THE CAUCHY PROBLEM OF THE ONE DIMENSIONAL SCHRÖDINGER EQUATION WITH NON-LOCAL POTENTIALS

I.E. KOUGIAS

Department of Mathematics University of Patras, Patras, Greece

(Received July 16, 1992)

ABSTRACT. For a large class of operators A, not necessarily local, it is proved that the Cauchy problem of the Schrödinger equation:

$$- \frac{d^2 f(z)}{dz^2} + Af(z) = s^2 f(z), \quad f(0) = 0, \quad f'(0) = 1$$

possesses a unique solution in the Hilbert $(H_2(\Delta))$ and Banach $(H_1(\Delta))$ spaces of analytic functions in the unit disc $\Delta = \{z: |z| < 1\}$.

KEY WORDS AND PHRASES. Cauchy problem, Schrödinger equation, Hardy-Lebesque spaces.

1991 AMS SUBJECT CLASSIFICATION CODES. 34A20, 34A15, 47B37.

1. INTRODUCTION.

Let $C[0,\pi]$ be the Banach space of continuous functions on the interval $[0,\pi]$. The norm of an element f(x) of that space is defined by

$$||f|| = \sup_{x \in [0,\pi]} |f(x)|.$$

Assume that A is a linear bounded operator on $[0,\pi]$ not necessarily local, i.e., A need not be the multiplication operator by a continuous function a(x). It may, for instance, be an integral operator on $C[0,\pi]$. It is known that the Schrödinger equation:

$$-\frac{d^2f}{dx^2} + Af(x) = s^2 f(x)$$
(1.1)

possesses a unique solution in $C[0,\pi]$ satisfying the initial conditions:

$$f(0) = 0, \qquad f'(0) = 1$$
 (1.2)

provided that $|s| > c_o ||A||, c_o = \max_{\substack{o < \alpha < 1}} \frac{1 - \cos\alpha\pi}{\alpha} [1].$

Also it is known [1] that the solution is bounded for every s in the region:

$$G = \{s: |s| \ge \alpha c_0 \parallel A \parallel, \quad \alpha > 1\}$$

The purpose of this paper is to prove similar results for the initial valued problem [(1.1),(1.2)] in the Hardy spaces $H_2(\Delta)$ and $H_1(\Delta)$. These are the spaces of analytic functions: $f(z) = \sum_{n=1}^{\infty} \alpha_n z^{n-1}$ in the unit disk $\Delta = \{z: |z| < 1\}$, which satisfy respectively the conditions: $\sum_{n=1}^{\infty} |\alpha_n|^2 < \infty \text{ and } \sum_{n=1}^{\infty} |\alpha_n| < \infty \text{ or equivalently the conditions:}$

$$\sup_{o < r < 1} \int_{0}^{2\pi} |f(re^{i\vartheta})|^2 d\vartheta < \infty \text{ and } \sup_{o < r < 1} \int_{0}^{2\pi} |f(re^{i\vartheta})| d\vartheta < \infty,$$

for $re^{i\vartheta} = z$.

2. REDUCTION OF THE SCHRÖDINGER EQUATION.

$$-\frac{d^2f(z)}{dz^2} + Af(z) = s^2 f(z)$$
(2.1)

in $H_2(\Delta)(H_1(\Delta))$ to an abstract operator form. (We follow the method prescribed in [2] and [3]).

Let *H* denote an abstract separable Hilbert space with an orthogonal basis $\{e_n\}_1^\infty$ and let *V* be the unilateral shift operator on *H*, i.e.,

$$V: Ve_n = e_{n+1}, n = 1, 2, \cdots, V^*: V^*e_n = e_{n-1}, n \neq 1, V^*e_1 = 0$$

is the adjoint operator of V.

Every function $f(z) = \sum_{n=1}^{\infty} \alpha_n z^{n-1}$ in $H_2(\Delta)$ can be represented as follows: $f(z) = (f_z, f)$, where (\cdot, \cdot) means the scalar product in H and $f_z = \sum_{n=1}^{\infty} z^{n-1} e_n$, |z| < 1 are the eigenelements of V^* .

The space H_1 is the Banach space which consists of those elements $f = \sum_{n=1}^{\infty} \overline{\alpha}_n e_n$, in H, (overbar means complex conjugate), that satisfy the condition $\sum_{n=1}^{\infty} |(f, e_n)| < \infty$. This space under the isomorphism $f(z) = (f_z, f)$ is isomorphic to $H_1(\Delta)$.

The norm in H_1 is denoted by: $||f||_1 = \sum_{n=1}^{\infty} |(f,e_n)|$. To any open set or dense linear manifold E in $H(H_1)$ corresponds an open set or dense linear manifold \overline{E} in $H_2(\Delta)(H_1(\Delta))$. Suppose that A is a mapping in $H_2(\Delta)(H_1(\Delta))$ and \overline{A} is a mapping in $H(H_1)$. Then if the relation $Af(z) = (f_z, \overline{A}f)$ holds $\forall f \in E$, we call \overline{A} the abstract form of A. For example if A is the differential operator $\frac{d^2}{dz^2}$ in $H_2(\Delta)$, i.e., $Af(z) = \frac{d^2 f(z)}{dz^2}$, then $\overline{A} = (C_o V^*)^2 = C_o(C_o + I)V^{*2}$, where C_o is the diagonal operator $C_o e_n = ne_n, n = 1, 2, \cdots$ (see for details in [2] and [3]).

Every bounded operator on $H_2(\Delta)(H)$ is defined on $H_1(\Delta)(H_1)$ and maps, in general, elements of $H_1(\Delta)(H_1)$ into $H_2(\Delta)(H)$.

The following properties follow easily:

(i) H_1 is invariant under the operators V, V^* and $||V||_1 = ||V^*||_1 = 1$, where $||A||_1$ means the norm of an operator on H_1 .

(ii) H_1 is invariant under every bounded diagonal operator $De_n = d_n e_n, n = 1, 2, \cdots$ on H and $||D||_1 = ||D|| = \sup_{n \in I} |d_n|$.

(iii) For every element $f(z) = \sum_{n=1}^{\infty} \alpha_n z^{n-1}$ in $H_1(\Delta)$ the uniform limit of the sequence $\sum_{i=1}^{n} \overline{\alpha}_i V^{i-1}$, i.e., $\lim_{n\to\infty} \sum_{i=1}^{n} \overline{\alpha}_i V^{i-1}$ exists and defines a bounded operator $f^*(V) = \overline{\alpha}_1 + \overline{\alpha}_2 V + \overline{\alpha}_3 V^2 + \cdots$ on H_1 . Moreover $||f^*(V)||_1 = ||f||_1$.

(iv) The null space of V^{*k} in *H* belongs to H_1 .

Now we write equation (2.1) in the form:

$$\frac{d^2f}{dz^2} + s^2 f(z) - Af(z) = 0.$$
(2.2)

The abstract form of equation (2.2) is the following:

$$((C_o V^*)^2 - \overline{A}_1)f = 0 \tag{2.3}$$

$$(V^{*2} - B_1 \overline{A}_1)f = 0, (2.4)$$

or

where $\overline{A}_1 = \overline{A} - s^2 I$ and B_1 is the diagonal operator on $H: B_1 e_n = \frac{1}{n(n+1)} e_n$, $n = 1, 2, \cdots$.

This means that equation (2.2) has a solution in $H_2(\Delta)(H_1(\Delta))$ satisfying the conditions f(0) = 0, f'(0) = 1 iff equation (2.4) has a solution in $H(H_1)$ satisfying the conditions:

$$(f, e_1) = 0,$$
 $(f, e_2) = 1.$ (2.5)

Note that H_1 is imbedded in H in the sense that f in H_1 implies f in H and $||f|| \le ||f||_1$. SOLUTION OF THE CAUCHY PROBLEM [(2.4), (2.5)] IN H AND H₁.

THEOREM 1. The equation $(V^* - B_1 \overline{A}_1)f = 0$ has at least one solution in *H* which satisfies the condition $(f, e_1) = 0$.

PROOF. Set f = Vg, then $(Vg, \epsilon_1) = (g, V^*e_1) = (g, 0) = 0$. Also $(V^{*2} - B_1\overline{A}_1)(Vg) = 0$ implies $V^*(I - VB_1\overline{A}_1V)g = 0$.

Thus
$$(I - VB_1\overline{A}_1V)g = ce_1$$
.

3.

Now since B_1 is compact, V and \overline{A} bounded the operator $VB_1\overline{A}_1V$ is compact and the Fredholm alternative implies that either: $(I - VB_1\overline{A}_1V)g = 0$ for $g \neq 0$ or $(I - VB_1\overline{A}_1V)^{-1}$ exists and it is bounded.

In the first case $g \neq 0$ is a solution of equation (2.4). In the second case we have $g = c(I - VB_1\overline{A}_1V)^{-1}e_1 \neq 0$ for $c \neq 0$. \Box

Theorem 1 implies that the Schrödinger equation (2.1) has at least one solution in $H_2(\Delta)$ which satisfies the condition f(0) = 0, for every real or complex s, and every bounded linear operator A on $H_2(\Delta)$.

THEOREM 2. If $\|\bar{A}_1\| < 2$, then equation (2.4) has a unique solution in *H* which satisfies the conditions (2.5).

PROOF. Set $f = e_2 + V^2 g$, then obviously $(f, e_1) = 0$ and $(f, e_2) = 1$. Also from equation (2.4) we get: $-B_1 \overline{A}_1 e_2 + Ig - B_1 \overline{A}_1 V^2 g = 0$ which implies that

$$(I - B_1 \overline{A}_1 V^2)g = B_1 \overline{A}_1 e_2. \tag{3.1}$$

(i) If $\overline{A}_1 e_2 = 0$, then e_2 is the unique solution in *H* which satisfies the initial conditions, since $(I - B_1 \overline{A}_1 V^2)g = 0$ implies that g = 0.

(ii) If $\overline{A}_1 e_2 \neq 0$, then from equation (3.1) since $||B_1|| = \frac{1}{2}$ and $||\overline{A}|| < 2$, we easily get that $||B_1\overline{A}_1V^2|| < 1$. Hence the inverse of $(I - B_1\overline{A}_1V^2)$ exists and it is bounded on *H*. Therefore $g = (I - B_1\overline{A}_1V^2)^{-1}B_1\overline{A}_1e_2$, $g \neq 0$ and g is uniquely defined. \Box

There has been defined, in [3], a class of bounded operators on $H(H_1)$ which have the socalled "k-invariant property." Abstract forms of local potentials of the form: Af(z) = a(z)f(z) are included in this class.

The importance of such operators is due to the fact that if \overline{A}_1 is k-invariant on the space H_2 , then the operator $A_2 = I - V^2 B_1 \overline{A}_1$ leaves invariant the space H_1 and when restricted on it, has a bounded inverse (see [3], Theorem 3.2).

DEFINITION. A bounded operator \overline{A} on H is called k-invariant iff its adjoint \overline{A}^* has the property: $\overline{A}^* e_i \in M_{i+k-1}$, where M_{i+k-1} is the subspace spanned by $\{e_1, e_2, \cdots e_{i+k-1}\}$, $i = 1, 2, \cdots$.

Such operators are the diagonal operators in the basis $\{e_n\}_{1}^{\infty}$, analytic functions of the shift V, algebraic combinations of the above and polynomial functions of V^* of degree less than k.

In accordance with the above definition a bounded operator A on $H_2(\Delta)(H_1(\Delta)))$ is called 2invariant iff its adjoint A^* has the property: $A^*z^i \in \{1, z, z^2, \dots, z^i\}$, where $\{1, z, z^2, \dots, z^i\}$, is the subspace of $H_2(\Delta)(H_1(\Delta))$ spanned by the elements $1, z, z^2, \dots, z^i$. For example the operator:

$$A = Af(z) = af(z) + zf(z) + \frac{1}{2}(f(z) - f(0))$$

is a 2-invariant self adjoint operator on $H_2(\Delta)$.

THEOREM 3. The Cauchy problem:

$$-\frac{d^2f(z)}{dz^2} + Af(z) = s^2 f(z)$$
(3.2)

$$f(0) = 0, \quad f'(0) = 1,$$
 (3.3)

where A is any 2-invariant operator on $H_1(\Delta)$, has a unique solution in $H_1(\Delta)$ for every $s \in \mathbb{C}$.

This solution is bounded for every z in the unit disc.

PROOF. The abstract form of (3.2) is:

$$(V^{*2} - B_1 \overline{A} + s^2 B_1)f = 0 \tag{3.4}$$

and the conditions (3.3) are equivalent to

$$(f, e_1) = 0,$$
 $(f, e_2) = 1.$ (3.5)

Setting $f = e_2 + V^2 g$ which obviously satisfies the initial conditions (3.5) we get:

$$(I - B_1(\overline{A} - s^2)V^2)g = B_1(\overline{A} - s^2)e_2.$$
(3.6)

The operators V, V^* and B_1 leave the space H_1 invariant. The same holds for the operator $(I - B_1(\overline{A} - s^2)V^2)$, which restricted on H_1 has a bounded inverse (see [3], Theorem 3.2). Also $B_1(\overline{A} - s^2)e_2 = h \in H_1$ and the unique solution of (3.6) is given by: $g = (I - B_1(\overline{A} - s^2)V^2)^{-1}h$.

For every $f(z) = \sum_{n=1}^{\infty} \alpha_n z^{n-1} \in H_1(\Delta)$ we have: $|f(z)| \leq \sum_{n=1}^{\infty} |\alpha_n| = ||f(z)||_{H_1(\Delta)} < \infty, |z| \leq 1$. This shows that the solution predicted by the theorem is bounded for $|z| \leq 1$. \Box

ACKNOWLEDGEMENT. I wish to express my deep appreciation to Professor E.K. Ifantis, for his great help and supervision on the completion of this work.

REFERENCES

- 1. NASR, A.H., A study of one-dimensional Schrödinger equation with nonlocal potential, <u>Siam J. Math. Anal. 15</u> (3) (1984), 459-467.
- IFANTIS, E.K., An existence theory for functional differential equations and functional differential systems, J. Diff. Eq. 29 (1978), 86-104.
- IFANTIS, E.K., Analytic solutions for nonlinear differential equations, <u>J. Math. Anal.</u> <u>Appl. 124</u> (1987), 339-380.