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ABSTRACT. This present paper is concerned with set functions related to {0, 1} two valued measures .
These set functions are either outer measures or have many of the same characteristics. We investigate their
properties and look at relations among them.We note in particular their association with the semi-
separation of lattices.

To be more specific, we define three set functions u", ', and p related to pel(L) the {0, 1} two
valued set functions defined on the algebra generated by the lattice of sets L st p is a finitely additive
monotone set function for which pu(@)=0.We note relations among them and properties they possess.In
particular necessary and sufficient conditions are given for the semi-separation of lattices in terms of
equality of set functions over a lattice of subsets.

Finally the notion of I-lattice is defined , we look at some properties of these with certain other side
conditions assume, and end with an application involving semi-separation and I-lattices.
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1) INTRODUCTION

In this paper we consider set functions that are related to a measure p, namely, p', 0", p* and also
some associated premeasures.We will investigate some of their properties and look at relations among
them, and note in particular their association with semi-separation.

To be more precise let X be an abstract set and L a lattice of sets containing X and @. Then for
Hel(L), the two valued {0, 1} finitely additive non-trivial measures defined on A(L) the algebra generated
by the lattice L, we define i, and note that it is a finitely subadditive "outer measure". (See section 2 for
notations and terminology, sections 3 for definitions of W', u".) We also prove that a) If L is regular
S(n)=S(u").b) Su'={E | XoE and either EoL or EDL where pu(L)=1 for LeL} where Sp' are p'-
measurable sets.c) Lu={LeL | u(L)=pn'(L)} is a lattice. d) If pq, p2el(L) and p1<p2 (L) then
Lus2oLpg.e) Su'nL=Lu.

We also define p" for pel(c*, L) and prove that it is a countably sub-additive outer measure.We then
prove that the collection of measurable sets Su'={E | XoE st EDnLj n=1, 2, ..., p(Lp)=1all n Lpel
or EDNLp n=1, 2, ..., p(Lp)=1 all n Lpel}.

Then we prove the following relations hold among p' and p"; a) usp"<p’ (L) p"sp=p' (L") .b) If
pel(o*, L) and L cg then p"=p' on L'.¢c) If pel(c*, L) and u=p"=p’ on L then pelR(o, L) .d)
uel$(L) for pel(o*, L) iff w'=p" (L").e) Finally after defining fi another finitely subadditive measure
with pel(L) (see section 4) we have the following. If LpDL then L| semi-separates L iff p'=fi on L)
for pelR(L2).
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In the fourth and final section we define I-lattices. If me[l(o, L) (see sections four and two for
definitions) then there exists a pelR(o, L) st <y (L) holds, and we prove in particular the following.a)
If L is an I-lattice as well as a delta lattice and I(o*, L)=IR(0, L) then L is complemented.b) If Ly, L7 are
lattices such that LooLy L a delta lattice, and for every pelR(o, L1) u*=f (L2) then L1 semi-
separates L2 .
2)BASIC NOTATION AND TERMINOLOGY

In this section we introduce notation and terminology that will be used throughout the paper.We also
introduce background material for the readers convenience and references to further background
material.Our notation is consistent with Alexandrov [1], Frolik [4], Grassi[5], and Szeto |7].

Let X be an abstract set, and L a lattice of subsets of X st X, @eL.A delta lattice is one that is closed
under countable intersections and the delta lattice generated by L is denoted by d(L).In addition L is
complement generated iff for every element LeL L=nLp' where the Lpel, n=1, 2, ..., and the prime
will denote complement throughout.A tau lattice is one that is closed under arbitrary intersections , and the
tau lattice generated by L is denoted by L .A(L) will denote the algebra generated by the lattice L.o(L)
denotes the o—algebra generated by L.

Let L1, L2 be two lattices such that LooLy, L} semi-separates (ss) Ly if for LieLy, L2elp, and
L1NL2=0 then there exists LieL} st Lj~2L2 and Ly Lj=@.

Let I(L) denote the set of non-trivial two valued {0, 1} finitely additive measures on the algebra
generated by L , and let [(o*, L) denote those elements of I(L) that are sigma-smooth on L , i.e. {Lp)eL
, Lnd@ and pel(o*, L) then limp(Lp)=0. I(o, L) denotes those elements if I(L) that are sigma-smooth
on A(L) , i.e if {Ap}eA(L), Apd@ and pel(o, L) then limpu(Ap)=0.This is equivalent to countable
additivity of g on A(L) .IR(L) will stand for the measures on A(L) that are L-regular , i.e. peIR(L) ,
u(A)=supp(L), LeL , ADL and AeA(L).This is equivalent to i being L-regular just on L"IR(o, L) will
denote those measures that sigma-smooth and L-regular on A(L).The obvious relations hold I(L)2I(c*,
L)olI(o, L)2IR(o, L) and I(L)2IR(L).The support of a measure S(p), pel(L) is defined as
S()=n{LeL I u(L)=1)}.

A lattice is said to be disjunctive if for xeX, LeL, xe L then there exists LeL st xe Land LAL=@.L
is said to be regular if for xeX, LeL, xe¢ L then there exists L1, L2eL st xeL1', L2'2L and
L1'NL2'=@.L is normal if for L1, L2eL and L1NL2=@, there exists L3, L4el st L3'pL1, L4'DL3’
and L3'NL4'=@.L is lindelof if for {Lg )€l a€A an arbitriary index set and "L =@ a€A then there
exists a contable subindexing such that N"Lg;=@i=1, 2, ..., .L is countably compact if for any {Lp)eL
and NLp=@ n=1, 2, ..., there exists a finite subindexing such that "\Lp;=@ i=1, 2, ..., N.

Note. For p, p2el(L) we write pi<up (L) if pi(L)sp2(L) for all LeL.

By a premeasure is meant a set function m defined on L st a) t.L— {0, 1}, = non trivial and
7(3)=0.b) n(ANB)=nt(A)n(B) A, BeL.c) nt is monotonic.The set of all such premeasures is denoted by
[T(L).By T(c, L) we mean those ne[I(L) st t(An)=1 all n implies that NAp=@ n=1, 2, ..., and Apel.

We note some measure equivalence of topologicial properties.

1) L is disjunctive iff for all xeX, uxeIR(o, L) where i is the point measure, i.e. px(A)=1 if xeA,
Ux(A)=0 x¢ A AeA(L).

2) L is regular iff u<py (L) p, p1el(L) implies S(u)=S(u1).

3) L is normal iff pel(L), u1, u2eIR(L), u<ug (L), and u<u) (L) implies that py=p2.

4) L is countably compact iff pel(L) implies that pel(c*, L).

5) L is lindelof iff ne[1(c, L) implies S(n)#@.Where S(m)=n{LeLl n(L)=1}.

The following facts will be used in this paper.There exists a one to one correspondence between prime
L-filters and elements of I(L), and a one to one correspondence between L-ultrafilters and elements of
IR(L).This correspondence is set up by letting puel(L) and H={ LeL | p(L)=1}.Then H is a prime L-filter
and conversely if H is a prime L-filter there exists a measure pel(L) associated with H st u(L)=1, iff LeH
Also if pelR(L) then H is an L-ultrafilter and conversely if H is an L-ultrafilter then there exists a
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HEIR(L) such that pu(L) =1 iff LeH.In addition there exists a one to one correspondence between TT(L)
and all L filters F given by ne>F an L filter iff n(L)=1 for LeF, F an L filter .

DEFINITION 2.1._ Let pel(L) then for E st X2E p'(E)=inf p(L") and the inf is taken over all
Lel and L'DE .

DEFINITION 2.2. Let pel(L). then uelW(L) if u(L)=1 LeL implies that there exists a Lel st
L2 L and p'(L)=1.

DEFINITION 2.3. uel$(L) if for {Ap}eL Apd , and MAp=AeL then limu(A,)=p(A).Note.
I(o*, L)2I$(L).

DEFINITION 2.4. Let pel(o*, L) and for E st X2E define u"(E)=inf Zu(Li'") where the inf is
over all ULj', i=1, 2, ..., LieL , and UL{'2E .

Next we consider various sets of measures defined on the algebra generated by a lattice L. For example
I(L) . I(o*, L), IR(L) or IR(o, L).Denote such sets by 1.Also consider the collection of sets H(L) where
H(L)={H(L) I LeL}, H(L)={ pel i u(L)=1}.Then the following hold the . a) H(ANB)=H(A)NH(B) for
A, Bel.b) H(AUB)=H(A)UH(B) A, BeL
¢) H(A")=H(A) for AeL.d) If ADB then H(A)2H(B) A, BeL.e) If L is disjunctive (if necessary) then
H(A)2H(B) implies ADB, A, BeL.f) The collection H(L) is a lattice and H(A(L))=A(H(L)).

We will assume that in discussing H(L) for convenience, that L is disjunctive, although it will be clear
that this assumption is not always needed.

If pel then define a measure on A(H(L)) fiel(H(L)) by i (H(A))=p(A) for AeA(L). Conversely if
fLel(H(L)) define a measure on pel by w(A)=0(H(A)) H(A)eA(H(L)). Then the following hold.

THEOREM 2.1. If L is disjunctive (if necessary) then there exists a one to one correspondence
between the sets I and' I(A(L)) given by pe> i .Further pel is o—smooth or L-regular iff i el(H(L)) is
o—smooth or H(L) regular respectively.

If I=IR(L) we let H(L)=W(L).
If I=IR(o, L) we let H(L)=W(o, L).

We define p* for pel(o, L) such that if XoE u*(E)=ianu(Ai), AieA(L) , UADE i=1, 2, ..., . As
is well known P ¥is an outer measure, the u* measurable sets form a G—algebra containing (L) and the
restriction of ™ to A(L) agrees with .

Further related material can be found in Camacho [2], Eid |3}, and Huerta |6] .
3) DEFINITIONS OF ', u" AND THEIR BASIC PROPERTIES

In this section we examine two set functions p", p' that are related to a measure pel(L) or pel(c*, L)
.First we look at at p" which is genuine countably subadditive outer measure and is defined for all
pel(o*, L).We also define p1' which is finitely subadditive "outer measure" defined for pel(L).We then
investigate some of the properties of these set functions and relationships that hold for them.We finally
consider conditions for one lattice to semi-separate another in terms of (' and fi another related set
function.

We first have the following theorem involving 1" and p'.

THEOREM 3.1. a) Let pel(o*, L), u" is an outer measure on X. b)Let Sp" denote the u"
measurable sets where pel(c*, L), then Su"={E, X2E | ENLp st u(Lp)=1 all n, or E'2NLy where
for all n (Lp)=1 Lpel}. ¢) For pel(L), p' is a finitely subadditive "outer measure”. d) Let Sp' denote
the | measurable sets where pel(L) , then Su'={E, X2E | and either EoL or E'Qf. where p(f..):l L,
I:eL}. e) If L is a regular lattice , then S()=S({t"), where S(i') is the support of the set function ',
S(u)=N{LeLl p'(L)=1).

We will only prove parts b and e since the other parts follow readily or are similiar in spirit.

Proof . b)Let EeSp" then pu"(A)=p"(ANE)+U"(ANE') for all A st X2A .In particuliar let A=X
then 1=p"(E)+u"(E") and either p"(E)=1 and p"(E)=0 or p"(E")=1 and p"(E)=0.Assume pu"(E)=0 then
L"(E)=infZu(Lp"), ULR'2E , n=1, 2, ..., and LpeL.Thus p(Lp")=0 or u(Lp)=1 all n and
E'DNLp.Similiarly if u"(E')=0 then EoNLp and p(Lp)=1 all n, n=1, 2, ..., o,
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Proof, e) Since u<p' on L then S(u)2S(U'). Suppose that S(u)=S(u').Let xeS(p) and xe& S(u').Then
there exists a LeL st p'(L)=1, xe L, and pu(L)=0.Since L is regular there exists L1, L2€L st xeL1',
L2'oL and L1'nL2'=@.u(L2")=p'(L2")=1, LjuL2=X, pu(L2)=0 therefore p(L1)=p'(L1)=1 and
x& L1.Thus xe S(u), a contradiction. S()=S(u").

DEFINITION 3.1. Let Lu={LeLI p(L)=p'(L)=1}

THEOREM 3.2, If uy, u2el(L) and if pj<p2 (L) then Lpobug,

PROOF. Let L1eLpy then p(L)=p1'(Lp). If py'(L1)=p1(L1)=1 then p2(L1)=1 and since
M2<p2"on L up'(L1)=1 and u2(L1)=p2'(L1) and LieLlu2.Now suppose pi(L1)=p1'(L1)=0
u2(L1)=0 and p2'(L1)=1.Then pz‘(L1)=infp2(f,')=l where L'oL1.But since pn1<p2 (L) then p2<p|
on L' and O=infu (L") =u1'(L1)> infu2(L")=p2'(L1)=1 a contradiction. Thus p2'(L1)=0 and
H2(L1)=p2"(L1)=0.0f p1'(LP)=p1(L1)=0 and p2(L1)=1 then u2'(L1)=1, but p'2p2" (L'), a
contradiction.Thus p2(L1)=p2'(L1)=0.This implies then that Lu2olpi.

THEOREM 3.3. Let pel(L), then Sp'nL=Lp.

Proof. Let LeSpu'mL then p'(E)=p'(LNE)+u'(ENL’) for all E st XDE.In particuliar for E=X
1=p'(L)+p'(L).If p'(L)=1 then p'(L)=0. and since p'>p (L) p(L)=0 and p(L)=p'(L)=0. If p'(L)=1
then p'(L")=0 which implies that g(L")=0 since p=p' on (L") or p(L)=1, and p(L)=p'(L)=1 .Thus in
both cases LeLp and LuoSp'nL.

Conversely let LeLp , Ly is contained in L.Need to prove that Su'>Lu. For LeLy and LoL,
assume that u(l:)=() for all such L .In particular it holds for L=L or W(L)=0.But since Lelp
p'(L)=0.u'(L)=inf(L1")=0 for L]'2L or there exists a L1eL st p(L1)=0 or p(L1)=1, L'2L] thus
LeSu'If p(L)=1 LoL and LeSu' . Thus Su'nL=Ly.

COROLLARY 3.1. Lu is a lattice.

PROOF. Since by theorem 3.3 Su'nL=Ly, Sy, L are lattices and the intersection of two lattices
is a lattice the result follows.

THEOREM 3.4. Let pel(o*, L).Then p<p"<p' (L) and p"<p=p’ (L").

PROOF. It is clear that p"<p=p'(L") and that p"<p'everywhere.Thus we must just show that
p<p" (L).Assume not then there exists LeL st p(L)=1 and p"(L)=0.Thus p"(L)=infZu(Li")=0 and thus
there exists ULi'DL i=1, 2, ..., st LieL and p(Li)=0 all i or p(Lj)=1 all i.Then L'2NLjand
LN(NLj)=@.Since p(L)=1 and p(Lj)=1 all i, then p(LNLj)=1.We can assume without loss of generality
that {LNL;){ @, then since pel(o*, L), O=limu(LALj)=1, a contradiction.Thus p(L)=0 and p<p"<p’
(L).

THEOREM 3.5. If uel(o*, L) and if u=p'=p" on L then pelR(o, L).

PROOF. Let pu(L)=1 LeL then p(L)=0 and p'(L)=0.Thus there exists a LeL st L'oL and
u(I:'):O or u(f_,)=l and L' L.Therefore pelR(o, L).

THEOREM 3.6. Let pel(o*, L) then p'=p" (L") iff pel$(L).

PROOF. Let pel(o*, L) and pw'=p" (L').Assume that pe I$(L) and let NAplA, A, Apel such
that p(Ap)=1 all n and u(A)=0.Then u(A")=1 p(A")=p'(A")=u"(A")=1 by hypothesis.But
L' (AN=U"(UAR)=Z(A[)=0 since L(An")=0 all n, a contradiction. pnel$(L).

Conversely let uel$(L) and assume that p"<p=p' on L'.Let p"(L")=0 then there exists UL{'DL' L,
LieL i=1, 2, ..., st u(Lj")=0 all i or u(Lj)=1 all i, and LoNL;, also L=N(LUL)

.We can assume without loss of generality that {LUL{}{L then p(L)=infu(LULj)=infl=1 since
pel$(L).Then p(L")=p'(L")=0 thus p'=pu" on L'.
We now look at another class of measures we defined previously , IW(L).

THEOREM 3.7. If uel$(L) and if the lattice L is cg the peIW(L).

PROOF. Suppose that LeL and p'(L")=p(L)=1.Then from theorem 3.6 peI$(L) implies p'=p"
on L', hence u"(L")=1.Since L is cg then L'=UL; LjeL i=1, 2, ..., and 1=p"(UL;{)SZp"(Lj), since u"
is an outer measure.Thus w"(Lj)=1 for some i.Then because p'2pu" (L) w'(Lj)=p"(Lj) L'2Lj.Thus
uelW(L). '
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THEOREM 3.8. IW(L)DIR(L) and if L is normal IR(L)=IW(L).

PROOF. Let puelR(L) and let u(L)=1 L'eL".Then since uelR(L) there exists aLeL st L'DL~ st
u(i):] and since u'2u (L) u‘(f_)zl and thus pelW(L).

Assume now that L is normal and let pelW(L) and p(L")=1 LeL .Then since pelW(L) u'(I:):l and
L'oL, LeL and LA L=0.Since L is normal there exists L1, L2eL st L]'DL L2'D L and
L1'nL2'=@.u(L2")=1 since LZ'QI: and u'(i)=l implies that p'(L2")=p(L2")=1, thus u(L2)=0, and
since L1wL2=X, then p(L1)=1 and L'oL} implies that uelR(L).

REMARK. By theorems 3.7 and 3.8 if L is cg and normal then pel$(L) implies pelR(o, L).

THEOREM 3.9. If L is cg and pel(o*, L') implies pelR(L).

PROOF. Result is well known see references Camacho [2], Eid |3], Grassi[S], and Szeto [7].

THEOREM 3.10. If pel(o*, L') and L is c¢g then p=p'=p" on L'.

PROOF. Since pel(o*, L') then pel(L) and p=p' on L'.Assume that p(L")=p'(L")=1 and since
Liscg L'=ULj L, LieL i=1, 2, ..., " Then p"(LY<Zp"(Lj) and assume that p"(L;)=0 all i, then p(Lj)=0
all i, and p(Li)=1 all i.Since L=nLj i=1, 2, ..., then LNL'=LN(NL{)=@.We can assume then,
without loss of generality that {L'nLi'}{@ .Since pe(c*, L), limp(L'nLi)=0. But p(L")=1
u(Li)=1, a contradiction. Thus pu"(Lj)=1 for some i.Since L'DL; by the monotone nature of u", p"(L")=1
and p=p'=p" on L".

We now introduce a definition preparatory to presenting our final theorem in this section, relating semi-
separation of lattices.

DEFINITION 3.2. Let pel(L) and XoE.We define fi(E)=infu(L) LoE and LelL.

Note that u~ is a finite subadditive "outer measure”.

THEOREM 3.11. Let Ljand L be lattices of substs of X st L2oL1.If L semi-separates L) then
fi=p' on L2 for pelR(L1).Conversely if for every uelR(L1) fi=p'on L3, then L| semi-separates L).

PROOF, Let L] semi-separate L2, and look at p'(L2)=infu(L1") L1'2L2 , Liel| and L2elL).
Then since L1NL2=@ and L| semi-separates L2 there exists LieLy st LinL1=0 and LioL2, or
L1'2L1.Thus infu(L1)2infu(L1) L12L2 L1'2L2 or p'=p~.Now look at fi (L2)=infu(L1) L12L2
LieLy, LoeL2.Assume [i(L2)=0 then there exists L12L2 Liely st p(L1)=0 or p(L1)=1.Since
pelR(L1) there exists L3eL st L1'2L3 p(L3)=1 or p(L3)=0 L3'DL12L2 or fi(L2)=p'(L2)=0. Thus
=i on L2.

Conversely let {i=y' on L2 for all uelR(Lj) and assume that L] does not semi-separate L2.Then
there exists L1eL LoeL2 st LiAL2=@ andL AL {#@ for all L1eL st L12L2.Look at H=(Ljl
L1eL1 and L12L2}.Then H has the finite intersection property, and thus there exists a filter and thus an
ultrafilter and its associated measure HeIR(L1) st u(]: 1)=1 L1~ €H and since L]ﬁf_. 120, p(L1)=1.Now
look at p'(L2). Since L1NL2=@ then L]1'DL2 and since u(L1)=1 p(L1)=0 and thus p'(L2)=0.Also
fL(L2)=infu(L4) L42L2 and L4el|.Then since every such L4 is a member of H and thus
fL(L2)=inf(L4)=1, a contradiction. L1 semi-separates L2.

4) PROPERTIES OF I-LATTICES AND THEIR RELATIONSHIP TO SEMI-SEPARATION

In this section we define the notion of an I-lattice and look at necessary and sufficent conditions for
an I-lattice to exist such as countable compactness , disjunctiveness and lindelof property to hold.We
finally investigate the semi-separation of two lattices L1, L2 with Ly an I-lattice in terms of outer
measures associated with pel(o*, L1).

DEFINITION 4.1. L is an I-lattice iff for every nell(o, L) there exists a pelR(o, L) st i<y (L).

DEFINITION 4.2. L is replete iff for every uelR(c, L) S(u)z9.

The results of theorem 4.1 are well known see references Szeto [7] . We prove part d in a more straight
forward manner than the above reference shows.

THEOREM 4.1. a)If L is an I-lattice , and if L is replete then L is lindelof. b)If L is a countably
compact lattice then L is I-lattice. ¢) If L is a disjunctive lattice and if L is lindelof then L is an I-lattice. d)
Suppose L is disjunctive, then IR(g, L), TW(o, L) is lindelof iff L is an I-lattice.
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PROOF. Of part d)Assume that L is disjunctive. First W(o, L) is lindelof iff TW(o, L), thus it is
sufficent to prove that W(o, L) is lindelof.Look at nell(c, W(o, L)) then projecting down look at
nell(o, L) n(L)=r(W(o, L)) for LeL.Since L is disjunctive IR(o, L)2{ux. xeX) and if W(a, L)oo,
then Lnd@ Since L is an I-lattice there exists a HelR(o, L) st <y (L). Projecting upward fielIR(o,
W(o, L)) and 1< (W(o, L)).Since peS() . S(7)#@. Therefore W(o, L) is lindelof and thus so is
TW(o, L) .

Conversely if TW(o, L) is lindelof then so is W(o, L).Let nell(o, L), then projecting upwards
nell(o, W(o, L)) and t(W(o, L))=r(L) LeL.Since W(o. L) is lindelof S(71)#@ and there exists a
HEeS(7) st pelR(o, L) and if *(W(o, L))=n(L)=1 LeL then peW(o, L) and p(L)=1.Thus nt<p (L) and
L is an I-lattice.

THEOREM 4.2. Let L be an I-lattice, and also a delta lattice then I(o*, L)=IR(0, L) implies L is
complemented.

PROOF. Assume that L is not complemented then for some LeL L'e L.Conside F=({ LI LeL.
LoL'}, then F has the finite intersection property and associated with F is a filter mel1(L). In addition,
since L is delta , then mell(o, L) and L' is not cg (otherwise L' would belong to L, which would
contradict the hypothesis). Since L is an I-lattice there exists ueIR(o, L) st t<u (L) and since I(o*,
L)=IR(o, L) then pelR(o, L") and p(L)=1 . But since nelR(o, L), u is associated with an L -
ultrafilter and thus p(L)=1. Thus L is complemented.

We finally prove our last theorem in this section involving semi-separation, I-lattices and p*, .

THEOREM 4.3. Let L, L2 be lattices of subsets of X st LopL1, L a delta I-lattice, and for
every pelR(o, L1) px(L2)=f1(L2) LaeLy, then L} semi-separates L

PROOF. Suppose Lj did not semi-separate L2 then there exists L1eb 1, L2eL2 st LiNL2=0,
but there does not exist a Lj~eL st L1oL2 and LiAL |=@.Look at H={ L1l LieLy, L12L2) then H
has the finite intersection property and is a filter base and so can be extended to a filter.Since L] is delta,
there exists nell(o, L) associated with H .In addition since L] is an I-lattice there exists a pelR(o, L) st
n<ponlLj.

Now look at u*(L2)=fi(L2). fi(L2)=1 since p(L1)=1 all LieL st L12L2, thus p*(L2)=1.In
addition pu(L1)=p*(L1)=I since L] has non-empty intersection with H, p is associated with an L-
ultrafilter and the outer measure p*=u restricted to A(L1).Thus 1=p*(L2)<u*(L1)=u(L1) =0, a
contradiction .Therefore L] semi-separates L).

ACKNOWLEDGEMENT. I wish to thank the work and efforts of the referee's in reading this paper and
greatly enhancing its presentation.

REFERENCES

1. A.D. ALEXSANDROV(ALEKSANDROV), Additive set functions in abstract spaces, (chapter 1),
Mat. Sb. 8 (1940), 307-348. MR-315.

2. J. CAMACHO, JR., Extensions of lattice regular measures with applications, Jour, Indian Math. Soc.,
54 (1989), 233-244.

3. G.M. EID, On normal lattices and Wallman spaces, Internat. J. Math, and Math, Sci,, 13 No.l
(1990), 31-38.

4. Z.FROLIK, Prime filters with the cip, Comm. Math. Univ. Carolinae, Vol. 13 (1972), 553-575.

5. P. GRASSI, On subspaces of replete and measure replete spaces, Canad. Math. Bull. 27 (1) , (1984),
58-64.

6. C.C. HUERTA , Measure requirements on distributive lattices for Boolean algebras and topological
applications, Proc. Amer. Math. Soc. 106 (12), 1989, 307-308.

7. M.SZETO, Measure repleteness and mapping preservations, Jour. Indian Math. Soc, 43 (1979), 35-
52.



