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ABSTRACT. This paper shows that the number of even Eulerian paths equals the nulnber of

Eulerian paths when the number of arcs is at least twice the number of vertices of a digraph.
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1. INTRODUCTION AND CONVENTIONS.
This paper shows that in a digraph of order n with m arcs that satisfies rn _> 2n, the num-

ber of even Eulerian paths equals the number of odd Eulerian paths. This result generalizes

Schiitzenberger’s theorem (see [1] and [2]), which says that in a digraph of order n with rn arcs

that satisfies m _> 2n + 1, the number of even Eulerian circuits equals the number of odd Eule-

rian circuits. The proof is also perhaps more intuitive, not depending on too much terminology or

disparate graph theory results.

In this paper, a digraph is defined by a sequence of arcs, where an arc is indicated by an ordered

pair such as (a, b), and multiple arcs and loops are allowed. Those letters which appear in describing

the arcs in the sequence defining the graph are therefore considered as vertices or points. Note that

with this definition, there can be no isolated vertices. If D is a sequence of arcs, its length is denoted

by ]DI. If VD denotes the set of vertices which appear in D, then ]VD] denotes its cardinality.

Two digraphs D and D are considered to be the same, under appropriate relabeling of vertices,

when D2, as a sequence of arcs, is a permutation of the sequence of arcs which define D. We write

a sequence such as ((a,b),(c,d),(d,y)) D in the form D (a,b). (c,d). (d,f). For example, the

digraph whose diagram is

a b c
o

can be expressed as D1 (a,b). (b, c). (a,b) or D2 (a,b). (a,b). (b, c) with D1 D2 according

to our definition. Also, IO1=3 and IVDI 3.

Unlike the usual way, we define a path of D as a subsequence of a permutation of the sequence

describing the digraph D. If a path (a,b). (a2, b2) (a,,bn) is a permutation of D and has

the additional property that bl a2, b2 a3 bn-1 an, then it is an Eulerian path of D.

The added condition b, al identifies an Eulerian circuit of D. A path (a, b). (c, d) (e, f)
is said to start from a and end at f; the vertex a is the starting point and the vertex f is the end

point. If a and /are paths of D, then the sequence obtained by putting /after a is written

provided that the resulting sequence is also a path of D.
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Next, we denote by Ax D the set of all Eulerian paths of tire digraph D which start froxl le

point x. If the starting point is fixed but unimportant we write A D. Also, vhen Ax D. f we

consider as a digraph, then A c A D.

If and /3 are two paths and if there are two paths " and 3, where either or both

can be empty, such that 6 3, then o is a part of/3 and ve se the notation o

_
J to indic’ate

this fact. Hence, if an arc (a, b) is a term in a path/, we write (a, b)

_
3. By/3 is mealt tile

subsequence of/3 obtained by eliminating all terms of o one by one. Thus, if arcs in/3 or ct’tr

more than once the procedure Inay leave copies left over and the result may not be uniqtle.

notations od(a), id(a), and d(o) are defined as follows: od(a) i. the nulnber of terms in D wl,’h

start from a, id(a) is the number of terms in D which end at o, and d(a) od(a) + ,d(o) is clll,d

the degree of a. An even (odd) point is a point with even (odd) degree.
For example, if D is the digraph D (a, o). (a, d). (c, a). (b, a). (b, a) then od(a) 2, ,d(a)

od(b) 2, id(b) O, od(c) 1, ,d(c) O, od(d) O, id(d) 1, and A D ). The diagram for D
can be constructed as:

b a d

Let a be a permutation of D, and define the following functions. Let e() if is an Eulerian

path or circuit, and let e(c) 0 if c is not. Let r() be the sign of the permutation o; r(c) +
if c is a multiple of an even number of transpositions, and r(c) -1 if c is a multiple of an odd

number of transpositions. Let g(c) e(c). r(c).
What we are looking for is a natural, intuitive proof of the formula:

Z g(c) 0 ZaeA,/ g(c) for any x VD,

if IVD[ n and IDI _> 2n for all integers n _> 1.

2. DISCUSSION AND ARGUMENTS.
For convenience of notation, we define g(A D) ]-aeA.D g(c) and define g(A D) similarly.

If A D , then naturally we take g(Aa D) 0. For example, if D (a, b). (a, c). (b, a). (a, a),
with diagram

c a b

then A,D {(a,a)- (a,b)- (b,a). (a,c), (a,b). (b,a). (a,a). (o,c)}, AD AD b, g((a,o)

(a,b) (b,a)- (a,c)) 1, g(h,,D) 2, while 9(h,D) g(hD) O.

For all positive integers n, let Bn be the family of digraphs D such that

1. IDI > 2n and IYDI n,

2. id(z) + od(x) _> 3 for all x VD;
while B$ denotes the subfamily of digraphs D such that

1. IDI 2n and IYDI n,

2. id(x) + od(x) > 3 for all x YD.
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For all positive integers n, let .4, be the family of digraphs D sch that

1. IDI
_

2n and [VDI
2. For some q 6_ VD, zd(q) / od(q) or 2.

The proposition Sn is the following:
"For j 1,...,n, if D 6_ mj U Bj, then g(A D) 0."

In Lemma 3.1 we demonstrate that $1, 6’2, and $3 are true. In order to prove Sn in general we

proceed by induction on n, assuming Sn-. In computing g(A D), we seek to identify A D with a

union of suitable A D:, where lYD:] < ]YD, I. This is accomplished by identification of a length 3

path with an arc or by deleting some paths in order to maintain the relation that g(A D) 0 if

9(h O:) 0 for all i.

For instance, as a trivial example, let (a, v), (v, w), (w, b) 6_ D and (a,v). (v,w). (w,b) C_ for

all a 6_ AD. Let, when x # v and x # w, D’ (D -(a,v) (v,w) (w,b)). (a,b), and let F
be a map of A D’ to A D defined by V(c) =/3(a, b)7 where a B(a, v). (v, w). (w, b)7. Then V
is a one-to-one map and when a,/3 6_ A D,/3 is an even permutation of c if and only if F(B) is an

even permutation of F(a). Thus 9(A D’) 0 implies 9(A D) 0.

In particular we assume, based on this observation, that there are no vertices v and w of VD
for which there is a path of the type just described, when we assume S,_l.

In general, if there are digraphs D, D2 D and such injeetive maps Fi from A Di to A D
such that [,JF,(A D,) forms a partition of A D and each 9(A Di) O, then we can conclude

g(A D) 0.

As another example of an identification of the type described above, if D contains (a, b) and

(b, c) and if every c 6_ A D starts or ends with (a, b). (b, c), then take D’ D (a, b) (b, c). In
this ease it is also clear that if 9(A D’) 0, then 9(A D) 0.

In all our arguments, it is the case that if a statement is true for a digraph D, then it is also

true for the digraph obtained by reversing all ares (a, b) of D to ares (b, a).
If a digraph D contains an are (a, b) with multiplicity at least two, then trivially 9(A D) 0

since by a simple transposition of one (a, b) with another leaves D unchanged while 9(A D) changes

sign. Therefore we assume no multiple arcs.

Where needed, the truth of the proposition S,_ is assumed in the arguments to follow.

PROPOSITION 1. If there is a vertex q of D with d(q) or 2, then there are digraphs D,,
0,1,2,... such that ID, >_ IDI- 2, IVDI <_ IVDI- , and g(A D.) ]i(-1)e’g(A Di), where

ei 0 or 1.

PROOF. Suppose D contains ares (t,q), (q,h), and (h, bi), 1,2,3,.... Let D, (D-
(t,q) -(q,h) -(h, bi)) (t, bi) and ]i { 6_ A D (t,q) (q,h) (h, bi) C_ a}; then we see

that A Di has a one to one correspondence Fi as follows: Fi(a) a(t,q). (q,h). (h, bi): if

a al(t, bi)a2. Clearly g(c) (-1)e’g(F,(a)) for some fixed e, 0 or , for all c 6_ A Di. Thus

we get g(Ax D) (-1)e,g(Ax Di), when x q and x # h. If x h, or there are no such b,, then

we can switch and h, and conclude that g(A D) ](-)’g(A D,) if x # q.

If d(q) 2, and q is the starting point, then AxD {(q,h)c(t,q) c 6_ A Do} where

Do D- (q,h) -(t,q) and it is clear that 9(A D) =kg(AxDo).
If d(q) 1, then AD {(q,h) c 6_ A D0}, where Do D-(q,h), and it is also clear that

g(h D) :hg(A Do).
Also it is clear that VDi q and IDol _> Inl- 2, Iunil <_ IVD 1. Note that d(h) in D,

becomes smaller by 2 except when h is an end point, where it becomes smaller by 1. We need this

fact for the following Lemma 1.1.

LEMMA 1.1. When we assume S,_l, the following are true"

(A). If D 6_ An, then g(A D) 0.
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(B). If D 6- A,+I and there is an arc (q,b) or (h,q) in D such that d(q) 2 and d(h) 3 ()r 4,

then g(Ax D) 0 if x - q and x # b.

PROOF. (A). The digraphs D, in Proposition belong to A,-I U B,-I. Hence g(A D,) 0

because of Sn-1, and g(A D) 0.

(B). In Proposition 1, whcn (q,h), (h,b,) C_ D, if d(h) 3 or 4 in D, then d(h) in D,
or 2, except the case in which q or h is an end point. Thus D, 6- A, and g(D,) 0. Therefore

g(Ax D) (-1),g(A D,) 0 if x : q and x # h. When (h,q) C_ D, we consider (b,,h) C_ n
instead of (h, b,); then the argument is sinilar to the case of (q, h) C_ D. I-I

LEMMA 1.2. When we assume S,-l, if a digraph D 6- B, has an arc (t, h) such that an(! h

have degree 3 or 4, then g(A D) 0.

PROOF. If h, (t,t) C_ D, or (h,h) C_ D, then the statement reduces to a case of S,,_.
So we assume that h, (t,t) D, and (h,h) D. According to our assumption, situations

illustrated in the following drawings may occur:

h
h

In those diagrams we can interchange h and t, and also we can place the arrows in any way so that

AD#.
Assuming A D # , () and () or 4, we construct a digraph D 6- An+1 from D as

follows.

D (D -(t,h)). (t,t). (t,q). (q,h)
vD VD U {q}, as shown in the diagram below.

a

Let x 6_ VD, that is, x V/), and x # q. From Lemma 1.1.B, g(A D) 0 if x t h. On the

other hand, let, for x t,

fl {c, h D" (t, t). (t, q). (q, h) c_
D (D -(t,t) -(t,q) (q,h)) (t,h)

A2 { e ]x D (a,t) (t,t) (t, d) C_ }
D2 (D -(a,t) (t,t) -(t,d) (c,t) -(t,q) (q,h)). (a,d) (c,h)
A3 {a e ] b- (c, t). (t, t). (t, d) c

D3 (D -(c,t) (t,t) -(t,d) (a,t) -(t,q) (q,h)) (c,d) (a,h)
Then ], ]2, and ]3 form a partition of A/x, and we see that g(/l) +g(hD) by

identifying (t, t). (t, q).(q, h) to (t, h), we see that g(]2) -I-g(A D2) by identifying (a, t).(t, t).(t, d)
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to (ct, d) and (c,t). (t,q). (q.b) to (c,h), and we scc that 9(A3) +9(AxD3) by idcntifvi,g

(c,t). (t,t). (t,d) to (c,d) and (,,t). (t,q). (q,t,) to (a,l,).
If d(t) 3 and ((,,t) is not an arc of D, then

2 { (t,t) (t.l) }
D2 ( -(t,t) -(t,d) -(, t) -(t.q) -(q,b)). (c, 1,)

A3 { e A, #. (,t). (t,,). (t,#) }
D3 ( -(c,t) -(t,t) -(t,d) -(t,q) -(q, h)). (c,d)

and the results arc the same.

Moreover, it is clear that g(A D) g(A D). Since D2 and D3 do not contain vertices and q,

D2, D3 A,_t U B,_. Th,s g(A D2) 0 and 9(A D3) 0. Together with g(A, ) o, we get

g(AD) =0, so we get g(A D, =0for:#h. In theceh=z, wecanswitcht and h. Thus

g(A, D) 0 for all z VD, or #(A D) 0.

PROPOSITION 2. Supposc D B and A D # O. Also wc sume that n 4, and that D
does not contain any arc of multiplicity more than one, nor any vertex v such that d(v) 4 and

arc (,,, v) D. Then D contains an arc (t, h) such that # h, one of and h h degree 4 and the

other h degree 4 or 3.

PROOF. The fact that D B implies that vVD d(v) 4n. and d(v) 4 for all even points

v of D. Since A D , the number of odd points is 0 or 2. If it is 0, then d(v) 4 for all

thus our sertion is true. In thc ce of 2, say a and b are odd points, and d(a) + d(b) 6 or 8. If

d(a) + d(b) 6, then there must be c VD such that d(c) 6 and all other vertices have degree

4, while n 4 implies there is a vertex d beside a, b, and c. If d incidents only to c, then the arc

(c, d) or (d, c) h the multiplicity more than 1. So d must incident to a or b or a point of degree 4.

Thus the sertion is true, because d(d) 4 and d(a) d(b) 3.

In the ce d(a) + d(b) 8, then say d(a) 3 and d(b) 5. Since n 4, there are at let two

more vertices, say c and d, such that d(c) d(d) 4. If any vertices of degree 4 do not incident

to each other and also do not incident to a then all vertices of degree 4 must incident to b, thus

d(b) 8. This contradicts with d(b) 5. Thus some vertex of degree 4 h to be incident to the

vertex a or a vertex of degree 4. Thus our sertion is true.

LEMMA 2.1. If D B, n 4, and we sume S_, then g(A D) 0.

PROOF. From Proposition 2, D h an arc (t, h), # h, such that one of and h h degree 4

and the other h degree 3 or 4. Then by Lemma 1.2, g(A D) 0.

PROPOSITION 3. If g(A D’) 0 for all D’ B, then for all D B, g(A D) 0 when we

sume S_.
PROOF. Let D B, a VD, and a D. Considering a digraph to be a sequence of arcs,

it is true that A= a Aa D. Now let VD] n, D]- 2n r and a A= D. Define p(a) to be the

sequence of the first r terms of a, while q(a) to be the subsequence of a consisting of the next 2n

terms. Thus a p(a)q(a). Let Ap() { A= D p() p(a)} {p(a)f f Aq(a)}, where

i th d point o p(), d () A oom j < o () U. ()
or om j < , th (A ()) 0b o S_. f () A thn (A ()) 0 om
Lemmn 1.1.A. If q(a) B then g(A q(a)) 0 from our hypothesis, g(A D’) 0 if D’ B. Since

A D {p(a) A q(a)} where a runs all elements of A D, and g({p(a) A q(a)})
g(A q(a)) 0, hence g(A D) 0.

LEMMA 3.1. S, Se, and $3 are true.

PROOF. S is clearly true. If D B, then D is one of the following (with the orientation

arbitrary)"
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Clearly 9(A D) 0 in all of the above situations. From 5’1 aud Proposition 3, it is trle for B2 as

well as for A2 fi’om Lemma 1.1. Thus $2 is true.

If D E B:, then d(v) can geuerate the folloving sequences when v varies over elements of

(A) (3,3.6), (B) (3,4,5), (c) (4, 4,4). For case (A), it follows that D is one of the following digral)lm

(with the orientation arbitrary):

A simple count yields g(A D) 0 in all cases. In case (B), if there is an arc (t, h) C_ D such that

d(t) 4 and d(h) 3, then 9(A D) 0 via $2 and Lemma 1.2. Otherwise, it is the case that all

Eulerian paths end at the same path of length two or start at the same path of length two. In case

(C), 9(A D) 0 as in case (B). Therefore $3 follows, by Proposition 3 and Lemma 3.1.

To conclude, we can now claim:

THEOREM. If D is a digraph such that ]VD] n and ]D] _> 2n, then 9(A D) 0; that is, the

number of even Eulerian paths equals the number of odd Eulerian paths.

PROOF. $1, $2, and $3 are true by Lemma 3.1. For Sn, where n _> 4, we proceed by induction

on n. When we assume S,_l for n >_ 4, if D fi A,, then 9(/ D) 0 by Lemma 1.1. Also if D
by Lemma 2.1 and Proposition 3, 9(A D) 0. vI

COROLLARY. If IVD n and ID[ > 2n + 1, then 9(A(,,,b)D) 0 for n 1,2,... and for all

(a, b) C_ D, where A(,,,b)D {a A,, D" a starts with (a, b)}.
PROOF. As in the proof of Proposition 3, let p(a) (a, b) while q(a) is the next 2n terms

of c. Then g(A(,b)D) +g(Abq(a)). Since ]q(c)] > 2n and IVq(c)] _< n, from our theorem

g(A q(a)) 0. Thus g(A,,)D) 0. When all points are even points, all paths are necessarily

circuits, and this is Schiitzenberger’s theorem, l-I
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