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ABSTRACT: Two m x n matrices 4, B over a commutative ring R are equivalent in case there are
invertible matrices P,Q over R with B = PAQ. While any m x n matrix over a principle idcal domain
can be diagonalized, the same is not true for Dedekind domains. The first author and T. J. Ford
introduced a coarser equivalence relation on matrices called homotopy and showed any m x n matrix
over a Dedekind domain is homotopic to a direct sum of 1 x 2 matrices. In this article we give
necessary and sufficient conditions on a Priifer domain that any m x n matrix be homotopic to a

direct sum of 1 x 2 matrices.
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I. INTRODUCTION

Let M, N be finitely generated projective faithful modules (progenerators) over a commutative
ring R. An R homomorphism h : M — N is called image split in case h(M) is a faithful R-direct
sumnmand of N. If f: M — N and g : P — Q are homomorphisms of R progenerators then f and g
are said to be homotopic if there are image split homomorphisms h: 4 — B and &k : C — D and R
isomorphisms ¢,% making the commuting diagram of R-modules

Moas 28 NeB

s Js

Pec % QoD
If f = p~lgy for isomorphisms p,7 then f and g are homotopic (where R = A = B = C = D and
h = k = 1g). Thus equivalent homomorphisms are homotopic but not conversely. The notion of
homotopy of homomorphisms was introduced in [4] to remove most of the obstruction observed by L.
Levy in [13] to diagonalization of matrix transformations under equivalence over Dedekind domains.
Summarizing some of the results in [4], homotopy is an equivalence relation on homomorphisms of
progenerator modules and tensor product of homomorphisms induces a multiplication on homotopy
classes which turns this set of classes into a monoid denoted M(R). Each homotopy class is represented
by at least one matrix transformation, and if R is a Dedekind domain by a matrix transformation
which is a direct sum of 1 x 2 matrices, a matrix of the form

a) bl 0 0
0 0 az b'_r

a b
™ MY mx 2m
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Moreover, if I, = yR+ bR then I D 1, > . D In. If Ris a discrete valuation ring then M(R) =
PN[z). the monoid of primitive polynomials with coefficients in N = {0,1,2,. .} together with the
0-polynomial. If R is a Dedekind domain then M(R) is naturally isomorphic to @ p.ararspecin M(1Er)
and this isomorphism gives an isomorphism between M(R) and primitive polynomials over N in
indeterminates indexed by MazSpec(R).

The purpose of this paper is to determine the extent to which these results can be generalized
to arbitrary domains. In fact, they come close to characterizing Dedekind domains. We first obseive
that if ® is a commutative ring containing a maximal ideal P such that dimg/p(P/P?) > 2 then there
is a homotopy class in M(R) which contains no matrix transformation which is a direct sum of 1 x 2
matrices. Thus, if R is a Noetherian domain and every homotopy class in M(R) contains a matrix
which is a direct sum of 1 x 2 matrices then dimR < 1. The inclusion map from a domain R to its
integral closure R induces a monoid homomorphism M(R) — M(R) which was studied in [6]. Here we
relax the Noetherian condition and study M(R) for Priifer domains. If R is a Priifer domain of Krull
dimension = 1 or if R is a Priifer domain of finite character (each nonzero element of R is contained
in only finitely many maximal ideals) we show every class in M(R) contains a representing matrix
which is a direct sum of 1 x 2 matrices. If R is any valuation domain with value group ¢ < (R,+) and
G* is the monoid of nonnegative elements of G form the monoid PN(G*) of “primitive polynomials™
¥+ agr? With aye N, almost all a; = 0 and ged{aglgeG*} = 1. We show M(R) = PN(G*). After giving
a slight generalization of L. Levy’s “Separated DivisorTheorem” for matrices over Dedekind domains
[13], we can show for Priffer domains that M(R) is naturally isomorphic to @ paarspeciry M(Rp) il
and only if R is of finite character and the valuation rings at the maximal ideals of R arc pairwisc
independent. The principal examples of Priifer domains of finite character whose valuation rings at
maximal ideals are pairwise independent are Dedekind domains and valuation domains.

Part of this paper appeared in the first author’s Ph.D. dissertation written at Colorado State
University. This paper was completed while the second author was a visitor at Florida Atlantic
University. He wishes to thank department chairman Jim Brewer for his hospitality. We would also

like to thank L. Levy for his help with the proof of the generalized Separated Divisor Theorem.
2. SEPARATED DIVISOR THEOREM

PROPOSITION 1. Let R be a commutative ring containiig a maximal ideal P with
dimgp(P/P?) > 1. Then there is a matrix transformation over R which is not homotopic to a di-

rect sum of 1 x 2 matrix transformations.

PROOF: Let ¢ . R — S be a homomorphism of commutative rings, so S is an R-algebra. Then ¢
induces a monoid homomorphism M(¢) : M(R) — M(S) by M(4)(|f]) = [1® f|, where if f ¢ Homp(Ny, N2)
then 10 f € Homg(S® Ny, S® N2) (Theorem 1 of [4]). Since each class in M(S) is represented by a matrix
transformation, if ¢ is an epimorphism then M(¢) is an epimorphism. If ¢ is an epimorphism and if
every class in M(R) is represented by a matrix which is a direct sum of 1 x 2 matrices, then every class
in M(S) is represented by a matrix which is a direct sum of 1 x 2 matrices. Thus, it suffices to check
the conclusion of the proposition for a homomorphic image of R. Let {a; + P?, a2+ P*}U{a, + P*},a be
a basis for P/P? over R/P. Let J be the ideal in R generated by P? and {a,},.;. The ring S=R/J is a
local ring with maximal ideal M = P + J/J. Moreover, M? = (0) and dimg/p(M/M?) = 2. Let ay,a2¢ M

1 a2

be linearly independent over S/M. We check the matrix [% is not homotopic over S to any
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matrix of the form
a, B 0 0

H= 0 0 ay /3'_:
Ay Bmd mx2m.
Since S is local, with respect to a suitable basis choice, each image split homomorphism has a matrix

representation of the form diag(1,-,1,0,-,0) (Proposition 3(9) of [4]). We need to check

1

-

a a |

0 a |

| a; az
o ), . o a
F:[O al]@dmg(l,.“,],o. ,0) =

0] mx2m

is not equivalent over S to H. View F as the relation matrix of the factor module $®™)/Lp where
Lp is the submodule of S?™) generated by the rows of F. Then S®™)/Lp is isomorphic to a direct
sum of modules of the form 4 = S& S/ < (a1,a2),(0,a;) > together with 0-summands. A direct
calculation shows the S-endomorphisms of S & S leaving < (a1,a2),(0,a;) > invariant are given by

/
matrices of the form [a m

where m,m' ¢ M;a,8 ¢ S. That is, Ends(A) is a homomorphic
B a+m

2

, 12
image of the ring of these matrices. A direct but messy calculation shows that if [g a':m] =

’
[; a':m] then a = 0,1 and 8 = m = m’ = 0. Since idempotents can be lifted modulo a nilpotent

ideal and the natural homomorphism from {[g a'_:_'lm] Ia.ﬂ eS,mm e M} to Ends(A) has kerncl
{[; o '_:" m] |a,/3,m.m’ € M} which is nilpotent we see Ends(A) has no idempotents other than 0 and

1 so A is an'indecomposable S-module. In the same way view G as the relation matrix of the factor
module S/ where Lg is the submodule of 5™ generated by the rows of G. Then 5®™)/Lg is
isomorphic to a direct sum of modules of the form B, = S& S/ < (a.,8,) > . An easy calculaton shows
dimgypr (M - A) = 2, dimigjpr(M - B,) > 3, and dimgp(A/M A) = 2 = dimg p(B,/M B,)(1 < i < m). If A@L =B,
then A/MA®L/ML = B,/MB, so L = ML so by Nakayama’s lemma L = (0). In this case A= B, which is
impossible by the first dimension count above. Thus A is an indecomposable S-module which is not
a direct summand of any B,. By the Krull-Schmidt Theorem $(™)/Lg = S@™/Lp and F,G cannot be
equivalent matrices over S.

REMARK: If R is noetherian then dim R < suppyasspeccr) dimayp(P/P?) so if R is noetherian,
Proposition 1 implies that if every matrix over R is homotopic to a direct sum of 1 x 2 matrices then
dim R < 1. This may not be the case when R is not noetherian as the next result shows.

Let K denote a field and v a valuation on K with value group G C (R,+). Let R be the valuation
ring corresponding to v. Since R is an elementary divisor ring [9], each mxn matrix over R is equivalent
to a diagonal matrix diag{d,,---,dn} With v(d,) < v(di41) when di4; # 0 and d;, = 0 implies d; = 0 for
k > j. The “elementary divisors” d,,...,d,, uniquely determine the equivalence class. In this case,
following [4], we can explicitly determine the monoid of homotopy classes. Let Gt = {g ¢ Glg > 0}
and N(G*) = {a(z) = Y7, n,2%'|n,e N,g,e G*}, where N is the set of nonnegative integers. Then
N(G*) is a multiplicative monoid with multiplication induced from the equation z9:29 = z9+%. For
a(x),b(z)c N(G*) say a(z) ~ b(z) if there exists positive integers r and s with ra(z) = sb(z). It is casy
to check that ~ is a congruence on N(G*). Let PN(G*) = N(G*)/ ~ . Then PN(G*) is a monoid
which can be identified with the primitive polynomials in z with exponents from G*. Let |a(z)| be the
congruence class in PN(G+) represented by a(z)e N(G*). To the homotopy class in M(R) represented
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by the 1x1 matrix transformation (d) over R we can assign the congruence class [z"| in PN[+]. Our

next result is that this assignment extends to an isomorphism.

PROPOSITION 2. If R is a valuation ring corresponding to a valuation v on a field K with value
group G then M(R) = PN(G*).

PROOF: Lemma 2 and Proposition 3 (1) of [4] imply any 0 # |hle M(R) contains an » x r matrix
transformation diag{d,,....d,} where d, # 0 and v(d,) < v(di41) for all i. Let ¢ : M(R) — PN(G*) by
#(lh]) = 7, z"%). We only check ¢ is well defined, then the rest of the argument is routinc. If
|diag{d,,...,d}| = |diag{flp,....f,}| in M(R) with v(f;) < v(f;+1) for all j then bgl Proposition 3(9) of [4],

diaglds, ... dy} @diag{1, . 1.0,...,0} is equivalent to diag{fy, ..., f,} ®diag{1, ., 1.0,...,0}. Let ;.. .,d}
be the entries in diag{d;,...,d,} with pairwise distinct valuations. By uniqueness of invariant factors
in an clementary divisor ring, the entries in diag{f...., f,} with distinct valuations are fio-- 2 fr where
o(J) = v(d,) when we order d, f so v(d}) < v(d,,,) and v(f,) < v(f,y,) for all i. Let r, = #{d,|v(d;) = w(d.),
1< j<rhand s = #14005) = o)1 <j < s} Then o(la]) = | TE, na*@)] and g(lh]) = | i, s
Morcover, by uniqueness of invariant factors, pr, = g5, 1 < i < & so |¥,_, rz*®)| = [5,2 820 in
PN{z]. Thus ¢ is well defined.

The following is needed to prove a generalized separated divisor theorem. Undefined terminology

can be found in [7].

LEMMA 3. Let R denote a Priifer domain of finite character whose valuation rings at maximal
ideals are pairwise independent. If 0 # L is an ideal in R then there is a factorization L = [Ti_, L.

where each L, is contained in exactly one maximal ideal P, of Rand P, # P, if i # ;.

PROOF: Since 0 # L and R has finite character, L is contained in only finitely many maximal
ideals Py, -, P, of R. Let L, = LRp,NR(1 < i < k). Theorem 4.10 of [7] implies L = Np.prazspeciry(LRPNR).
Since LRp = Rp if L ¢ P we have L = n_ (LRp, NR) = Nk, L, . We always have L, C P, . Let v,v,
be valuations corresponding to P, P, respectively. Since these valuations are pairwise independent,
Theorem 22.9 (2) of [7] implies that for each 0 # z ¢ L there is an a ¢ Rp, N Rp, With v,(a) = v,(2)
aud v,(a) = 0. If S= R— P,UP, then an elementary exercise gives, S"'R = Rp, N Rp, so after clearing
the denominator we can assume a ¢ R. Thus a ¢ LRp, N R = L, but a ¢ P, so each L; is contained in
cxactly one maximal ideal P, of R. Moreover, L, + L, = R whenever i # j since L, + L; is contained in
no maximal ideals of R. Thus L = nt_, L, = [T*., L.. To check uniqueness assume L = []_, L} where
each L, is contained in exactly one maximal ideal P; of R and P| # P;'if j # q. From the above w =k
and after relabeling we can assume P, = P, . Now LRp, = (I'[;‘=l L))Rp, = L,Rp, s0 L.Rp, = L,Rp,. Since
L, = LRp NR it follows that L, c L, . But Rp L, = Rp,L, and RpL, = RpL, = Rp if P is a maximal ideal
of R not equal to P, so Rp ® L;/L; = 0 for all maximal ideals P of R so L, = L;.

Following [13], the ideals L, in Lemma 3 are called the separated divisors of L. The separated
divisors Div{J,}7_, of a finite sequence of ideals in R is the collection, counting multiplicity, of all the
separated divisors of the individual ideals J,.

For convenience we list some definitions and a result we need from [2]. A Prifer domain R with
quotient field K is said to satisfy the Invariant Factor Theorem if for any finitely generated subinodule
M of R™ there exist simultaneous decompositions of R(™) and M

RM =R, &.. &Rt 1@ Jrz, &... @ JnzZa
M=Ez®..®E_ 12,10 E;z,
where z,¢ K, the J, are invertible fractional ideals of R, the E; are invertible integral ideals of R and

E, C Eypy fori=1,2...., r—1. A Prifer domain R has the Steinitz property if for fractional ideals 1
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and J, I®J = Ra1J. A Prifer domain 1 has the 11 generator property in case for any fractional
ideal I and any 0 # z ¢ I there is a y ¢ I with I = Rz + Ry.

PROPOSITION 4. If R is a Priifer domain of finite character or Krull dimension = 1 then
R satisfies the Invariant Factor Theorem, R has the Steinitz property and R has the 1} gencrator
property

PROOF: [2]

SEPARATED DIVISOR THEOREM (Levy). Let R be a Priffer domain and A an m x n matrix
over 2 of rank r. Let M4 be the submodule of R(™’ generated by the rows of A and let Sy = R"/Al,4.

I. If R is of finite character or dimR = 1 then there exist invertible ideals E,,. .,E, of I with
E, C E,41(1 i< r—1) and invertible fractional ideals J,, J,41,.. ,J, such that

®:=1R/Et®Jr+l®--~®Jn if r<n

o
»
I

®._, R/E, if r=n
where J7! = n'r:, E if r=m, n:z' JiZRifr=0and J,=Rifr=n.

I I & is of finite character with pairwise independent valuation rings at maximal ideals and A, 4" are
two m x n matrices over R of rank r then A is equivalent to A" if and only if Dww{E, )/, = Div{E}}]_,

and Joqy - Jp = J;H o

’

n

PROOF: I. Let M be any finitely generated submodule of R™). Since R satisfies the Invariant

Factor Theorem there exist simultaneous decompositions of R* and M,
RM=Re;® . ®Rz, 1 &J,2,&...& Jnz,
M=Exn&® ®E _1z,_10E.J2,
with z,¢ K = quotient field of R, the J, invertible fractional ideals of R and E, invertible integral idcals

of R such that E, C E.41, 1 <i<r—1. Since R satisfies the 11 generator property, Proposition 1 of [2]
implies J,/E,J, = R/E,. Hence

R'/M =PR/E®J110...0J,
1

(where J,41 @ - - @ J,, does not occur if r = n). Here r is the rank of M which is the rank of A if M is
generated by the rows of A. This proves S, has the decomposition given in L. If » = m then M, = R(™)
$0 Eyxi b . @ E,_yz,-1 @ E. Jyz, = R™). The Steinitz Property and cancellation imply [T/_, E.J, = R
and J7' =J]7_, E,. In the same way, if r = 0 then R = J1z,® ... @ Juza and Jy ... Ju = Jrpy ... Jn = R.
If r=» then R =Rz, ®...2® Rzr_, & Jrz, 50 J, = R.

II. Let A4, 4" be two m x n matrices over R. Suppose we have the decompositions given in I for S, and
Sa . If Alis equivalent to A’ then S, = S, . The uniqueness part of the Invariant Factor Theorem (sce
(12]) inplies Div{E,};_, = Div{E};_, and Joyy...Jo = J,,, ... J,. Conversely, if Div{E.}I., = Div{E|})I_,
and Jryy...Jo = J.,,...J, then S4 and S, have the same invariant factors and thus are isomorphic.
To complete the proof of II we need to check that if S, = S+ then A is equivalent to A". Qur problem
is to find isomorphisms ¢;, ¢, 63 making the commuting diagram

RM) A, g M, 5.

[P P

RM AL pon 1L g,

For then, if P, is the matrix transformation representing ¢,, then A" = P,AP;! so A will be equivalent

to A". Since R is Priifer, Theorem 1.8 of [9] implies S, = P®T where P is projective and T is torsion.
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If # S4 — P is the projection let p be a splitting map so R"™ = p(P)® Q and ker n C Q. In the same
way Sg =P &T, R™ =p' (P& Q and ker ' C Q. Since S4 = S, there are isomorphisms o : > — /'
and r T —T'. By Proposition 1 of [12], T is a direct sum of cyclic modules R/L for idcals 0 # . C k.
By lemma 3 we can let {L,} be the set of separated divisors of L. The Chinese Remainder Theorem
implies R/L = &R/L,. Since L, is contained in only one maximal ideal of R, R/L, is local for all i.
Since Q/ker n= T, Theorem 1.6 of [11] implies there is a simultaneous decomposition of Q and ker 3 .
In the same way there is a simultaneous decomposition of Q' and ker 5'. Thus the given isomorphism
r:T — 1" extends to an isomorphism 7 : Q — Q' such that #(kern) = kern'. This gives isomorphisms
¢1=0dr and ¢2 = p'o  n® 7 making the commutative diagram

RM) A, g ", g, __

[

'

A
RM 2 My T, Sa —0

Since ¢a(kery) = kers’ we have the exact

Rm)
by -~ - lmu
R™) e"—, ImageA'—0
and ¢ is the R-homomorphism given since R'™ is free. This completes the proof of the Separated

Divisor Theorem.

3. THE MONOID OF HOMOTOPY CLASSES

LEMMA 5. Let R be a Priifer domain of finite character or Krull dimension < 1.

(1) If 0 # |f] ¢ M(R) then there exists g such that |f| = |g| in M(R) and coker(g) is a torsion
R-module.

(2) Let |f],lgle M(R) with coker(g) and coker(f) torsion R-modules. If f: M — N ,g: P —@Q
then |f| = |g| in M(R) if and only if there exists R-progenerators K,L such that Ne K Qe L and
coker(f) ® K = coker(g)® L.

PROOF: The proof now follows “mutatis mundantis” as the proof of lemma 6 of [4].

Following page 393 of [4] a description of M(R) in terms of ideals of R can be given now. Consider

the set
A={(M,R"™)|m>1,M is a finitely generated R submodule of

R™ such that R(™)/M is torsion R module.
Define multiplication in A as follows: (M, R(™)(N,R™) = (M®N, R™ @ R™), then A is a commutative

semigroup. Define a semigroup homomorphism
p:A— M*(R) = M(R) - {0}

by p(M,R(™) = |i| where i : M — R(™ is the inclusion map. Note that by Lemma 5 p(M, R"™) =
p(N, R™) if and only if there exist R-progenerators K and L such that

R™M@K=RMgL and (R™/M)®K =(R™/N)®L.
Thus p induces an equivalence relation ~ on A as follows:

(M, R™) ~ (N,R™) if and only if p(M,R‘™) = p(N, R™)
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Let A be the set of equivalence classes of A. Then the product on A induces the multiplication on A,

turning it into a commutative monoid with identity the class containing (R, R).

LEMMA 6. Let R be a Priifer domain of finite character or Krull dimension < 1, then the map
p:A— M=(R) induced by p is an isomorphism.

PROOF: Same as Proposition 7 of [4].

THEOREM 7. If R is a Priifer domain of finite character or Krull dimension < 1 then cvery

homomorphism of R-progenerators is homotopic to a matrix transformation of the form

ay bl 0 0
0 0 az bz
am bnl mx2m

where if I, = (a,,b,) then , D L1 (1<j<n=1).
PROOF: The proof of Theorem 7 now follows exactly as on pages 391-394 of [4].

LEMMA 8. Let R denote an integral domain. Then the following are equivalent.

1) Each nonzero element of R is contained in only finitely many maximal ideals of R.

2) If N is a finitely generated submodule of R®™ then Rp ® N is a direct summand of R$ for
almost all PeMazSpec(R).

(3) For each exact sequence 0 — N — Q — M — 0 of finitely generated R-modules with Q projective
the associated sequence 0 — Rp®@N — Rp®Q — Rp®M — 0 is split exact for almost all PeMazSpec(R)

PROOT: The equivalence of 2 and 3 follows easily since every finitely generated projective module
is a direct summand of a free module of finite rank. To see 2 — 1let 0 # a ¢ R. Then (a) is a submodule
of Rso 1®a is either 0 or a unit in Rp for almost all PeMazSpec(R). If R is an integral domain then
1®a#0in Rp so a ¢ P for almost all PeMazSpec(R). To show 1 — 2 let R = Rz, & ... ® Rz, and
let¢ N = Rny+...+ Rn; with 0# n, ¢ R®(1 <i <k). Let ny = a1z + ... + anz, where we can assume
a1 #£ 0. Over a; 'R we have a7'n;,zs,...,2, is a basis for (a7'R)™ and a7'n;,n,,. .,n, generates a7'N
so replace z; and n, by a;'n, over a;'R. Then z,,z,,...,z, is a basis for (a;'R)™ and z;,n,,...,m;
generates a;'N. Write ny = byzy + bazs + ...+ byzi. Since zje a;'N we can replace ny by byza+ ...+ bzt
where b2 # 0 or nse a7'Rn, = aj'Rzy. If b2 # 0 then over b;'a;'R we have z,,b;'na,z3,..., 2, is a basis
for (b7'a7'R)"™ and :l,bglnz,n3,...,r;k generates b5'a; N so replace z; and n, by b5'n, over b3'a7'R.
Then N = (b5'a7'R)z; + (b3 a7 R)zy + (b3 'a7 ' R)nz + - - - + (b3 a7 ' R)ny. After finitely many steps we can
find an element ¢ ¢ R with ¢c~'N a direct summand of R(®. Since c is in only finitely many maximal
ideals of R by 1, Rp ® N is a direct summand of R(,I') for almost all PeMazSpec(R).

If R is an integral domain of finite character then a nonzero homomorphism f: M — N of R-
progenerators induces an image split homomorphism Rp®M '8/ Rp@N for almost all PeMazSpec(?) by 3
of Lemma 8. In this case the inclusions R — Rp induce a natural map ¢ : M(R) — ®pcpmazspeccryM(Rp)

LEMMA 9. If R is a Prifer domain of finite character and ¢ : M(R) — @®pmarspec(RyM(Rp) is
induced from the inclusions R — Rp then ¢ is a monomorphism.

PROOF: Let 0 # |f| , 0 # |g]| be in M(R) and assume &(|f]) = ¢(lg]). Then [1® f| = |1 ® g| in M(Rp)
for all PeMazSpec(R). By Theorem 7, 0 # |f| determines a descending sequence I, > I, D ... D I,, of
ideals in R with 0 # I, = (a,,b,) and 0 # |g| determines J; D> ... D Jm With 0 # Ji = (cx,de). Under
the isomorphism p of Lemma 6, (&".,1,, ™) corresponds to |f| and (&7.,J, R'™) corresponds to |g].
We show (&7_,1,. R"™) = (&]-,Ji, R™) in A . Let P be a maximal ideal for which [1® f| = [L® 4]
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is split. In A(Rp) the split class is represented by (Rp,Rp) and projective modules are free over
Rp so (R™/ 7., 1,)® ® Rp = (0) which implies I, c P for 1 < j < n. In the same way J. C P so
I,Rp = Rp = JuRp for all i,j whenever |1® f| = |1 ® | is split over Rp. Consider the finite sct (since
R has finite character) S = {PeMazSpec(R)||l ® f| # |1rs|} = {PeMazSpec(R)||1 ® g| # |lr,|}. Since
| @, Rel,, R’ = | ®7-, RpJi, Ry")| in A(Rp) for each P ¢ S there are positive integers sp,tp with
spn = tpm and [@®7_,Rp/Rp1,)") = (@], Rp/RpJ:]*?). Let s = llpssp and t = Npstp. Then for each
P €S, &\ [Rp/RpL]® = [@]_,Rp/Rp L)) = [®],Rp/RpJ:]® = w [Rp/RpJi]®. The ideals Rpl, and
RpJi in this decomposition are uniquely determined as sets (ii pg 260 of [12]). This means the list
of ideals ... Rplye,...,Rpl,,,... and ... RpJi1,...,RpJis ... Where Ijy = I, and Ji, = Ji are the same for

each P ¢ S. Therefore, for each j, ¢,

I)l = nP(MazSpec(R)(IJlRP n R)
= NpcMazSpec(R)(Jkw Rp N R) for corresponding k,w

= Jiw-

We have shown [@m, (R/L))*) = (&), (R/J)® so (R™,@L,1) = (R™,&F-,Jk) in A and ¢ is a

monomorphism.
We need two easy lemmas about valuations on Priifer domains.

LEMMA 10. Let R be a Priifer domain of finite character whose valuations at maximal ideals
are pairwise independent. Let P,...,P. be a finite set of maximal ideals of R, let G, be the valuc
group of Rp, and let 0 < g,¢ G,(1 <i < n). Then there exists a finitely generated ideal I of R such that

IRp, = {a € Rp,|vp (@) > ¢:} and the only maximal ideals of R containing I are P,,..., Pa.

PROOF: Since the valuations at the maximal ideals of R are pairwise independent, Theorem 22.9
of 7 implies there exists an z ¢ Rp, N...N Rp, such that vp,(z) = g(1 < i < n). As we observed in the
proof of Lemma 3, we can choose z ¢ R. Since R has finite character we can let Qi,...,Qn be all the
maximal ideals of R distinct from {P;}", such that z ¢ Q,(1 < j < m). Again, Theorem 22.9 of [7]
implies there are y,¢ R with vp, () > g, and v, (s) = 0 for all j # i,k. Let I =(z,u,...,ym). Then T is
finitely generated, IRp, = zRp, = {a ¢ Rp,|vp,(a) > 9.} and the only maximal ideals of R containing I

are Py,--- P,.

LEMMA 11. Let v, v, be valuations on a field K with value groups G,,G, and valuation rings
Vi, V, respectively. If for each pair (g1,92)¢ Gy x Gz with 0 < g; and 0 < g, there is an z ¢ K with v(z) = g1

and vs(z) = g, then the valuation rings Vi, V; are independent.
PROOF: (See 9, pg 289 of [7]).

THEOREM 12. Let R be a Priifer domain. The inclusion maps R — Rp induce an isomorphism
¢ : M(R) — ®pmarspec(r)yM(Rp) if and only if R is of finite character and the valuation rings at the

maximal ideals of R are pairwise independent.

PROOF: Assume R is a Priifer domain of finite character. Lemma 9 gives ¢ is a monomorphism.
We check that if in addition the valuation rings at the maximal ideals of R are pairwise independent
then ¢ is an epimorphism. Let (lgp|)peaasspec(r) b€ an element of ®peprasspecr)yM(Rp). Then gp is an
image split map for all but finitely many maximal ideals Py, ... P, of R. Each |gp,| can be represented by
a diagonal matrix (Proposition 2). By tensoring these matrices with identity matrices of appropriate
sizes we can assume each |gp,| is represented by a diagonal m x n matrix. Let |gp,| be represented by
diag(a,y, ..., a,m)(1 < i< k). Let v, be a valuation determined by the valuation ring Rp, with value group
G, and let g,, = vi(a,)(1 < i<k, 1 <j <m). Lemma 10 gives finitely generated ideals I, contained
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in exactly the maximal idcals Py,..., Py and [,Rp, = {a € Rp,|v(a) > g,,} for 1 < j < m. Let |fle M(R)
such that |f| corresponds to the element (&7%,1,, Rt™) of AU {0} under the isomorphism 4 of Lemma
6. Then ¢(If|) = (9P Pertazspec(r) SO ¢ is an epimorphism.

Converscly, assume the inclusion maps ® — Rp for PeMazSpec(R) induce the isomorphism ¢ .
liet 0 # a ¢ R and let ¢, : R — R by the homomorphism given by left multiplication by a. Then
|ta]l = |1g| in M(R) if and only if a is a unit in R (Proposition 3(5) of [4]). The image of ¢ will lie
IN @peararspeccr)yM(Rp) only if the image of |¢,) in M(Rp) is |1g,| for almost all PeMaxSpec(R). This
means a ¢ P for almost all PeMazSpec(R) so R must have finite character. Let P,Q be maximal idcals
of R and let S= RpnN Rqy. Since ¢ is an epimorphism, the induced map v : M(S) — M(Rp) & M(Rq)
is an epimorphism. To see the valuation rings Rp and Rq are independent we check the condition of
Lemma 11. Let wp and vg be the valuations corresponding to valuation rings Rp and It with value
groups Gp,Gg. Let 0< g e Gpand 0< h e Gg and let a € Rp, b e Rg with vp(a) = g, vo(b) = h. Since s
onto. there is an |hle M(S) with |1®h| = |€,] in M(Rp) and |1 k| = |6 in M(Rgq). Since § is a semilocal
Bezout domain, 5 is an elementary divisor domain [9] so we can represent h by the diagonal matrix
diag(cr.  ,er). As we saw in the proof of Proposition 2, we can find units u,e Rp and w,e R such that
cuy = a in Rp and ¢; = w,b in Rg(1 < j < k). Thus vp(e;) = vp(u1a) = vp(a) and vp(c1) = vol(wib) = vo(h)

which shows the valuation rings Rp and Rq are pairwise independent.
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