
Internat. J. Math. & Math. Sci.
VOL. 16 NO. 3 (1993) 617-620

617

THE FREE A-RING IS A GRADED A-RING

ROGER D. WARREN

Department of Mathematics
Madisonville Community College

Madisonville, KY 42431

(Received January 16, 1992)

ABSTRACT. In this paper, we define the free A-ring over K on a set X, categorically, and

parallel some results from the theory of free algebras. We show that the free A-ring over K on X,

denoted by AK{X}, is graded.
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DEFINITION 1. Let A be a K-algebra. An A-ring over/t" is a K-algebra B together with a

K-algebra homomorphism .fB:AB. An A-ring homomorphism between A-rings B and C is a K-

algebra homomorphism g:BC such that gYB )’C"
DEFINITION 2. Let X be a set. The free A-ring, Ah.{X}, over K on X is an A-ring

containing X such that for every A-ring B and function .f:X---,B there is a unique A-ring

homomorphism .f,: AK{X}-,B that extends/’. AK{X is the free object on x in the category of A-

rings over K.

Just from the definitions of the terms involved it is easy to see that AK{X A*KK < X >, the

coproduct of A and K < X >, the free K-algebra on X. Also AK{X,Y (Ah.{X})K{Y}. To see

this recall that K < X, Y > K < X > K < Y > so that AK{X,Y
_
A*K K < X,Y >

_
A*K

(K < X > *K K < Y >
_
(A*K K < X > )*K K < Y >

_
(AK{X})K{Y}. Also using a categorical

argument with just the definitions of the terms involved it is easy to prove that

AK{X,y AK{X}*A AK{Y}.
In Cartan and Eilenberg [8, p. 146] the term free A-ring on a set X is used. The terminology may
be some what misleading since this notion of a free A-ring is not the free object on x in the

category of A-rings. The free A-ring discussed there is essentially A (R) ZZ < X >.

Let us call an A-ring that is graded as a K-algebra a graded A-ring in case A is homogeneous of

degree 0, i.e., the image of A is contained in the homogeneous component of degree 0.

We define the tensor A-ring of an A-bimodule M over K to be the A-bimodule

TA(M)= AM(M(R)AM)... ((R)nM) TA(M is made into a ring in the same fashion

as the tensor algebra. TA(M is a K-algebra since A is a K-algebra and M is an A-bimodule over

K. A is a sub-K-algebra of TA(M and thus TA(M is canonically an A-ring. Also M is a sub-A-

bimodule. TA(M is by construction a graded A-ring. As before we adopt the notation A (R) 0M
and Mn (R)nM. As in the case of the tensor algebra, TA(M satisfies the following universal

mapping property:
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THEOREM 1. For all A-rings B and A-bimodule homomorphism I:M--,B, there is a unique

A-ring homomorphism f,:TA(M)B that extends f.
PROOF. Since B is an A-ring we have the canonical K-algebra homomorphism from A to B.

Denote this map by fo" Denote f by fl" Let fn: (R)nAMB be that unique A-bimodule

homomorphism such that fn(ml (R)m2(R) (R)mn)= fl(ml)f(m2)...fn(mn). The .fn’S induce an A-

bimodule homomorphism f,:TA(M)-B by/,(Ezp) Efl0(zp). Note that fr + s(ZrWs) fr(Zr)fs(Ws)
since if z Em:,i (R) (R) ir and w Em’_.,j (R) (R) ms then

fr + s(ZrWs) fr +s (iE, jmil (R) "mir (R)m’l (R) (R)m’s)

iE, jfl(mil )’’" fl(mir)fl(ml)’’’fl(ms)
fr(Eimil (R) (R)mir)fs(m. (R) (R)m’s)

We now show that f, is a ring homomorphism, f,(pE Zp q Wq)

f,( z.w,)-- f,(ZoWo4-(ZoWo4-(ZoW 4- ZlWo)4- ...)p, qt,

fo(ZoWo) 4- f l(zoWl 4- zlWo) 4-

fo(Zo)fo(Wo) 4- fo(Zo)fl(Wl) 4- fl(zl)fo(Wo) 4-

(fo(Zo) + .)(fo(Wo) + fl(Wl + .)

Y*IA fo so f, is an A-ring homomorphism and /,IM fl" If g:TA(M)-B is another A-ring

homomorphism such that gl M fl then since m (R) (R)rnn E Mn is mlm2. .rnn, rniE M then

g(m1(R) (R)mn)=g(ml...mn)=g(rnl)...g(mn)= fl(ml)...fl(mn)= fn(ml(R) (R)ran) so that

since fn is unique with respect to this property we have g Mn fn for each n 0,1, ., but this

means g f,.
The free K-algebra is an example of a graded K-algebra. The following theorem shows that

the free A-ring is a graded A-ring.

THEOREM 2. AK{X is the tensor A-ring TA(Fx), where FX is the free A-bimodule over K

on X.

PROOF. Consider the following diagram:

X. "i Ft X’--’TA FX)

where i,j are inclusion maps, B is an arbitrary A-ring and 3 is any function from X to B. Since

B is an A-ring then B is an A-bimodule over K so there is a unique A-bimodule homomorphism

f:Fx-B that extends O. By the universal property of TA(Fx) given by Theorem 1 we have a

unique A-ring homomorphism f,:TA(Fx)-,B that extends /. Thus I, extends 3 and if

g:TA(Fx)-,B is any other A-ring homomorphism that extends 3 then g lFX is an A-bimodule

homomorphism from FX to B that extends 0 so that g IFX f. But/, is unique with respect to

extending I so we must have g =/,.
Because of this theorem AK{X could also be called the polynomial K-algebra over A in the

noncommuting indeterminat X, where the scalars a A do not necessarily commute with the

indeterminates.
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