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ABSTRACT. Wave forces and moments due to scattering and radiation for a vertical circular
cylinder heaving in water of finite depth are derived analytically. These are derived from the total
velocity potential which can be decomposed as two velocity potentials; one due to scattering in the
presence of an incident wave on fixed structure (diffraction problem), and the other due to radiation
by the heave motion on calm water (radiation problem). For each part, the velocity potential is
derived by considering two regions, namely, interior region and exterior region. The complex matrix
equations are solved numerically to determine the unknown coefficients to compute the wave loads.

Some numerical results are presented for different depth to radius and draft to radius ratios.
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1. INTRODUCTION.

The estimation of hydrodynamic forces on an offshore structure has received considerable at-
tention from the designers. Accurate prediction of the wave loads exerted by surface waves on
rigid structures is absolutely necessary to design offshore structures. A rigid floating structure may
undergo six degrees of freedom : three translational and three rotational. Assuming a suitable
coordinate system, OXYZ, the translational motions in the x,y and z directions are referred as
surge, sway and heave respectively; and the rotational motions about x,y and z axes are referred
as roll, pitch and yaw respectively. Here z axis is considered to be vertically upwards from its still
water level. Often the structure is restrained to have fewer degrees of freedom due to the type
of mechanical connection used to fasten it to the seafloor. The problem of scattering of surface
waves by a circular dock was carried out by Miles and Gilbert [8] and then by Garrett [3]. Garrett
presented the results for the horizontal and vertical force and moment on the dock. Black, Mei and
Bray [2] have calculated the wave forces on a truncated cylinder which either extends to the free
surface or rests on the seabed. Isaacson [6] extended Garrett’s method for a submerged truncated
cylinder sitting on the sea-bed. The hydrodynamic interactions due to wave scattering between
the numbers of an array of stationary, truncated cylinders have been investigated by Williams and
Demirbilek [10].

Numerical results for the added mass and damping coefficients of semi-submerged two-dimensional
heaving cylinders in water of finite depth were presented by Bai [1]. He showed that the added mass

is bounded for all frequencies in water of finite depth. He studied the limits of the added mass and
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damping coefficients for high and low frequencies. Yeung [12] presented a set of theoretical added
masses and damping coefficients for a floating circular cylinder in finite-depth water. Sabuncu and
Calisal [9] obtained hydrodynamic coefficients for vertical cylinders at finite water depth. Williams
and Abul-Azm [11] investigated the hydrodynamic intéra.ctions between the members of an array of
floating circular cylinders which occur when one member undergoes prescribed forced oscillations.
Numerical results for the added mass of bodies heaving at low frequency in water of finite depth
were also presented by Mclver and Linton [7]. Garrison [4] presented a numerical method for the
computations to determine wave excitation forces as well as added mass and damping coefficients
for large objects in water of finite depth. He [5] presented a numerical analysis for the motion of
large free-floating bodies.

We assume that the fluid is incompressible, the fluid motion is irrotational and the waves are of
small amplitude. Here we consider the coefficients related to the motion with one degree of freedom,
namely, translational motion in the z direction, i.e. heave. In this paper we have presented the
analytical solution for the boundary value problem to evaluate the forces and the moments for a
vertical circular cylinder heaving in water of finite depth. Numerical results are also presented.

2. MATHEMATICAL FORMULATION.

We consider a surface wave of amplitude A incident on a vertical circular cylinder of radius a in
water of finite depth h. The body is assumed to be heaving with heave amplitude £ in the presence
of incident wave with angular frequency o. The wave is parallel to x-axis at the time of incidence
on the cylinder and propagating along +ve direction. The draft of the cylinder in water is b. The
geometry is depicted in Figure 1. We consider the cylindrical coordinate system (r,#8,z) with z

vertically upwards from the still water level ( SWL ), r measured radially from the 2- axis and 6

il
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FIGURE 1. Definition skecth.
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from the positive z -axis. For an incompressible and inviscid fluid, and for small amplitude wave
theory with irrotational motion, we can introduce a velocity potential ®(r,8,z,t). This ® can be

written as
&(r,0,2,t) = Re[d(r,0,2)e""].

From Bernoulli’s equation we get pressure, P(r,0, 2,t), as

0%

The force components Fy, F,, F, along z,y, z directions are given b
P sy Ly 'Yy Yy

2x 0
F o= — /M /_ , P(a,0,2,t)a cos 0dzdf
27 0
= - 0 i
F, /;=0 /_b P(a,0,z,t)asin0dzd0
2 a
F, = /M /0 P(r,8, b, t)rdrdo

respectively. Since the incident wave is parallel to x-axis at the time of incidence, the nonzero
horizontal component is F,. The moment M, arising due to the forces on the sides on the cylinder
about sea-bottom and M, arising due to the forces at the bottom of the cylinder about z-axis are

given by

" [+ hp,o 8dzdo
M _/0=o./_b(z+ )P(a,0, 2,t)a cos fdz

-/:; /o P(r,0,—b,t)r*drdo

M,

respectively. Because of the linearity of the situation, the velocity potential ¢ can be decomposed
into two velocity potentials ¢4 and ¢, where ¢y is the velocity potential due to the scattering
problem of an incident wave acting on the fixed cylinder, and ¢, due to the radiation problem of

the cylinder forced to oscillate in otherwise still water. Thus ¢ can be written as

¢ = ¢a + ¢,

where £ = Re [ ée=** ). Now by dividing the whole fluid domain into two domains, (a) interior
domain : region below the cylinder i.e. » < a, —h < 2z < —b; (b) exterior domain : region for
r > aand —h < z < 0, we write the velocity potential for the interior domain as ¢* and the velocity
potential for the exterior domain as ¢°. Then F; ,F,, M,, M, can be written as the real part of

fze7 fe7t m,e~it, mye~ respectively where f;, f., m,, m; are given by

fo = =ipoa [ [ (63(a,0,2) + €61(a,0,2)} cos Odzds )
fo = ipo [ [(16itr.0,~) + E6i(r,0,~0)}rdrdo (@)
m, = —ipoa [ :0 / l:(z + h){¢3(a,6,2) + £%(a, 0, 2)} cos 0dzdf 3)
my = ipo /;’; [ 8k, 0,-5) + E¢ir,6, b))} rdrdo @)

respectively.
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Now the boundary value problem to be solved here is

Vi = 0 (5)
o’ — g%? =0 on z=0 r>a (6)
(?—‘ﬁ =0 on z=-h (M
9 = —icf on z=-b 0<r<a ©)

0z
?f = 0 on r=a —-b<2z<0. (9)

or

The boundary condition (8) can be separated into two conditions by writing as
%— =0 on z=-b 0<r<a (10)
9. _ —ig on z=-b 0<r<a (11)
0z

Now we consider this problem by separating it into two problems, diffraction problem and radiation
problem. The diffraction problem will give us the exciting force and from the radiation problem we
will get the radiated force in terms of added mass and damping coeflicients.
3. DIFFRACTION PROBLEM.

In this case the velocity potential satisfies the governing equation (5) and the boundary condi-

tions (6), (7), (9), and (10). Also scattered potential ¢s ( where ¢4 = ¢; +¢s) must satisfy the

radiation condition :
. 0ds .
rllg]o \/;{E_ —idods} =0
where )¢ is the wavenumber and ¢; is the incident wave velocity potential. We solve this boundary

value problem by constructing the representation of ¢4 in the interior domain ( under the cylinder

) and the exterior domain ( r > a ) in the following section. Let us assume a product solution
¢a(r,0,2) = Z(z)R(r) cosmb
m
m=0,1,2,... . Now we present solutions for the interior region and exterior region.

3.1 Interior and exterior solutions.

Using the method of separation of variables, a physically acceptable general solution for the

interior region can be constructed as follows :

# = Z-:O[Pmo Z - mgllz::r; cos kn(z + h)] cosmb (12)

valid for —h < z < —b and r < a; where py, (n = 0,1,2,....,m = 0,1,2,....) are arbitrary con-
stants. Here k, = {%,n = 1,2, ... are the eigen values and ,,(k,7) is the modified Bessel function
of first kind and order m. It is to be noted here in obtaining this expression for ¢} that we have
discarded the terms involving (£)™,In(Z), because of their singular nature near the origin. It will

be convenient later if we define

Pmo m m(kn )
11;(7 Z) + "z——:l Pons——F7— ]m(k"a) cos kn (Z + h)

such that at r = a , it becomes a half-range Fourier cosine series expansion
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Cula,2) = B4 3 pucosku(z+ h) (13)
n=1

defined in —h < 2z < —b.

Here p,.n ’s are the Fourier coefficients and these coefficients are obtained from

-5
Pmn = 'h_g—b -/:-h C:"((I.,Z) cos k"(Z + h)dz (14)
n=0,1,2,.... with ko = 0. To obtain the exterior solution, the boundary conditions (6), (7), (9)
and (11) are to be satisfied. The incident wave potential ¢ can be written as

gA cosh Ao(z + k) gitos
o cosh Agh

gAcosh do(z + h)
o cosh Agh

i

2 €mt’ Jm(AO7 ) cos ml

m=0

in which €o = 1,6, = 2,(m > 1) and )¢ is the wavenumber. Here o and ) are related by the
dispersion relation 02 = gAg tanh Agh and J,,(Aor) is the Bessel function of first kind and order m.
Because of the presence of an object we need to consider the scattering of waves. Therefore the

appropriate ¢% satisfying the radiation condition can be constructed from ¢$ and is given by

2\ (cosh Ag(z + k) Wy
21 cosh A\gh @y, (Aar)

m=0
cosAj(z + k) Km(NiT) g9
+ E;q"" cos \h Kn(Mja) o

]——emi cos mf

where g,.; ’s are arbitrary constants. Here H{!)(\or) is the Hankel function of first kind of order m

and K, (A;r) is the modified Bessel function of second kind and order m. Also ); satisfies the relation

o = —g); tan A\;h

J =1,2,3,... This equation has infinite number of roots corresponding to j=1,2,......... It is to be
noted here that we have used the symbol A; not to confuse with the symbol kn(= %) used to

represent the eigen values for the interior solution. Thus the velocity potential is given by

Z 94, 1'"[{Jm(/\or)+qmoH(‘)(/\or)}M

m=0 cosh /\oh
had Kn(Ajr)cosAj(z+ h
+3 ¢ Imig (,\ a; cos(/\ = )] cos md. (15)

1=1
The set of functions {cosh Ao(z+ &), cos A;(z+h)},j=1,2, ..... forms an orthogonal set defined in
the interval —h < z < 0 due to the relation 02 = glgtanh Agh = —gA; tan A;h. Thus the orthonor-

mal set can be constructed provided

Zx(2) = N;o% cosh Ag(z + h) (16)
Zy,(2) = N,\:% cos Aj(z + h) (17)

where
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1 sinh 2Xoh (18)
Noo = 500+ =555 ]

1 sm2z\,h (19)
N, =gl t =5t

Thus with these definitions (15) can be written as

e HPOor) | Z0y(2)
, 0, = B [{Jm " mOT () y :
#3(r,0,z2) 'gl [{Jm(Xor) +¢ OH(I)(/\oa) } Zx,(0)

+f: g K1) 20,(2),

Kon(Aa) 23, (0) (20)
where B,, = 9”46,,.:"". This is valid for —~A < 2 < 0,7 > a.
For convenience let us define
H{ )(A r), 2, (z)
Culry2) = {Im(Xor) + g —m 270 ) S
or) + ¢ OH(‘)(AOG) Zx (0)
had K,.(\; r) Zy, (z)
+ m
J; ’K,,.(/\ a) Zy, (0)
Then we have
3(r,0,2) = Z B (. (r, 2) cosmé.
m=0
Alsoweget at r = a
Zx(2) 25,(2)
6 (8,2) = Im(R08) 2222+ g . 21
()= O 2G5+ 2w 72y e

This equation can easily be recognized as the expansion of (¢,(a, z) in the orthonormal series defined
in —h < z < 0. Therefore the unknown coefficients are obtained as follows :
Multiplying (21) by —AJ-Q,] =0,1,2,.... and integrating with respect to z from —h to 0 , we obtain

( using the orthogonal property )

%/-oh Zro(2)Co (@, 2)dz = ZmB0) F Gmo /° %G,

T Z,(0)
1 . _ i ZA:‘(‘)
-’I~/—0h ZA;(Z)(vvl(a'z)dz - Z/\J(O) -h h dz.

- z
In view of the orthonormality of the set {Z,(2), Zx;(2)} in —h < z < 0, [, -—““,.-(z—)dz =1 and
z3 (=
2 —’-E-ldz =1, we obtain

wmo = 220 [° 7,650,912 — Tl

Zy,;
ami = 29 [ 7, ()¢5 (0, 2)ds
where j =1, 2, ..........
3.2 Determination of the unknown coefficients.
To preserve the continuity of the two solutions at the imaginary interface r = a, it is required
to satisfy

(v‘n(a z) = C;.(av z)) (22)

o G
B lr=a =, lr=a (23)
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for —h < z < —b. Also body surface con(liltiqu, namely, %”?I,m =0, i.e.
a €

or "t T 0
is to be satisfied. Using the gradient condition (23) valid in —h < z < —b , we have
mMpPmo ad knl k )
iy mn m 5 ko h
2 T EP T (kay kD)

, HY' (oa), Zy(2)
= Bm A J," A + @m L °
[Po{ I (o) + ¢ 01-],(,3)(/\00) Z,,(0)

2 MK (Ma) Zy,(2)
+XMW1QQa)&A®]
in —h < z < —b. Equation (24) yields

HY (Moa) | Z3a(2)
HP (Aoa) ~ Z(0)
had K, (Xa) Zy,(2)

2 i T d) Za(0)

i=1

Ao{J5(X08) + o

in —b < z < 0. Equations (25) and(26) can be rewritten in compact form as follows :

MPm
BmK:mOZ,\o(z) = BfnZ‘lyrx;HmJZA,(z)+ p 0

+ E PmnK:mn cos kn(Z + h)

n=1

in-h<z<-b

oo
BmK:mOZ,\o (z) = Bm qujuij,\j (z)
=0
in-6<2<0.

where

Xoad, (Aoa)
Z,(0)
knall (kna)
Im(kna)
 20aHY (Moa)
H(20a)230(0)
MaK,,()ja)
T Km(X0)Z,(0)
Now from the functional matching (22), equation (14) yields

Kmo =
Krn
HmO

Hums =

2_ [ B ka(z + h)d
Pmn = ﬁ—_b/;h (@, 2) €05 k(2 + h)dz

= m Jm(Aoa)
= h_b Z»,(0) Z,\O(Z)coslc (z + h)dz
+ Jz_(:) Zz:"(JO) ZA, (Z) coskn(z + h)dz]

n=0,1,2,...... If we define

157

(26)

(27)

(28)

(29)
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_ -4 Z.(z) cosk,(z + h)
Lur =52 b/ Z.(0) dz

where 7 takes the value )}, then (29) can be rewritten as

Pmn = 2Bm['-]m(/\0a)£nAo + z qmjﬁnz\]]' (30)
j=0
Now simplifying we get
1 -b -1 nn(z+ h)
Lo, =0z )/_h N,,? cosh Ao(z + k) cos P> dz
_ (=1)*(h = b)Agsinh Ag(h — b)
T {(h = b)2Xe% 4 n272} cosh Aoh
n=0,1,2,... and
1 -6 -1 nr(z + h)
n; T . i h _—
Loy, (h—b)Z,\j(O)./-h N,,? cos Aj(z + h)cos P dz
_ 1 sin((h — b)A; + nx) n sin((h — b)A; — n1r)]
2(h — b) cos A\jh i+ 5 i — 2%

(=1)"(h — b)A;sin A;(h — D)
{(h = 0)2A% — n2x2} cos Ajh

n=0,1,2,....and j = 1,2,..... Equations (27) and (28) are defined in two domains. The unknowns

gmn '8 can be determined provided we multiply by Z—'h(fl and integrate with respect to z over the

region of validity. This yields

o A

BoKomo =4 ZxZ- 232, _ BmzquHmJ A, mpmo / Z,dz

—h h 7=0

+ Z,coskn(z + h)dz
3 P /
- kad 0 7y, Z,

BmlCmo/OM—dz = B,,.Zq,,.,?‘lm, 277 g,

- h = h

Adding these two equations we get

&, h—b
BuKmobrer = Bm Y GmiHmibr;r + mpmo'ﬁ.'zf(o)cm
=0

had h—0
+ Z PunKomn —h_Z‘r(O)[*wr (31)

n=1

where 8y, is Kronecker delta. Inserting the expression of pm,, equation (31) can be written as

’Cmo&\of - m(AOa)

oo h— o
= Z[Hmjaz\jr + —h(‘)ZT(O){m['O'rCOz\,' + 2 Z Kmn['n-rﬁm\,'}]qmj

=0 n=1

Z (0){m£o,\°£of +2 E K:annAo uf}

n=1

E Djrmj = Amr (32)

=0

where D;, and A, ’s are given by
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h-=1b had
Djr = Hrrlj‘SA,r + TZT(O){nICOT[:O,\, +2 E K:mnﬁuf‘cnz\,'}
h-0

h

n=1

Zr (0){m£01£0Ao +2 2 K:mnl:nrcm\q }°

n=1

Apr = ’Cmo&\or - Jm(/\o(l)

Equation (32) is a complex matrix equation. The unknowns are the coefficients g,,; ’s. The infinite
matrix D should be truncated at certain term to solve (32) numerically. Commercially available
matrix solution routines can be used to obtain the solution of the modified equation. Once these
coefficients are known the diffraction problem is completely known.

4. RADIATION PROBLEM.

In this case the boundary value problem is

Vi, = 0
ga¢' —0%, = 0 at 2z=0
dz

3, B

9, = 0 at z2=-h

99, = —t0 on r<a and z=-b

0z

6:' =0 at r=a and -—-0<2z<0
”

and the radiation condition
lim V(5 —ideg) = 0
where Ao is the wavenumber. We assume that ¢, takes the form
o
¢:(r,0,2) = > m(r,z) cosmb.
m=0
Now we obtain the interior solution and exterior solution.
4.1 Interior and exterior solutions.
To obtain the interior solution for ¢,, we write ¢i = Y2°_o ¥}, (7, z) cos m8. Expanding —ic in
Fourier cosine series, we can write —ig = Y.00_; an, cosmf where a,,’s are the Fourier coefficients.

Then we have

. 2 .
Vi = T = 0 (33)
‘rjal;" =0 at z=-h (34)
aalz;” = am on z=-b C o (3)

where V? is 2-D Laplacian in r and z. Decomposing 1}, into homogeneous and nonhomogeneous

part we write
Y = U, + ¥,
where }, and ¢}, satisfy the equations (33) and (34). The boundary condition (35) can be

decomposed as

W,
dz

=0 on z=-b
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and
oy,
Jz

For homogeneous part, by method of seperation of variables we get

= a, on z=-bh

amO Qyn m(knr)
'/’:n = ™4+ —————=cosk,(z+h
L= el ) 2; T (kna) ( )

where a,n,, ’s are constants and k, = %

Vi, = Aor? + Bor(z + h) + Co(z + h)?

. To obtain particular solution, we assume

where Ag, By, and Cj are constants to be determined from the given conditions. Applying boundary

conditions, we get By = 0, Ap = 7‘,‘]_“1,—), and from the governing equation we get 249 + 4Cp = 0.

Thus Ag = -2C, = Hence the particular solution is

—Sm _
2(h-b)"
2

Vi (112) = g+ B =

Hence we get

s amO amn m k 1")
P, = +'§ T (k) cosk,(z+ h) + 2(h b)[(z+ h)? —
At r = a we have
¥ (a,2) = +nz=;a,,mcosk W(z+h) + 2(h )[(z+h)2——]

(36)

Multiplying both sides of this equation by ;%; cosk.(z + k) and then integrating both sides from

—h to —b (and using the orthogonal property of the functions cos k,(z + h)), we get an expression

for apy, in the following form

2 i i
Q. = _j/-h . (a, z) cos kn(z + h)dz — I,y
where
I, = ——‘fl'—/'b[( +hy =D
* = oo tat 2/
- “_'"[(h"b)z_a_z]
T k=) 2
o am(h—b) a .,
and
I, = = b)./ [(z+h) ]cosk(z+h)dz

2(=1)"an(h = b)

For exterior region, the boundary value problem is

V23pe(r,z) — w(rz) = 0
at/" 2,.€e — -
95, aa¢m =0 at 2=0
Vo _ -
% = 0 at z=-h
oy,

ar

=0 at r=a and -b0<2<0

(37

(38)

(39)
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where V2 is 2-D Laplacian in » and z. For large argument H{!) and K,, satisfy the radiation

m

condition. Applying boundary conditions we arrive at an expression

€ (r _ﬂmoH.(;})(’\O") ﬂmJKm()”)
0= 00 ) +Z KnOhga) )

where Z),(z) and N, take the forms defined in (16), (17), (18) and (19). j =0,1,2,..... . Now at

r = a , we have

1l"m(a 2) Zﬂmjzl\j(z)'

=0
Multiplying both sides of this equation by i\lh(—z) and then integrating both sides from —h to 0 (and
using the orthogonal property of the functions Z),(z)), we get an expression for B,,; in the following

form

1 r0
ﬂmj = ;;/ ¢:n(ay Z)Z,\j(Z)dZ
—h
7=0,1,2,....
4.2 Determination of the unknown cefficients.

Matching conditions are

¢fn(a,z) = 9% (a, 2), (40)
MW, _ 9
——lr:a = 37' lr=a. (41)
for —h < z < —b. Also body surface condition, namely, %’;ﬂ,:a =0,ie.
=0 (42)

is to be satisfied. From the equation (37) and condition (40)
2 b,
Qpn = m/_h Yi.(a,z) coskn(z + h)dz — I,
9 b
= _b/ ¥ (a,z) cos kn(z + h)dz — Iy

= / 3 BuniZa, €05 kn(z + h)dz — I,

3=0
= 2 Zﬂmij\,' - Inp (43)
7=0
where
1
Lo,\j = 'hT ,\,dz
L, = =l ! Zy; cos ka(2 + h)dz.
Also
1 —b
Loy, = N Z), €08 kn(z + h)dz
1
N2 rh=b
=3 fb A cosh Aou cos k,udu

(=1)*Ny# (h — b)Aosinh Ao(h — b)
(h —B)7N2 + ntn?

(44)

and
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1 —b
Lu, = h_—l_)/_/. 2y, cos ky(z + h)dz

»\,2 h=b
= 7 / cos Aju cos k,udu

—bJo
(—1)"N;5(h —b)A;sin Aj(h —b)
(h— b)2AZ — n2n2 (45)

n=0,1,2,...,and j =1,2,....

Now from the gradient condition (41) and body surface condition (42), we have

mamo

Gmo + = Z amn mn COS k"(Z + h) + Eﬂm,gm,Z,\, (2)
=0
for —h<z< b, (46)
Zﬂmjgmjz,\,(z) =0 fOY -b<2<0 (47)
J=0
where
2
Gm = - Ima
’ 2(h — b)
G = _ knal,, (kna)
ma m(kﬂa)
XoaHD (Aoa)
Gmo = T oM
Hm (Aoa)
G AaK, (Ana)
mn K,,.(/\,,a) —

Now multiplying the equations (46) and (47) by é,‘fj , {=0,1,2... and integrating in the regions
of validity and adding them we get

Mo, h
(Gmo + O)Lo,\, Z amnG,,an,\‘ + z h bﬂm,gm"&'\"\‘

n=1

Now substituting the values of ay, we get a system of equations

> Eiyfmj = X (48)
where 3=0 .
Ey; = —mLoxLox; + ———gm,ts,\,x, +2 Z GunLnx Lny;
n=l
Top L
ml = GNOLO/\( m + E Ianmn ni;
n=1
1=0,1,2,....

5. EVALUATION OF THE FORCES AND MOMENTS.
The horizontal and the vertical forces on the cylinder are calculated from the pressure obtained
from Bernoulli’s equation as mentioned in (1), (2), (3) and (4). Since for the radiation due to heave

m = 0, contribution to f; and m, will be from ¢4 only. Thus

2% 0
fo. = —ipoa /h / 45(a, 8, 2) cos Bdzdf

I

= —pgaA ] / 2"[Zo,m+le,,,{J,,.(,\oa)?"Eg +E mj Z'\jg;}cosmé?]cosowdz
= 2pgaA/ / [{J,(/\oa)g'\"go) +§) 15 Z'\’E ;}] cos? 0d0dz

sinh Ah — sinh Ao(h — b) n Z sinA\jh —sin A;(h — b)]
Aoa cosh Agh = Ajacos Ajh

= 2mpga’Al{J1(Moa) + qi0}
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Thus
= . sinh Aok — sinh Ao(h — b)
D 2[{/1(Roa) + q10} Aoa cosh Agh
S sinAjh —sinAj(h - )
+j=21q1, Ajacos Ajh ]
where

D = npgd®A.
The vertical force component f, can be written as
fo=fat for
where f,q and f,, are given by’
ipo / ” g * §i(r, 6, —b)rdrdd

_ / "oy f; f’gk" cos kn(h — b)Jrdrdd

fzd

Il

— 2mipo] ”°°+z 1 [* rlo(kur)dr]

4 Io(kna)
_ (1))
= 27rtpaa. "E_:l ka]o(k,.a) ]
= 41rzpa2A[ {Jo(Aoa)Lox, +zqo,l:o,\
=0

i-o: Ijxl(ckut)l) {Jo(Xoa)Lnr, + gqojﬁm\j}]

and

for

. A f27% fa .
ipot /0:0 ./r=o &,(r, 0, —b)rdrdd

16 (h —b)? 4

ira*polao(h — b)(% I

+222 5 j}:(’,;f’j;"’{zzﬂom ~ L))

i=0

1

iLor; —
3=0

n=1
.1 1 a =
2(h — b)poé[= + =(—)? i Lo,
ma’( Il +8(h—b) +J§)‘Yo 03
4h b & (1) Li(kn l
Z( nIo(I:fa)a){Z YojLna; — ( ) }]

n=1 j=0

where yo; = ﬁ:j—T) and ap = —io. Thus we have

% - 4l {J,,(Aoa).cmo+Zqu£ox,

=0

Z (k,.lczl Illgknl)z){Jo(Aoa)Cm\o + iq"ic""i 1

n=1 j=0
+Xo(h —b) A 3 +J¥o7o,Lo,\J
LAh=b & (1) (kna) , =" )
’; nIo k a) {‘;701LW\1 }]

Now we compute the moment on the side of the body about sea-bottom

a 2 4 2 o (_1)n

]
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(49)

(50)
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my, = —ipoa /" /0 (z+ h)¢5(a,0, z) cos 0dzd0
= 27rpgaA/ (z+ h)[J,(,\Oa)Z (0) + Z 0 Z\ E;i
J1(Xo@) + q10 , Aohsinh /\oh + cosh A\g(h — b)
cosh Agh (Aoa)?
cosh Agh + Ag(h — b) sinh Ag(h — b)}
(Aoa)?
qij cosAjh —cosAj(h — )
+ { )2
i3 cos Ajh (Aja)
/\ hsin Ajh — A;(h — b)sin Aj(h — b)}]
(Aja)?

= 2mpga®Al

Hence we have
m, J1(Xoa) + qio ; Aoh sinh Aol + cosh Ag(h — b)
Da = A cosiagh 1 (Noa)?
cosh Agh + Ag(h — b) sinh Ag(h — b)
- (Aoa)?
Q1 cos)\,-h—cosz\j(h—b)
+3 A )

i=1
+,\jhsm Ajh — /\ZE\’.IG-)-zb) sin A (h — b) }- (51)
J

Moment m; at the bottom of the body about z-axis can be as

}

my = Mpq + My,
where myy and my, are given by
. 27 a i 2
zpa/o=o/0 &y(r, 0, —b)r*drdd

. 2w awp'nozm 0o ~ m(k )
zPo/(; /OmZ::o[ 5 (a) +'§1pmn008kn(h b)I (% )]r cos mOdrdo

Mbd

3[P;‘0 — __(=1)"pon
n=1 (kna)Io(kna)

2mipoa

{(kne)? 1 (ko) — knalo(kna) + [  Io(w)du)]

R > (kna)™
= 21rzpaa3[-6— + > m{knah(kna) = Io(kna) + E% m}]

and

2x a , .
My = ipo / / £4i(r,0,~b)r?drdo

= 2mpa'§/[ +Z 1);:([(;:{:))(1‘:"” + 2(ha b){(h b)? ——}]rzdr

n=1
23720 BojLoa; — Iop
) Bao(h — b)

= (- l)"(2zj_oﬂ01 nA; = np) (kna)?
¥ & rnalan(h — i) (neli(kaa) = Dokua) + &m”

= 2mpoid®(h — b){[—

1 a

= 4mwa’pgro(h — b)ta,nh/\gh{[l8 60(h b Ty- Z‘yo,Lg,\J

(- n(x J-o Yo; L n); g‘;'il),;) (k,.a)”‘
+nz—:l (kna)? Io(na) & {knaly(kna) — Io(kna) +,§,“_(2k+ 1)22,‘(“)2}]

where 7; = ao—f,:'{T). Thus we get
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my = (-1 N
D_ = 41[ {JD(AOG)L:D,\O + gqo:co,\]} + "z_:l (k,,a)‘lo(k ){Jo()\oa)ﬂn,\o + J-ZquJ ni;
kna) — To(k 5> (k)™ }]+ 4Ao(h — b) tanh A wéL
X{kuall( na) 0( ,,_(l + Z (2k + 1 2Zk(k|)2 0 0 A 18
1 1 Lox 4+ Z( 1) "(E,_o"/o.r nA; — éﬁil)‘;')
60 1—0 o n=1 (k a)’]o(k a)
e k
X (ks (kna) — Tkn) + 3 =2

2 @+ D2y
6. DETERMINATION OF THE HEAVE AMPLITUDE AND INCIDENT WAVE AMPLITUDE
RATION.

From the equation of heave motion we get

%
oS - z 4R
Mo = Fo+ Fi+ Py

where M is the mass of displaced fluid, F; is the radiated force, F7 is the exciting force in z-direction
and Fj, is the hydrostatic force. Thus we have

#e__ 0% g

computed from hydrostatic force. Now the equation of motion in complex form becomes

(M + p)(=io)*€ + (—io)é + k€ = fua
This yields

£= fzd
k=0 M+ p+i2)

Since the radiated force F, can be decomposed into components in phase with acceleration and the
velocity of the cylinder in the following way

; 0% I3
— —tot) _ )
Fr—RC[f,.C ]— (”atg +Vat)
we can write f, = azf(p +3%). Thus we have
v -;z; =c
where
c’l

a 00
P o= gl Z‘roJ‘LoA,
JAhob e (- T (kag) &2 (=
,g nlg(k,a) {E%’ A
and S = ma?(h — b)p. Thus we get

= nir? 1
£ _ <
A= T hotanb Aok {6+ (5 = B)r] (53)
where
s Ju
<=3
7. NUMERICAL RESULTS

The complex matrix equation (32) is to be solved in order to determine the unknown coeffi-
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cients ¢,,; for m = 0 and m = 1. To compute the horizontal exciting force, f;4, we need to solve the
equation (32) for m = 1 and the vertical exciting force, f.4, is evaluated using the solution of this
equation when m = 0. This infinite order system is made finite to solve it numerically by writing

as Np
Z Dj‘r‘]mj = -Amf (54)

=0

where Dj, and A,,, s are given by

h—b =
Djf = Hmja)qf + TZT(O){m['O"‘CO’\; +2 Z K:"‘"‘C'"L"’\)}

n=1

h—b &
-Amf = K:,"ots,\o,- - JO(AOa)_h-—?f(O){mﬁofﬁvo +2 E K:mnﬁn‘r‘cn/\g}
r=0,1,..,Nyand j =0,1,...,N,. =1

The complex matrix equation (48) is truncated as following

Np
> %0 = Xt (55)

3=0
where &; and Xy ’s are given by

B A Nn
glj = mgojé.’\ﬂ\l + 2 Z GOnLnA, Lﬂz\,

n=1
Nn
Xot = gooLox, + Y, ZnpGonLna,
n=1
where

a?

=51

)

nin?
l=0,1,..,N,and j =0,1,...,N,.

Thus D and £ are square matrices of order (N, + 1) and Ay,, A;, and Xy are vectors of length
(Np + 1) These systems of equations are solved by using a complex matrix inversion subroutine
available in IMSL at TUNS cyber system. We select N, = 8 and N, = 12 which are seemed to
be good enough for the convergence of the solutions. Also we take Ni = 20. Once go; , q1; and
Yo;'s are known, we can compute the wave loads using the expressions (53), (49), (50),(51) and (52)
by truncating the infinite series for the indices j, n, and k at N,, N,, and Nj respectively. The
heave amplitude and the incident wave amplitude ratios are depicted in Fig. 2 as function of Aga.
Non-dimensional x-component of the horizontal force is depicted in Fig. 3. Fig. 4 presents the
non-dimensional vertical force. The non-dimensional moment acting on the side of the cylinder is
shown in Fig. 5. Fig. 6 depicts the non-dimensional moment acting at the bottom of the cylinder.
Different depth to radius ratios considered here are 2.00 and 3.00 with a combination of draft to
radius ratios 0.75, 1.00, and 1.25.

8. CONCLUSIONS.

The wave loads for a vertical circular cylinder heaving in finite depth water in the presence
of an incident wave have been computed in this paper. Analytical solutions for the total velocity
potential is obtained by dividing the whole boundary value problem into two problems, namely,

diffraction problem of an incident wave acting on the fixed cylinder and radiation problem of the
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cylinder forced to oscillate in otherwise still water. Mathematical solutions for the boundary value
problems are obtained in two physical regions, namely, interior region and exterior region. The
exciting force components are obtained by solving the diffraction problem and the added mass and
damping coefficients are obtained by solving the radiation problem. Then heave response induced by

wave excitation is determined from the equation of motion of the floating cylinder. Using Bernoulli’s
equation, pressure is computed which is used to compute the wave loads. Results for different depth

to radius and draft to radius ratios are presented in various figures.
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