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ABSTRACT. In this paper, we generalize sone well-known commutativity theorems for
associative rings as follows: Let ’, > 1. ,,, .,, and be fixed nou-ncgative integers such that
s ik m- 1, or i/= n- 1, and let R be a ring xvith unity satisfying the polynomial identity
y*[x’,y] [x,y’]x for all y R. Sul,lose that (i) R has Q(z) (that is n[x,y] 0 implies
[z,y] 0); (ii) the set of d] nilpotent ,,lem,’nts of R is central for > 0, and (iii) the set of
all zero-divisors of R is also central hr > 0. Then R is commutative. If Q(n) is replaced by
"rn and n are relatively prime pobitive integers," then R is commutative if extra constraint is
given. Other related commutativity results are also obtained.

KEY WORDS AND PHRASES. Commutativty o.f rungs, Torsion free rings, Ring with unity,
Semi-prime Rings.
1980 AMS SUBJECT CLASSIFICATION CODE. 16A 70.

1. INTRODUCTION.

Throughout this paper, R will be an associative ring (nmy be without unity 1). Z(R)
will represent the center of R, N(R) the set of all nilpotent elements of R, N’(R) the set of
all zero-divisors in R and C(R) the commutator ideal of R. For any x,y R, we write as

usual [x, y] xy yz. By GF(q), we mean the Galois field (finite field) with q elements, and

(1 0)(0 1)(GF(q)) the ring of all 2 x 2 matrices over GF(q). Set el 0 0 e= 0 0

( ) (0 0)0 0
and e=: in (GF(p)).,. for a prime p.e=l 1 0 0

For any positive integer n, the ring R is said to have property Q(n) if for all x, y R,
n[z,y] 0 implies Ix, y] 0. The p, ol,el’ty (2(") is an H-property in the sense of [1]. It is

obvious that every n-torsion free ring R has the property Q(n), and every ring has the property
Q(1). Also, it is clear that if a ring R has the property Q(n), then R has the property Q(m)
for every divisor m of n.

Let n > 1, m, s, and be fixed non-negative integers. The objective of this paper is to
investigate the commutativity of a ring R satisfying the polynomial identity

y*[x’,y] [x,y"lx for all x,y e R. (1.1)

To establish the commutativity of a ring R with unity 1 satisfying the polynomial identity
(1.1), we need some additional constraints. They frequently concern the torsion freeness of
the commutators. But in fact, this constraint is not enough to prove the commutativity of
the above mentioned ring. This could be solved by imposing further restrictions on s, and t.
An example is also given to justify the constraints.
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Our results generalize some well-kl,w c,nmt,tivity tl,n,ms, for instance the result
of Abu-Khuzam ct al [2], Bell [3], and Ps,,,,,,,1,,,ul,, ,,t al [4].
2. PRELIMINARIES.

In prepation for the proof of our results, we first state the following well-known lemn.
LEMMA 1 ([5, Lemma 3]). Let .v and y l,e elements in a ring R. If [[x,y],x] 0, then

for any positivc integer k,
[.,’a. y] 1,.,"a -’ [.r. ]. (2.1)

LMMA 2 ([5, Lemma 4]). L(’ i(, a ring wih uniy 1. and le J R R be a

function such that (x + 1) .t(.,) h()lds i}) eve, y .," ft. If for some positive integer k,
=y(z) 0 or d(x) 0, for ’,-.,’y ., . th,.,, ,,,.,’,.,,,,,’,ly .t’(.,’) 0.
LEMM 3 ([6, Lemnm 3]). Let b(’ a ring with unity 1, and le x and be elements

in . If (1 p})z 0, then (1 p*’"):," 0 f()r any integers k > 0 and m > 0.
LGMMA 4 ([7, Theorem]). Let J" be a polynomial in n non-commuting indeterminates

z,z2,...,z, with relatively prime integrM coecients. Then the following are equivent"
(1) For ay ring satisfyin& the polynomial identity f= 0, C(R) is a nil ide.
(2) For every prime p, (GF(p)) fails o sat.is6, f= 0.
(3) Every semi-prime ring satisfying f= (] is c(mmml at iv,.

LEMMA 5 ([8, Lcmma 4]). Le 1)(. a ,i,g with uniy 1, and let ., E . If for each
there exist relatively prime p,Mt.iv,’ i,t,’g,’rs ,,, ,,nd , su,’h that [.r, y"’] 0 and Ix, y"] 0,
then z is in the center of .

LEMMA 6. Let x and be elements in a tin& R. Suppose that there exist relatively
prime positive integers m and n sud that m[.r, ] 0 m,d n[, ] 0. Then [, ] 0.

HGORM H. ([9, Theorem 18]). Let > be a fixed integer. If R is a ring with
z" z E Z(R) for all z E R, then R is commutative.

3. RESULTS.

If R satisfies the polynomial identity (1.1), then ]y repeated use of (1.1), we have
-’+’[", 1 ()’Ix-, 1(.,." )’ [.,.. ’"’].,."’+’ L,t ’ ,,,, + , ,a t’ ,t + t. The,

yS’[X"2,y]--[.T...]"2].F t’ for all :F,y R. (3.1)
LEMMA 7. Let n > 1, rn, s, and be fixed non-negative integers, and let R be a ring

satisfying the polynomial identity (1.1), then

C(R) G N(R). (3.2)

PROOF. If rn 0, then x e, and g e2 + e2 in (GF(p)h for a prime p, fail to
satisfy y’[x’*,y] 0. Further, if m _> 1, then .’= e,2, and y e,, ha (GF(p))2, for a prime p,
fail to satisfy the polynomial identity (1.1). By Lemma 4, (3.2) holds.

Combining Lemma 4 with Lemma 7 gives the following commutativity theorem for semi-
prime rings.

THEOREM 1. Let n > 1, m, s, and bc fixed non-negative integers. If R is a semi-
prime ring satisfying the polynomial identity (1.1), then R is commutative.

LEMMA 8. Let n > 1, rn, and s be fixed non-negative integers, and let R be a ring
with unity 1 satisfying the polynomial identity

y’[x", y] [.,’. g’"] for all x, y G R.

If, further, R has Q(n), then
N(R)

_
Z(R).

PROOF. Let a N(R). Then there exists a minimal positive integer p such that

(3.3)

(3.4)

a Z(R) for all k _> p. (3.5)

Ifp 1, then a Z(R). Now, suppose p > 1. Rcplace x by ap-’ in (3.3) to get y[(aP-’ )", y]
[a’-, y’]. In view of (3.5), and (p- 1)’n _> p, the last polynomial identity implies that
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[av-l,g’’’] 0 f()r all 9 E R. (3.6)

Next, replace x by (1 + ap-’) in (3.3)t,, ,,l))ai,, 9"[(1 + av-’)",y] [1 + a1’-’,y"]. By (3.6)
and Lemma 2, the last identity gives

[(1 + at’-’) 9] 0 for all 9 E R. (3.7)

Combining (3.5) and (3.7)yields 0- [(1 + ,v-, ),,. j] [1 + ,,,v-,.g] n[a’-’,y]. By Q(n),
the last identity gives [av-l, y] 0 fl)," all :l R. which is a c(mtra(liction to the minimality
of p. Therefore p 1, and hence (3.4) h(,hl..

Combining Lemma 7 and Lemma 8, ,)he g(:ts
LEMMA 9. Let n > 1, m, and q be fixed non-negative’ integers, and let R be a ring

with unity 1 satisfying the polynomial identity (3.3). If, fitrth’r, R has Q(n), then

C(R) c_ Z(R). (3.8)

REMARK 1. In view of (3.8), it is guaranteed that [x, [.r, y]] 0 for all x, y R. Thus
(2.1) holds for each pair of elements .). y i a rig R that satisfic. the hypothesis of Lemma 9.

Similarly, we have
LEMMA 10. Let m > 1, n, and be fixed non-negative integers, and let R be a ring

with unity 1 satisfying the polynomial identity

[x",y] [a’, 9’"].r’ for all x,y ( R. (3.9)

If, further, R has Q(m), then
C(R) C_ Z(R). (3.10)

LEMMA 11. Let m _> 1, n >_ 1, s and be fixed non-negative integers, and let R be a

ring with unity 1 satisfying the polynonfial identity (1.1). If, further, R has

[x, Ix, y]] 0 for ,all a’, y G R,

then the properties Q(n) and Q(m) are equivalent.
PROOF. In view of (3.11), and Lemma 1, the polynomial identity (1.1) becomes

ny[x, Ylx"-I "my l[x, Ylxt for ,all x,y G R.

(3.11)

(3.12)

Let R have the property Q(n). If mix, y] 0 for all x, y R, then (3.12) gives ny[x, y]x"-’
0. By Lemma 2, we obtain n[x,y 0 for all x,y R. Thus Q(n) implies that Ix,y] 0 for
all z,y

_
R. Therefore, Q(n) implies Q(m).

Similarly, one can prove that Q(m) iml)lies Q(n).

THEOREM 2. Let n > 1, m, s, and be fixed non-negative integers such that s # m- 1,
or # n- 1, and let R be a ring with unity satisfying the polynomial identity (1.1). Suppose
that

(i) R has Q(n),
(ii) N(R) C_ Z(R) for > 0,
(iii) N’(R) C_ Z(R) for > 0.

Then R is commutative.
PROOF. Since we know that C(R) C_ Z(R) by Lemma 9, mad (ii), we shall routinely

use equation (2.1) without explicit mention.
Now, if m 0, then (1.1) becomes y[.,’",y] 0, and by Lelnma 2, we have [x",y] O,

and hence nx"-[x,y] 0. Again by Lemma 2 along with Q(n), we get Ix, y] 0 for all
x, y R. Thus R is commutative.

Next, let m >_ 1, and then replace .’ (resp. y) by 2x (resp. 29) in (1.1) to get 2"y’[x",y]
2*+l[x,y’]x* or 2*+iy[x’,y] 2"[x,y’"].T. Combining this with (1.1) yields 2’* 2*+

[x,y’]x 0 (n # + 1) or 12 2+ [.r,yO]x 0 (m # + 1). In view of Lemma 2 and
Lemma 1, we get 12’*-2*+a m[x,y] 0 or] 2" 2*+ mix, y] 0. Let k =[ 2"-2*+a m
and k2 =[ 2 2+ ]m. If k =/ca or k2, then k > 1. Hence k[x,y] 0 for all x,y R. Thus
x}, V] kx’-’[x, Y] 0 for all x, V ( R. Therefore,
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all ,r E R. (3.13)

Now, (1.1) becomes ny[x, y].r ’’-1 {a. !1’"] r’. Rel,h(’,, .r ],y .r" in th(’ last identity to get

Hence ny’[x",y]x’(’-) n[x,y’lx
So n[x",y]x("-)(*+)(1 x(’-i)(’’-t-)) 0. By Lcmma a,

n[x’*,y]x("-)(+)(1 x(’’-)(’-t-)) 0 for all x,y R. (3.14)

It is well-known that R is isomorphic to a subdirect sum of subdirectly irreducible rings
R, (z I, the index set). Each R, has 1, and satisfies (1.1), (3.1), (3.13), and (3.14), but R,
does not necessarily have Q(n).

Let S be the intersection of M1 non-zero i(h.als ()f R,. Then S .:/= 0. Thus if d is a central
zero-divisor, then Sd 0, since the annihilator of d is a two-sided ideM and must therefore
contain S.

If 0, then by (3.14),

n[x",y]x’*-’(1 x("-’)) 0 for all x,y R,. (3.15)

Let a N’(R,). Then (3.15) yields ,,[a", !/]o"-(1 akl’’-) 0. If n[a", y]a"- # 0, then
ak(n-1)2 and ak(n-l) are central z(’)-(livi(,rs. H(’nc’ 0 S( a("- 1)2 S which give
a contradiction. Thus

,[a", ],"-’ 0 fin all y E ,. (3.16)

Combining (3.1) and (3.16) gives y’[a"’,y] [a, y"]. So [a,y ’’’’1 ny’[a",y]a"(’’-’). Thus

[a, y’"] 0 fi)r all y E (3.17)

By (3.17), and (iii), for

_
0,

[a,y’" 0 fl)r all y E R,. (3.17)’

Next, let c Z(R,). Replace x by c.r in (1.1) md apply Lemma 2 to obtain (c"-
c*+l)[x,ym] 0 and (c*+ -c’)[x,y"’] 0 for all a’,y R,. In particulm’, by (3.13), we see
that

(x ’’* z’(’+’))[.c, y"’] 0 fox" all x,y E R,, (3.18)
and

Similarly, we obtain

and

(x’(t+’) xk")[x,ym] 0 for all x,y E It,,. (3.19)

(x" x(+’))[x, y’"] 0 for all x,y E If,, (3.18)’

(xk(+’) x’"’)[x, ! ’’’] 0 fl), all x,y E (3.19)’

If[x,ym] # O, then [x,y’"] # 0 fo,’ all x,! E R,. Now, let ,,-t > 1. Then (3.18) gives that
x" x(t+) is a zero-divisor. Thercfo, e, x(’’-t-’)+’ x is also a zero-divisor. Similarly,
ifm-s > 1, then x(’’-’-)+-x is also a zero-diviso,’. Let q k(n-t- 1)+1 or
k(m- s- 1)+ 1. Then q > 1, and (3.17)’ implies that

[x q’ x, y’"] 0 for all x, y E R,. (3.20)
Since each R (i 6 I) satisfics (3.20), the original ring R also satisfies (3.20). Thus

rn2[xq’ x, y]y’*- 0. By Lemma 2, m’2[x q’ -.r, y] 0 for all x, y 6 R. But C(R) _C Z(R),
and R has Q(n). So R has Q(m) by Lemma 11. Hence [xq’ x,y] 0 for all x,y It.
Therefore, R is commutative by Theorem H.

Similarly, if n < or m s < 1, we can see that Ixq x, y] 0 for all x, y 6 R, where
q2 k(t-n + 1)+ 1 or k(s-m + 1)+ 1, and q2 > 1. Again R is commutative by Theorem H.
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If [x,y’’2] 0, then clearly [xq x,lm:] 0 for all positive integers q and x, y E R,.
Following the same argument as above, we see that [xq x, y] 0 for all x, y E R. Therefore,
R is also commutative by Theorem H.

REMARK 2. It should be noted that in Theorem 2, if 0, and m 1, then (1.1)
gives

yS[x", y] Ix, y] for all x, y R, (3.21)

and R is commutative even if R is not assumed to be with unity 1. Indeed, the s 0 case in
(3.21) is an old theorem of Hcrstein (Wheorcm n). If s k 1 in (3.21), then R is a (Z,/)-ring
in the sensc of Streb ([10]). Hence R is co,mnutativc. Also, if R satisfies (3.21), then R is
commutative by [11, Theorem].

THEOREM 3. Let m > 1, n, s, and be fixed non-negative integers such that s m-1,
or - n- 1, and let R be a ring with unity 1 satisfying the polynomial identity (1.1). Suppose
that

(i) R has Q(m),
(ii) N(R) C_ Z(R) for s > O,
(iii) N’(R) C_ Z(R) for s > O.

Then R is commutative.
PROOF. By Lemma 10 and (ii), C(R) C_ Z(R) for s _> O. Interchange x and y in (1.1)

to get [x’’,y]y x[x,y"l, and thus y*[x",y] Ix, y"lx for all x,y c=. R. Therefore, R is
commutative by Theorem 1.

If, we replace in Theorem 1, the condition "R has Q(n)" by m and n are relatively
prime integers," then R is still commutative with SO,he restrictions on s, and t.

THEOREM 4. Let m > 1, and n > 1 be relatively prime integers, and let s, and
be fixed non-negative integers such that s y m- 1 or n- 1. Suppose that R is a ring
with unity 1 which satisfies (1.1). If further, N(R) C_ Z(R), and N’(R) C_ Z(R), for the cases
s > 0, 0; s 0, > 0; and s > 0, > 0, then R is commutative.

PROOF. As is well-known R is isonorphic to a subdirect sum of subdircctly irreducible
rings R, (i I), each of which as a homomorphic image of R satisfies the property placed on
R. Thus R can be assumed to be subdirectly irreducible.

If s 0, then (1.1) becomes [x",y] [x, ym]. Let a

_
N(R). Following the same

argument as in the proof of Lemma 8, we get n[a’-l,y] 0 and m[at’-,y] 0 for all
x,y R. Since rn and n are relatively prime, by Lemxna 6, we get [at’-,y] O. Hence,
[a, y] 0 for all y R. Thus N(R) C_ Z(R), whe, s 0 in (1.1). Therefox’e, By Lemma 7,
and the hypothesis,

C(R) c_ N(R) c_ Z(R) (3.22)

for all s, and t.

We notice that the proof of (3.13) also works in the present situation, so there exists k,
as in the proof of Theorem 2, such that

xk c= Z(R)for all x R. (3.23)

Furthermore, if s 0 in (1.1), and u E N’(R), then we obtain, as in the proof of
Theorem 2, [u,y"*l 0 and [u,y"*] 0 for all y R. Thus Lemma 5 yields u

_
Z(R).

Therefore, for all s, and t,
N’(R)

_
Z(R). (3.24)

If c Z(R), then as in the proof of Theorem 2, we see that n(c" et+’)fx, y] 0 for
all x, y 6 R, and a variation of the argument yields (c"-ct+ )Ix, y] 0 for all x, y R.
By Lemma 6, we get (c’* ct+)[x, y] 0 for M1 x, y 6 R, and similarly, (ct+a c")[x, y]
0 for all x,y R. Thus (x t’’ xt’(t+))[a.,y] 0, for ’ > 1, and (x(t+a) x’")[x,y] 0
for n -t < 1 for all x, y 6 R. By the same argument. (x k.... .rk(’+))[x, y] 0 for rn- s >
and (x(+) -c’)[x, y] 0 for , < for all x, y R.

Hence, we complete the proof by arguing as in the proof of Theorem 2, to prove that
xq’ x Z(R), or xq x Z(R), for M1 z E R, where ql, q2 are as in the proof of Theorem
2. Therefore, R is commutative by Theorem H.
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We conclude with the following special cases of Theorem 2.
COROLLARY 1 ([3, Theorem 5]). Let R be a ring with unity 1, and n > 1 be a fixed

integer. If R is n-torsion free and satisfies thc identity [x", U] [:r, ty"] for all x, y E R, then
R is commutative.

By using Proposition 1 of [1], we can assume that aay s-unital ring is a ring with unity 1.

COROLLARY 2 ([2, Lemma 2 (2)]). Let. ’, be a fixed positive integer, and let R be
an s-unital ring in which every commutatw is ,-torsion fi’ee. If R satisfies the polynomial
identity Ix’*, It] 0 for all x, It E R, then R is commutative.

COROLLARY 3 ([4, Theorem 2]). Let n _> m >_ 1 be fixed integers such that mn > 1,
and let R be an s-unital ring. Suppose every commutator in R is m!-torsion free. Further, if
R satisfies the polynomial identity Ix", U] [.r, It"*] for all a’, V R, then R is commutative.

REMARK ;3. Let R be the sul)ring of the ring of all 3 3 matrices over GF(4) such
that

R= 0 a" 0 a,b,c GF(4)
0 0 .

It is readily verified that R is non-commutative locd ring with unity, and characteristic 2.
Also R is 3-torsion free. Further, R satisfies y[x, 9] Ix, y]z2. We notice that for each
element x R, either x x 0 or x x (see [2]). Hence, R satisfies y’t[x,y] [x,it]x,
for which s m 1, and n 1. Further, the nilpotent elements, and the zero-divisors of

R are not in the center of R.
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