CONGRUENCES INVOLVING GENERALIZED FROBENIUS PARTITIONS

JAMES SELLERS
Department of Science and Mathematics
Cedarville College
Cedarville, OH 45314

(Received June 19, 1992 and in revised form July 10, 1992)

Abstract

The goal of this paper is to discuss congruences involving the function $\overline{c \phi_{\boldsymbol{m}}}(n)$, which denotes the number of generalized Frobenius partitions of n with m colors whose order is m under cyclic permutation of the m colors.

KEYWORDS AND PHRASES. Congruence, partitions.
1991 AMS SUBJECT CLASSIFICATION CODE. 05A17, 11 P83.

1. INTRODUCTION.

In 1984, George Andrews [1] introduced the idea of generalized Frobenius partitions, or Fpartitions, and discussed many of the properties associated with them. In particular, he studied the function $c \phi_{m}(n)$, the number of F -partitions of n with m colors. One of the results that Andrews obtained was the following: If m is prime then

$$
\begin{equation*}
c \phi_{m}(n) \equiv 0 \quad\left(\bmod m^{2}\right) \tag{1.1}
\end{equation*}
$$

for all $n \geq 1$ not divisible by m.
More recently, Louis Kolitsch [2,3] has considered the function $\overline{\overline{\phi_{\boldsymbol{m}}}}(n)$, which denotes the number of F -partitions of n with m colors whose order is m under cyclic permutation of the m colors. Kolitsch has proven that, for $m \geq 2$ and for all $n \geq 1$,

$$
\begin{equation*}
\overline{c \phi_{m}}(n) \equiv 0 \quad\left(\bmod m^{2}\right) \tag{1.2}
\end{equation*}
$$

2. MAIN RESULT.

We now want to prove the following congruence related to (1.2).
THEOREM 1: For $m=5,7$, and 11, and for all $n \geq 1$,

$$
\begin{equation*}
\overline{c \phi_{m}}(m n) \equiv 0 \quad\left(\bmod m^{3}\right) . \tag{2.1}
\end{equation*}
$$

Proof: In [3], Kolitsch proved that, for all $n \geq 1$,

$$
\begin{aligned}
\overline{c \phi_{5}}(n) & =5 p(5 n-1), \\
\overline{c \phi_{7}}(n) & =7 p(7 n-2), \text { and } \\
\overline{c \phi_{11}}(n) & =11 p(11 n-5)
\end{aligned}
$$

where $p(n)$ is the ordinary partition function. Now we note that

$$
\begin{aligned}
\overline{c \phi_{5}}(5 n) & =5 p(25 n-1) \\
\overline{c \phi_{7}}(7 n) & =7 p(49 n-2), \text { and } \\
\overline{c \phi_{11}}(11 n) & =11 p(121 n-5)
\end{aligned}
$$

Moreover, several authors have shown that

$$
\begin{aligned}
p(25 n-1) & \equiv 0\left(\bmod 5^{2}\right) \\
p(49 n-2) & \equiv 0\left(\bmod 7^{2}\right), \text { and } \\
p(121 n-5) & \equiv 0\left(\bmod 11^{2}\right)
\end{aligned}
$$

(See Andrews [4] for an excellent discussion of these congruences first noticed by Srinivasa Ramanujan.) Hence, we see that

$$
\begin{aligned}
\overline{c \phi_{5}}(5 n) & \equiv 0\left(\bmod 5^{3}\right), \\
\overline{c \phi_{7}}(7 n) & \equiv 0\left(\bmod 7^{3}\right), \text { and } \\
\overline{c \phi_{11}}(11 n) & \equiv 0\left(\bmod 11^{3}\right)
\end{aligned}
$$

This is the desired result.

3. FINAL REMARKS.

Now it would appear that congruences like (2.1) above hold for other values of m as well. This author has considered congruences of the form above for $m=2$ and 3 . Values involving $\overline{c \phi_{2}}(2 n)$ and $\overline{\boldsymbol{c} \phi_{3}}(3 n)$ have been found for several values of n, which were easily computed using the generating functions for $c \phi_{2}(n)$ and $c \phi_{3}(n)$ developed in [1] and the fact that

$$
\overline{c \phi_{m}}(m n)=c \phi_{m}(m n)-p(n)
$$

for prime m. Given these, it appears that the following congruences hold:
Conjecture: For all $n \geq 1$,

$$
\begin{aligned}
& \overline{c \phi_{2}}(2 n) \equiv 0\left(\bmod 2^{3}\right) \text { and } \\
& \overline{c \phi_{3}}(3 n) \equiv 0\left(\bmod 3^{3}\right)
\end{aligned}
$$

It may be possible that such a congruence holds for each prime m, although this author has not pursued this.

VALUES OF $\overline{\boldsymbol{c} \phi_{2}}(2 n)$ AND $\overline{c \phi_{3}}(3 n)$		
n	$\overline{c \phi_{2}}(2 n)$	$\overline{c \phi_{3}}(3 n)$
1	8	81
2	40	1053
3	144	8424
4	440	50625
5	1208	252720
6	3048	1099332
7	7224	4301667
8	16264	15451722
9	35080	51712830
10	72968	162997272
11	147088	487927557
12	288424	1396216926
13	551936	3839379507
14	1033360	10189278765
15	1896912	26191056294
16	3420296	65402440254
17	6066968	159066295911
18	10601000	377624881413
19	18268120	876738665745
20	31078000	1994026912767
21	52241184	4449189414618
22	86839912	9751794680439
23	142850088	21020605245324
24	232687400	44608075732350
25	375531240	93281355133110
26	600794432	192378123793026
27	953273544	391587178790619
28	1500749624	787255913193255
29	2345143040	1564208883888750
30	3638799072	3073396018972779
31	5608145688	5974759684687374
32	8587893472	11497819468200462
33	13070249344	21913027419434670
34	19775421160	41377597875587103
35	29752192096	77441754423150981
36	44520802024	143711420261068
37	66275131408	264522134520406248
38	98167705768	483087841030377438
39	144709970880	875615409510183201
40	212332459688	1575598824183500991

REFERENCES

1. ANDREWS, G. E., Generalized Frobenius Partitions, Memoirs of the American Mathematical Society, Volume 301, Providence, RI, May 1984.
2. KOLITSCH, L., An Extension of a Congruence by Andrews for Generalized Frobenius Partitions, J. Combin. Theory Ser. $\underline{A} 45$ (1987), 31-39.
3. KOLITSCH, L., M-Order Generalized Frobenius Partitions With M Colors, J. Number Theory 39 (1991), 279-284.
4. ANDREWS, G. E., The Theory of Partitions, Encyclopedia of Mathematics and Its Applications, Volume 2, Addison-Wesley, Reading, MA, 1976.
