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ABSTRACT. This paper presents a new complete orthonormal system of functions

defined on the interval [0,1] and whose supports shrink to nothlng. Thls

system related to the construction of the Cantor ternary set. We defined the

canonical map and proved the equivalence between this system and the Walsh

ystem. The generalized Cantor set with any dissection ratio is established

and the constructed system Is defined in the general case.
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I. INTRODUCTION.

We shall denote the set of positlve integers by P, the set of non-negatlve

integers by N, the set of real numbers by R, and the set of dyadlc rationals

in the unit interval [0,1} by q. In partlcular, each element of Q has the form

p/Z
n

for some p,n e N, 0 p < Zn. Each n e N has a unique dyadic expansion

2
kn E n

k nke {0,1} {1.1}
k=O

where n
k

are called the dyadic coefficients of n. Likewise ech x [0,1} has

a {unique} dyadic expansion

x Z x
k

z-(k+1) Xke {0,1} (1.2)
k=O

the finite expansion being chosen in case x belongs to the dyadic rationals q.
In terms of the dyadic expansions, the dyadic sum of two numbers x,y [0,1}
is defined by

x $ y E Yk 2
-(k+l]

[1.3)
k=O

The dyadic sum of a pair of Integers n,m e N is defined by

n (R) m nk mk 2-k (1.4)
k=O

where (n
k

,k e N) and (m
k

,k e N) are the dyadic coefficients of n and m.

Let r be the function deflned on [0, I) by
x e [0,)

r(x)
-1 x e [,1}

extended to R by periodicity of period 1. The Rademacher system (r
n

,n N) is
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defined by, rn(X) r(Zn x), x R,n N. The first three Rademacher functions

are shown In Flgure I.
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Fig. 1.

The Rademcher functions form an incomplete set of orthonormal functlons on

[0,I). The Walsh system w n N was introduced by Paley [11] in 193Z

as products of Rademacher functlons In the followlng way. If n N has dyadic

coefficients n k N then

Wn -kTO rk (1.5)

Walsh functlons belong to the class of plecewlse constant basis

functions that have been developed In the twentleth century and have played an

Important role in sclentlflc appllcatlons. The foundations of the Walsh

functlons field were made by Rademacher [IZ], Walsh [16], Flne [10], and Paley

[11]. Owlng to their sallent propertles, Walsh functions proved to be very

powerful In solvlng varlous problems such as the analysis of dynamic systems

[4-8], the deslsn of optlmal controllers [3], and the Identlflcatlon problem

of dynamlc systems [Z],[14]. The flrst elght Walsh functlons are shown in

Flgure Z.
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Fig. 2.
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for n e N and each Walsh
Notlce by deflnltlon that Wo= Wzn r

n

function Is piecewlse constant wlth flnltely many Jump dlscontlnultles on

[0,1) and takes only the values +I or -I. The Walsh system Is orthonormal on

[0,1) and possess the properties (see [13]),
w w w (1.6)
n m

Wn(X y) Wn(X Wn(Y (1.7)
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By a dyadic interval in [0,1) we shall mean an interval of the form
p p+l

I(p,n) [-- 0 p < 2
n

n p N
2
n

2
n

For each x [0,1) and n N we shall denote the dyadlc Interval of

length 2
-n

whlch contalns x by I (x) I(p,n) where 0 -< p < 2
n Is uniquely

n
determined by the relatlonshlp x I(p,n). The Walsh functions, belng a

complete orthonormal system (see [I],[16]) allows a representatlon of every

absolutely Integrable function f(x) on [0, I) In Walsh serles In the form

f(x) a w (x) where a J f(x) Wn(X) dx
n--O n n n

being the Walsh-Fourler coefflclents of f. The n-th partial sum of Walsh

series and the DIrlchlet kernel are denoted respectively by [15]
n-I n-1

Snf k=O ak wk and Dn kO wk

Flne[10], has shown that Snf(X) f(t) Dn(X $ y) dt The Dlrlchlet kernel

satlsfles D (x) 2
n

for x e I (0) [0,2-n) and zero elsewhere.
2
n n

2. THE CANTOR SET AND THE CANTOR f3JNCTION

The Cantor ternary set C formed by removing middle thirds from the

interval [0,1] can be defined as follows for each n e N, construct the

closed intervals

j 2k 2k +I
0 k < 2n (2 I)

2n/k 3
n

3
n

where k is defined by

k T. kI 31 (2.2)
I=0

k
i
belng the dyadic coefficients of k In {I. I}. Then the Cantor ternary set

of ratio I/3 or more briefly the Cantor set C Is

(R) 2n-1
C= 0 U J

n=O k=O 2n/k
The middle open Intervals removed In the above construction are defined by

2n-1
E U U E where E 6k +I 6k’+

n= 0 k=O 2n+k 2n+k 3n+l 3n+1
Arlthmetlcally, the Cantor set consists exactly of those points which can be

expanded in the ternary system without using the digit ,i.e. for every x e C

-(k+1)
x x

k
3 Xke {0,2) (2.3)

k=O

We deflne a class of closed intervals

J :0 k < 2
n n e N

For each n N, contains 2
n closed Interval each of length 3-n. The Cantor

n
set can be associated with a monotone non-decreaslng continuous function

called the Cantor Lebesgue function and defined by the followlng process.

For each closed interval I, let

Xl(t) {IIRI(X dt where xi(t)
O I 0 tI

and I represents the characteristic function and the length of the
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interval I, respectively. For each n N, let

2n-I
Fn(X) 2-n Rj ,i(x)

k=O k

Since

Rj .(x)
2 /k 0

X (t) x

J2n*k dt 3n[ X (t) dt

Jz".k
OJ Jzn/k

0

3nx 2k

x < 2k .3

xJn
2 /k

3-nx > {2k +I}.

Hence, from (2.4), Fo(x) x x e J1 [0,1] and for n P

Osk<2n

Fn(X) {
2-nl3nx 2k’+ k) x e Jzn+k

(2k+I).2-m x E2m-l/& 0 s k < 2
m-I s m s n

{2.4)

F
0{x),,J F (x)

/
F
2
(x) f

_.__/- t’-/----/-
/ F3 (x)

0 0

Flg.3.

We observe that, for each n N, the function F {x} is continuous, non-n
decreasing on [0,1],and satisfies Fn{O} O, Fn{1} 1 {see figure 3}. Indei,

Fn(X
2k+1

0 k < 2m-I 1 < =lira
2m

x E2m-l/k

It is easy to see that F(x) llm F (x), x [0, I] exists, is continuous,
nnm

monotone non-decreaslng and satisfies F{O} O, F{1} I. This function is

called the Cantor-Lebesgue function associated with the Cantor set C.

Now, we introduce the mapping C [0,1)

-(k+l)
(x) =r. Xk.2 x c (2.s)

k=O
where

{o 5= o
Xk

1 if Xk= 2,

x
k being the coefficients in the ternary expansion of x in {2.3}. The mapping

satisfies the following properties:

1- is one-to-one mapping from C/C onto [0, I) where is a countable set

contalns all x C whlch has ternary expansion termlnates in 2’s. In fact,

2k+1 neN }.C ={ Oak<2
n

3
n



AN ORTHONORMAL SYSTEM ON THE CONSTRUCTION OF THE GENERALIZED CANTOR SET 741

2k" k
and2- For each n N, 0 -< k < 2

n
( - 2n

x C/C f] J2n/k Iff (x) I k
n

2
n

where In(Y) Is the dyadic interval of length 2
-n

which contains y.

Define the Lebesgue-stleltjes measure F [a,) F() F(a) where F Is

the Cantor function. Indeed, for each 0 -< k < 2
n n N

(k__F Jn+k 2-n I
n

2
n

3. AN ORTHONORMAL SYSTEM OF FUNCTIONS

We construct a function system @ n n e N on the Interval [0,I)

In the followlng way for each x |0,1) and n N, 0 s k < 2
n+1

e
n

k kI 21 define
I=0

ko(-1) x e J

n(X { a /k (3.1)
0 otherwise

It Is obvlous that n has the constant value +1 on half of the closed

l,ntervals in n+l whlle on the other half n has constant value -1.

Indeed, n is odd function about t 1/2 (see figure 4). Consequently,

O
[ n dF O n N

o

n 13 FI F!u u U u
+1
o| l,,

-1L ’/, 2/9 3/9 6/9 7/9 e/9

FIg. 4.

THEOREM 1. The system n: n e N Is orthonormal with. respect to the

measure F l.e.

(0 nm
(3.21n m dF

n m.

PR(X)F. Let n > m z 0 and J e m+l" Slnce Pm has constant value +1 or

-I on J, and J contains an even number {namely 2
n-m

of closed intervals in

m+l on half of these intervals Pn has the constant value +1 whlle on the

other half n has constant value -I, consequently,

n dF O.

Summing over all J &+l we get J n m d O. If n m, then

Jean+ Je+
Since {J} 2

-(n+l)
V J e +1 n e N d Mn+1 contains 2

n+l
c 1osed

interval, then

1 z
d@=ln n

0
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COROLLARY 1. For each x C/C n N

n(X) (-11 n
rnO )(x)

where r n N be the Rademacher system.
n

PROOF. Let n N 0 k < 2
n+l

and x (C/C) N J2"/l/k
k

properties of the mapping we have (x) In+l( 2- n ko" Since

k x

&0n(X) (-1) 0 x J2n+l and r )(x) r ((x)) (-1) n
/k n n

then
X

n(X) (-I) n rn, g )(x) x C/C n N.

Now, we define the product system On n N by

n k=O k n N

where (n
k

,k N) are the dyadic coefficients of n.

(3.3)

From the

lf3

l-I M I-i i-I
U U U U

+1
o| |,l

-1 [ /9 2/9 3/9 6/9 ?/9 8/9

Fig. 5.

The function system satisfies the following properties:

where is the dyadic sum.I For each n,m e N, @n @m @n m

2. For each n,m N, m 2n+k, 0 < k < 2n, @m is even function with respect

to and @2n n is odd function with respect to {see figure S).

3. For each n,m N, 2
n s m < 2n+I’ @m has constant value +! on half of the

closed intervals in an+1 while on the other half @m has constant value -1,

consequently,

2
n 2n+l@m dF 0 m < n N.

In general,

j 0 n P (3.5)@n dF

4. Let n e N with dyadic coefficients n
k

k N and x C/C From

equations (3.3),{3.4), we have

nkXk <n,Cx)>Cn(X) {-!) {-1)
k=O

where
{n,(x}) Z n

k
x
k

(rood 2}
k=O
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COROLLARY 2. For each x C/C n N

@n(X) (WnO )(x) (3.6)

where w n N be the Walsh system.
n

PROOF. From equations (1.5),(3.3) and (3.4), we have

@n(X) (k(X)) ((rko )(x))
k=O k=O

(rk({(x))) Wn((x)
k=O

w )(x).
n

According to corollary 2 and the properties of the mapping , it is

obvious that
2k" k n e N {3.7}n -- )= Wn( - 0 s k < 2

n

TIREM 2. The system n’ n N is orthonormal with respect to the

measure fF i.e.

( 0

J (3.8)i j d
PROOF. First, let iJ. Since i’J i(R)J it suffices to show that

J Cm O, m N, which is clear from {3.5}. Second, in case i J,

let n,m e g 2
n

m < 2
n+1

then

Om dF dgF F{J) 2n+1. 2
-(n+l)

Jean+ Jean+
aEOREM 3. The system @n n e N Is complete, with respect to

the measure F on the Cantor set C.

PROOF. Let n,m e N 0 m < 2
n

and suppose that S is Integrable

functlon for which

O r @m dF 0 0 s m < 2
n (3.9)

Slnce each function @ 0 s m < 2
n

has only one flxed value on each Interval

-n(2k +1).3

r(k)fnn J dF J dF’ 0 -< k < 2n"
-nJH /k k .3

Then {3.9} glves,
2n-1

Y #m dPF r(k) m 0 0 s m < 2
n

n -k=O

From {3.7), we get

2k k
@m( - w)m2n

0 -< k < 2n, 0 m < 2n, n e N,

then
2n_l
r. r(k)n win(

k-- 0 0 s m < 2
n {3.10}

k=O
kNow, the determlnant wm( - )l 0 -< k < 2

n
0 m < 2

n
is of order 2

n

and does not vanlsh. Thus the numbers w k
are llnearly independent andm

,In Let
2 /k



744 R.R. RIZKALLA

it follows from (3.10) that

r (k} 0 0 -< k < Zn (3.11)
n

Suppose that {3.9) is satisfied for a11 m N and let G(x) denote the

continuous function G(x) F S dF
Uslng (3.11), getwe

0

G( _2k +I_ G( 2k--= 0 -< k < 2
n

3
n 3

n

and so G(x} is a constant on C. It follows that is equivalent to zero on the

Cantor set C. Thus the proof is completed.

Let f be an absolutely lntegrable function on the interval [0,1]. The

Fourier series of f with respect to the system #n n N is defined

f a _n where a
0
[ f(x) @n(X) fF The n-th partial sums of

by S
n=O

n n
n-1

_.Qnf _’. a,. #k n N. Notice for n P
this series will be denoted by

k=O

and x [0,1]
n-1

{Snf)(x) (j f(t),k(t)dF(t)),k (x) =J f(t)Dn(x,t)dF(t)
k=O

where n-

Dn(x,t)= k(x) k(t)
k=O

denote to the n-th Dirichlet kernel.

COROLLARY 3. Let n N x,t C/C"
n-1

(I) Dzn(X,t) I] + llx)i(t)
i=0

(t) x J for some k 0 k <II Dzn(X, t) ..n
Jn 2 /k

2 /k

PROOF. Let n N and x,t CC (I) Using (1.7), (3.6), and (3.12),

we have

2n-1 2n_1 2n-1
Dzn(X,t) @i(x) Oi(t) Wl((x) wi((t) ) . Wl((x)

I=0 I=0 I=0

n-I n-1
[l + rl((x)) rl((t)) + l(X) l(t) ).
i=0 I=0

(II) Fix k 0,1 ,2n-1 }, and let x J 2k 2k +1

2n+k 3
n 3

n

then (x) I (k.2-n). Using the properties of the mapping and the
n

Dlrlchlet kernel D2n in the Walsh case, we get

2n-1
D2n(X,t) wi((x) (t)) 2n ((t)) 2n (t)

i=O I (k.2-") J
n z /k

THEORE 4. Let f be a continuous function on CC then nf converges
2

uniformly to f

PROOF. For every x CC and n N we define

2k 2k +1(x) and n n(X) by <- x < n for some k 0 k < -2
n

n n n
3
n

3
n

where k is defined in (2.2). By the canonical map the set (CC)N [an, n
maps onto the dyadic interval In(k.2-n) and F([=n n)) 2

-n
Then the

(3.12}
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function f can be written as

f(x) 2
n [ f{x) dF{t)

n
Using corollary 3

(S2n f)(x) j f(t) O2n(X,t} dF(t) 2no f(t) (t} dF(t)
[e
n ,gnn

2nj f(t} dF
n

From {3.13} and since f is continuous, i.e V > 0 3 8 > 0

f{t} f(x} < e whenever t x < 8 x,t e [an ,n}. Therefore,

n
(S2n f)(x} f(x} 2n [ (f(t} f(x)) dF{t)

n

n
2nj If(t) f(x} dF{tl < e

n
and the proof is completed.

(3.13)

4. M CANTOR SET ITH CONSTANT DISSECTION RATIO

The constructed system in (3.1} can be descrlbe on any Cantor set

with constant dlssectlon ratlo. The generatlng intervals of the Cantor set of

general ratio p/q 0 < p < q p,q e P are deflned by

P/q [kn (q-p)n 2n.k ] O<k<2
n2 /k

2n/k 2q
n

2q
n

where t
I are determlned by the recurslve formula

1-k

A and t {q_p) n-1 )t + k (q+p)(2q)n-1

2n+k 2n-l/k
k being the dyadic coefficients of k in {I.I). It is easy to see that R2n =2

n

for each e N. Then the Cantor set Cp/q of ratlo p/q Is
2 -1

Cp/q fl O J
n=O k=O 2n+k

p/q

C/q contains the end-polnts of each closed interval The closed
P/ q 2n+k

intervals m m satisfies the following four properties:

P/q P/q P/q P/q

(l) J.+ c J .=o, (li) J.+ fl J.+ =2 +2k+s 2n+k 2 +2k 2 2k*!

(ili) a a for 0 s k < 2
n n N, and

n+l n+l
2 +k 2 /2k 2r+k 2 /2k+1

P/q

(iv) llm ma J2n+k 0
-) Ok<2

The open Intervals removed In this construction are defined by

(q_p)n+lp/q 2 p/q p/q . n+ k n+l

where I 2 .2k 2 .2k.!E U U E {2q)n+1k=0 2 +k 2n+k 2q n+

P/q

{ P/q
For each N, the class J J 0 k < 2

n
contains 2n closed

2n/k
2 -1

interval each of length q-P and F (x) 2
-n R p/q(x) where-q n

k=O ’J2n/ k
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J2n+ k

;[ (t) dt
0

P/q

J2n,k

0

2 +k

(q_p)n
+

Hence,

Fn(X) I x

2k+___I
2
m

x <
t "{q-pan

/k

(2q)n

p/q

/

2n+k
X >

(2q)n

" p/q
2 +k +l+k xe,J O-<k<2n
(q_p)n 2 +k

p/q
0 -< k < 2

m-1 m nxEEm_
2 +k

Observe by properties (I), (II), and (III) above that F is continuous and
n

p/q

non-decreaslng on [0,1]. In fact each F is linear on the lhervals Jn and
n

2 .k- p/q

constant on each component of the set [0,1]/( U J ). The Cantor function
k =0 2n+k

assoclated with the Cantor set /q is

2k+l
P/q

0 k < 2m-I m <F(x) llm F (x) x e En 2
m

n 2 +k

P < then there is a continuous strictly increasingTIOIIE S. If

function L on [0,1] such that L(/q) C.

lOOF. For each n e N, 0 k < 2n, we have
P/q

q-P where-q 3
n 2q

p
be the monotone-lncreaslng plecewlse llnearSince < 1,then 0<1. Let Ln

p/q

function, L :[0, I]--[0 I] mapping the end-polnts of J onto those of J

0 s k < 2n. Then for n>m, L and L differ only on J 0 k < 2m, In fact,
n m 2m+k

Ln L II/I I So, for each x the sequence ( L (x)> converges
m

3
m" m

defines a function x) on o,}. As {tmx)-x){= Xlm {nX)-mX){ -< L > converges uniformly to L [9]. So L Is continuous and Is clearly
m

monotone increasing. We have L([O,I]) [0, I] and

[P/q} 2
n

L j J2n+k for each n and k, 0 k <
2n+k

SO L(/q) C. We need only to show that L is one-to-one. Suppose

(x,y) c [0,1]. If either x or y lles in removed Interval it is easy to see

that L(y) > L(x). So suppose x and y are in /q then as /q is
p/q

nowhere dense there is an Interval J (x,y) for some n,k. But then
2n+k

L(y) L(x) - so L is strictly increasing and the proof Is completed.

1 P < 1,According to theorem 5, for each n N, 0 k < 2n, and ] s

n (q_p)n ,
L .k } 2k

and L } 2k +I

{2q}n 3
n {2q}n 3

n
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Now, the constructed system @ in (3.1) can be generallzed for any Cantor

set Cp/q In the following way for each x [0,1), p,q P and n N,
n

0 k < 2n+l, l.e. k k 2 define
i=O

k
0

P/q

(-1) x

n(X) 2

0 otherwise

The product system @ Is defined as in (3.4), it is orthonormal and complete

system with respect to the measure F on the general Cantor set Cp/. Ust
theorem 5 and the mappt L, the results obtained in sect ton 3 for the

ternary Cantor set C c be easily generalized for the case C
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