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TOTALLY REAL SURFACES IN CP2 WITH PARALLEL MEAN CURVATURE VECTOR
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Abstract. It has been shown that a totally real surface in CP with parallel mean curvature vector and

constant Gaussian curvature is either flat or totally geodesic.
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1. INTRODUCTION.

Let J be the almost complex structure on CP and g be the Hermitian metric on CP of constant

holomorphic sectional curvature 4. If V is the Riemannian connection with respect to g and R is the

curvature tensor of V, then

(VxY)(Y)-O, (1.1)

R(X,Y)Z -g(Y,Z)X-g(X,Z)Y + g(JY,Z)JX-g(JX,Z)JY + 2g(X,JY)JZ, (1.2)

where X, Y, Z are vector fields on CP.
LetMbe a 2-dimensional totally real submanifold of CP and v be the normal bundle ofM. If x(M)

is the lie-algebra of vector fields on M, then for each X ft. x(M), JX E v. ,The Riemannian connection V
induces the Riemannian connection V onM and the connection V in the normal bundle v. We then have

the following Gauss and Weingarten formulae

.xY-Vxr+h(X,r), VxN--ANX+Vx+/-N,X, Vex(M), Nev, (1.3)

where h(X, Y) and ANX are the second fundamental forms and are related by g(h(X, Y), N), g(AX, Y).
The mean curvature vectorH ofM is given by

H -(1/2),h(ei, e;),

where {et, e) is a local orthonormal frame on M. IfH -0, thenM is said to be a minimal submanifold of

CP2. It is known that ifM is a minimal totally real surface of constant Gaussian curvature in CP, then

either M is flat or totally geodesic (cf. [2]). The mean curvature vector H is said to be parallel if

Vx H 0, X x(M). In this paper we consider the totally real surfaces of constant Gaussian curvature

with parallel mean curvature vector in CP.
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The Gaussian curvature K ofM is given by

K + g(h(X,X), 2h(V,r))-gCh(X,r), hCX, V)),

where {X, Y} is an orthonormal frame on M. The Codazzi equation gives

(Vx h)(r,z) (Vvh)(X,Z), X, Y,Z (F.. x(M).

For a totally real surface M, using (1.1) and (1.3), we get

h(X,Y)=JAzvX, VJY=JVx Y, X,Y x(M).

Using (1.6) and the symmetry of h (X, Y), we have

g(h(r,z),JX)- g(h(X,V),YZ)- g(h(X,Z),JY), X, Y,Z .(M). (1.7)

2. MAIN RESULTS

THEOREM 2.1. LetM be a connected totally real surface in CP of constant Gaussian curvature c

with parallel mean curvature vector. Then eitherM is fiat or totally geodesic.

PROOF. Let UM- {X
_
TM:X]I- 1 be the unit tangent bundle of M. Define the function

f:UM R by F(X) g(h(X,X),JX), which is clearly a smooth function. First suppose that fis constant.

Then f(-X)--f(X) gives f(X)- 0 and therefore g(h(X,X),JX)-0, X UM. Now consider a local

o.rthonormal frame {X,Y on M. Then we have g(h(X,X),JJO- 0, g(h(Y,Y),JY)- 0,

X-Y

These equations, in view of (1.7), imply that g(h(X,X),J)-O,

and g(h(X,Y),J-O. Since {JX,JY} is a local orthonormal frame in the normal bundle v, we conclude
that h (X,X) O, h (X, Y) 0 and h (Y, Y) 0, which means thatM is totally geodesic.

We therefore assume thatf is not a constant. Since the unit tangent bundle UM is compact, fattains
a maximum at somee UM. It is known that g(h(et, e),JY) 0 for any vector in TMwhich is orthogonal
to et (cf. [1]). Choose % such that {et,%} is an orthonormal frame ohM. Then we can set

h(el,e) cJe, h(e,ez) [Je + yJez and h(ez, ez) [Je, (2.1)

where o., 15 and y are smooth functions. Using the structure equations ofMwe have locally

V,,et ae, V,e bez, V,,, -ae, V,e -be:, (2.2)

where a,b are smooth functions. Inserting different combinations of the frame vectors e,e2 in (1.5) and

using (2.1) and (2.2) we get, upon equating components,

e lS-ay + 2blS-bcg ez- t- a(ot- 2[;), e. 15-el y- 3a[3-by. (2.3)

Since the mean curvature vectorH -(1/2)(h(el,e)+ h(ez,e)) is parallel, we have

V’t(h(e,ez), + h(e,ez)) 0 and V, (h(et,e) + h(ez,e)) O.

Using (1.6), (2.1) and (2.2) in the above equations we conclude, upon equating components, that

e. (a + 15) a, e. =-a(a + ) (2.4)

ez- (a + I) -/’, ez. b(a + 15). (2.5)

From (2.3), (2.4) and (2.5), we have
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e ct b(a 2), e l av + 2b bcl e ? -a(a + ),
e,_. ct a(a- 2), e -by + 2a-aa, e b(a + ).

(2.6)

In view of (2.1) and (1.4), the Gaussian curvature c is given by c + ct- 2. If we operate on this

equation by el and e2 with c constant, and use (2.6), we obtain

(ct- 2)(ay + b(3- a)) 0 and (a- 2)(-b + a(3 -ct)) 0. (2.7)

We have two cases:

Case (i). Suppose ct 2, then the two equations in (2.7) give (a + b2) y. 0 and (a + b2)(3 a) 0.

If a + b 0, then from (2.2) it follows that M is flat (as c is constant). If a + b2.0, then we have y 0

and 3 a 0. Since a and b cannot both be zero and y 0 it follows from equations (2.4) and (2.5) that

ct + 0. Thus we have "/- 0 and a + l 0, which implies thatH 0, that is, M is minimal.

Case (ii). Suppose a- 2. Then from (2.6) we get that ct is constant, and consequently is also

constant. With ct 2 and constant equations (2.6) give ay 0 and by 0. Thus either a b 0 or

y 0, which results in either M being flat or y 0. IfM is not flat, that is, not both a and b are zero, and

y 0, then from (2.4) and (2.5) we get a + 0. This shows thatH 0. Hence eitherM is flat or minimal.

But since a minimal totally real surface is constant curvature in CP is either flat or totally geodesic [2],
the theorem is proved.

In the following we first prove that in any submanifold of a Riemannian manifold if the second

fundamental form is parallel, then the mean curvature vector is parallel. Though this is a simple observation,

it does not seem to appear in the literature and is worth mentioning. As a corollary then we obtain the same

result as in Section 2 for the totally real surfaces of CP with parallel second fundamental form.

THEOREM 2.2. Let M be a submanifold of a Riemannian manifold M with parallel second fun-

damental form. Then the mean curvature vector ofM is parallel.

PROOF. Suppose dimM- n. Then for a local orthonormal frame {e,e2,...,e,,} of M, the mean

curvature H is given by

H- (l/n) h(ei, e).
i=1

Since the second fundamental form is parallel we have

(Vx h )(Y,Z) Vxh(Y,Z)- h(Vx Y,Z) h(Y, VxZ) O for X, Y,Z x(M).

Thus for each frame vector e; we can write

Vx h(e,e) 2 h(Vx e, e).

Adding these equations we get

nV H 2 h(Vx e,,
i-1

Let t.o be the connections forms on M. Then we have

Substituting this into the above equation we get
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n VxXH "2i..l t(X) h(ei, ei).

Since (X) -.o(X) and h(e,ei) h(ei, e), we conclude that Vx H 0, X z(M).

As a direct consequence of this theorem and the theorem in the previous section we have

COROLLARY 2.1. LetMbe a connected totally real surface in Cp2 with parallel second fundamental

form and constant Gaussian curvature. ThenM is either flat or totally geodesic.
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