following

form

j =o,,,
4.2 Determinefion of the unknown ceNcients.

Meching conditions are

’(=, ) ’(=, ),

for -h < z < -b. Also body surface condition, namely, 1,= 0, i.e.

is to be satisfied. Dom the equation (37) and condition (40)

/_- %(=, )o,( + h)a
h b

/_-’ (=,)o.( + h)a=h"b

h-b =o

where

ZxdzLox h b

Zx cos k,.,(z + h)dz.L,,x h-b h

Also

Z, cos k,,, (z + h)dzL’ h b h

h b
cosh A0u cos k,.,udu

(- 1)"N-o1/2(h b)Ao sinh o(h b)
(h b)2A02 -I- n27r

and

(40)

(41)

(42)

(43)

(44)
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where

Z, cos k,,(z + h)dzL,,, h b h
_L

h b
cos Aju cos k,,udu

-1) Nx, (h b)$ sinj(h b)
(h- )a -.

n=0,1,2,. ,and j= 1,2,....

Now from the gradient condition (41) mad body surface condition (42), we have

mmoG.,o+
2

G cosk,,(z+h)+
n=l j=O

for h S z -b,

Z,,,g,.z,(z) o fo,. o
=0

where

(45)

(46)

(47)

Now multiplying the equations (46) and (47) by - 0,1 2.. and integrating in the regionsh

of validity and adding them we get

(48)

rnamor h
b

G,.o + 2 o, , a,,,,, G,..L,,a, + h

Now substituting the values of a,,,,, we get a system of equations, Ejflrnj X,,,
j=0

0,1,2,

5, EVALUATION OF THE FORCES AND MOMENTS.

The horizontal and the vertical forces on the cylinder are calculated from the pressure obtained

from Sernoulli’s equation as mentioned in (1), (2), (3) and (4). Since for the radiation due to heave

m 0, contribution to f and rn8 will be from Cd only. Thus

---0

f
., Z,o(Z Z(z) , mO] cosOdOdz0

J, tZ im+’ {Jm(’ka)Z,xo(O + qmj Z,(O)"
cos-pgaA

=-b =o,=o
o . Zx(z) 12pgaA=_ =o[{J,(oazo(0) + o

sin ih sin $(h b)
2rpgaA[{J(oa)+qm}sinhh-sinh$(h-b)+ qJ a cos ih

]"
oa cosh oh =
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Thus

where

(49)

D rpga2A.

The vertical force component fz can be written as

where fzd and f,r are given by’

and

where 7oj o(,-b) and ao -ia. Thus we have

Now we compute the moment on the side of the body abou sea-bottom

(50)
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Hence we have

-ipaa (z + h)(a, O, z) cos OdzdO
=0

o Zo(Z) z,(z),2rpgaA /_(z + hl[J,(Aoa) zo(O + qjz,(o)azj=o

2rpga3A[J,(Aoa) + q,o ohsinh Aoh + cosh So(h b)
cosh oh (oa)

osh oh + o(h )sinh o( )}
(oa)

q1 {cos$jh-cosSj(h-b)

+hsin 1h 1(h- b) sin 1(h b)}].

m___ 2[J,(Aoa) + q,o Aohsinh Aoh + cosh $o(h b)
Da cosh $oh ($oa)

cosh oh + 2o(h b) sinh o(h b)
(o)

q cos Ah cos A(h b)+ .=( ()
jh sin Ajh $j(h b)sin $j(h+ -j.

Moment m at the bottom of the body about z-axis can be

(51)

mb mbd q- mbr

where tuba and mbr are given by

m, ipa (r, O,-b)rdrdO
=0

ipa =o[(- + .=,P" cos k,,(h o)jr cosmOdrdO

(_1)o2ripaa3[7 + (k.a)alo(k.a) {(k.a)I(k=a) k=alo(k=a)+ Ik’"
o()=}]

(-1)-o.
{.a(.a) Zo(.a) + (2 + 1)2()}]k=O

and

2"

0- ie (,’,O,-).rddO
=0

,,= . + 2(h : g{(h b) F}lrdr
2paaa(h_b)[{lO_3()}a + 2iina-I"6ao(h- b)

4raapgAo(h b)tanh Aohf[ +() + g 7oiLox,
j=O

--1(-1) (Z=o 7oL.a, ) (k.a)2+ .= (k.a)2io(k.a) {k.all(k.a) Io(k.a)+
k=o (2k + 1)2(kl) }1

Thus we getwhere
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mb (-1)"
D’-’ 4*[-{So(Aoa)o.o + qoio,} + (k,,7k,,a) {J(Aa)" +

j:O n:l

{,,=,(,,=) 0(,,) + ( + )=() }] + o(h )t,m
k=O

= ) (-)"(E%ooL,,, )
+( + oLo, + (=)*o(,,=)j=O

(,,=)**{,,=,(,,=)- o(,,=)+ ( + )=(),}]. ()
k=0

6. DETERMINATION OF THE HEAVE AMPLITUDE AND INCIDENT WAVE AMPLITUDE

RATION.

From the equation of heave motion we get

F, + F: + F

where M is the ms of displaced fluid, F is the radiated force, F: is the exciting force in z-direction

and Fa is the hydrostatic force. Thus we hve

computed from hydrostatic force. Now the equation of motion in complex form becomes

(M + )(-ia) + (-ia)u + t fza.

This yields __
x- a(M + I + i)"

Since the radiated force Fr can be decomposed into components in phase with acceleration and the

velocity of the cylinder in the following way

0 O

we cma write L (u + i). Thus we have

+i=
S

whe

and S ra(h b)p. Thus we get

A Ao tanh Aoh{b + (h b)cT}
where

(53)

fzd

7. NUMERICAL RESULTS.

The complex matrix equation (32) is to be solved in order to determine the unknown coeffi-
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cients qmj for m 0 and m 1. To compute the horizontal exciting force, f.d, we need to solve the

equation (32) for m and the vertical exciting force, f,d, is evaluated using the solution of this

equation when m 0. This infinite order system is made finite to solve it numerically by writing

where 2)i.,. and A,,,, ’s are given by

2)j, 7-/,,,j8,, +

_, v.q,,,. (54)
j=O

A .,,00 Jo(oa)
r 0, 1,...,Nn and j 0, 1,..., Nn.

The complex matrix equation (48) is truncated as following

., .o. Xot
j=O

where ’ti and X0 ’s are given by

where

. .-:-_bGO.6,, + 2 , Go,,L,,,L,,.
n----1

N.
Xot gooLo., + Y] Zm,Go,,

(55)

a
g00 -2(h b)

2(-1)"np
D,2 71.

0,1,..., N, and j 0,1, Np.
Thus 2) and E are square matrices of order (Np + 1) and Jt0, ,4 and ,t0t are vectors of length

(Np + 1) These systems of equations are solved by using a complex matrix inversion subroutine

available in IMSL at TUNS cyber systeln. We select N, 8 and N,, 12 which are seemed to

be good enough for the convergence of the solutions. Also we take N 20. Once q0i qli and

0; ko, omput th ods uig th xpssio (), (), (0),() na ()
by truncating the infinite series for the indices j, n, and k at N,, N,,, and N respectively. The

heave amplitude and the incident wave amplitude ratios are depicted in Fig. 2 as function of A0a.
Non-dimensional x-component of the horizontal force is depicted in Fig. 3. Fig. 4 presents the

non-dimensional vertical force. The non-dimensional moment acting on the side of the cylinder is

shown in Fig. 5. Fig. 6 depicts the non-dimensional moment acting at the bottom of the cylinder.

Different depth to radius ratios considered here are 2.00 and 3.00 with a combination of draft to

radius ratios 0.75, 1.00, and 1.25.

8. CONCLUSIONS.

The wave loads for a vertical circular cylinder heaving in finite depth water in the presence

of an incident wave have been computed in this paper. Analytical solutions for the total velocity

potential is obtained by dividing the whole boundary value problem into two problems, namely,

diffraction problem of an incident wave acting on the xed cylinder and radiation problem of the
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cylinder forced to oscillate in otherwise still water. Mathematical solutions for the boundary value

problems are obtained in two physical regions, namely, interior region and exterior region. The

exciting force components are obtained by solving the diffraction problem and the added mass and

damping coefficients are obtained by solving the radiation problem. Then heave response induced by

wave excitation is determined from the equation of ]notion of the floating cylinder. Using Bernoulli’s

equation, pressure is computed which is used to compute the wave loads. Results for different depth

to radius and draft to radius ratios are presented in various figures.

x----x h/a 200. b/a 100
s- E h/a 3 00. b/a tOO

2 4 6

e----e Na- 200. b/a- 0.75
--.x h/a- 200. b/a- 125

2 4 6

FIGURE 2. Amplitude of /A.
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.6

h/ 00 b/ 100IO----O h/a 2C0 b/a 1001

0
0 2 6

FIGURE 3. Non-dimensional horizontal force.

Na- 3.00 b/a- 100[
Na 2.00. b/a 100

’-.-....._.._._._

0

Na 200 b/a 075

FIG 4. Non-dimensiMertical force.
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25

20

1.5

_e

h/a 200 b/a 100

,P
.0.

o, ,x.,,,x

FIGURE 5. Non-dimensional moment, D,"

.75

.25

0

tOO

.75

.25

Q

IVa 3.00. b/ee 100
lVa 2.00. I:ga 1.00

IVa 2.00. b/a- 075

FIGURE 6. Non-dimensional moment, 5""
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