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ABSTRACT. We classify the shape operators of Einstein and pseudo Einstein hypersurfaces in a

conformally flat space with a symmetry called curvature collineation. We solve the fundamental

problem of finding all possible forms of non-diagonalizable shape operators. A physical example

of space-time with matter is presented to show that the energy condition has direct relation with

the diagonalizability of shape operator.
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1. INTRODUCTION. The eigenvectors of the shape operator (second fundamental form opera-

tor) of a hypersurface of a semi-Pdemannian space need not be all real. They are real for positive

definite hypersurfaces. For indefinite hypersurfaces some of them may be complex and zero length

(null). In the latter case the real eigenvectors (principal directions) may not span the tangent

space of the hypersurface at every point. If the eigenvalues (principal normal curvatures) are

real and no eigenvectors are null at every point, then the hypersurface is called proper in the

terminology used by Fialkow [1]. A hypersurface which is not proper, is called improper.

Usually one prefers to embed a hypersurface in a fiat (Euclidean or Minkowskian) space.

But, as pointed out by Goenner [2], there is no specific reason for choosing the ambient space fiat,
one can consider other ambient spaces such as a space form, a Ricci-flat space, an Einstein space

and a conformally fiat space. Fialkow [1] provided a complete classification of proper Einstein

hypersurfaces in an indefinite space form. Magid [8] has algebraically classified improper Einstein

hypersurfaces in an indefinite space form.
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The aim of this paper is to present an Mgebraic classification of proper/improper Einstein

and pseudo Einstein hypersurfaces in a conformMly flat space. An exmnple of this space-time is

considered to show that the energy condition has direct relation with the diagonalizability of the

shape operator.

DEFINITION 1.1. (Katzin et al [4]). A vector field V in a semi-Pdemannian space is said

to generate a 1-parameter group of curvature collineations if it satisfies: LvR 0, where Lv and

R denote the Lie-derivative operator along V and the Riemann curvature tensor, respectively.

Curvature collineation (6"(7) is a fundamental symmetry [4] property of semi-Pdemannian

spaces. Indeed, it is known [4] that, for Ricci-flat spaces, more familiar symmetries such as

projective and conformal collineations (including affine collineations, motions, conformal and ho-

mothetic motions) are subcases of (76’. Physically, the well-known Komar’s covariant identity [8]
(which acts as a conservation law generator in general relativity) follows naturally as a necessary

condition for a 6’(7. Thus C’(7’s are necessarily embraced by the group of general curvilinear

coordinate transformations.

We, therefore, choose a conformally flat embedding space/r admitting a 1-parameter group
of (7(7’s. Our choice of the embedded space is a class of semi-Riemannian spaces defined as

follows:

DEFINITION 1.2. A semi-Riemmmian space is said to be pseudo-Einstein if there exists a

1-form u such that

Ric xg + flu (R) u (1.1)

and g(U,U) e(e 1); where g(U,X)= u(X), Ric denotes the Ricci tensor and x,r/are scalar

functions. For r/= 0, it reduces to an Einstein space.

The above definition is motivated by

(1) Yano’s definition [11] of a pseudo-Einstein hypersurface of a Kaehlerian space, given by equa-

tion (1.1) with X, r/as constmats.

(2) Einstein’s field equations in the framework of general relativity [4]

me+{^-
I
} + ( +) (R) ,

where p and/z re the pressure and energy densities of a perfect fluid, t is the 1-form metrically

equivalent to the velocity 4-vector U and A stands for the cosmological constant.

2. SHAPE OPERATOR OF EINSTEIN HYPERSURFACES. First we state the following result

of Katzin et al [5].

LEMMA 2.1. Let a vector field V generate 6"6" in an m-dimensional conformM1y flat space. with metric g. If r is a space form then V defines a motion (isometrr) for m _> 3 nd a

conformM motion for m 2. If r is not & space form then Lvg 2ag + TRi---’, where o" and

are scalr functions and Rc is the Pdcci tensor of ir.

Katzin et al [5,6] have shown that there are essentially only two types of conformally flat

spaces admitting proper 6"6’ viz. reducible and irreducible. In the reducible case Kx x K,_x
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(scMar curvature # 0) the metric is

/to () e(),d2=ex(dz1)+ 1-
where e’s e l,K0 is the constt curvature of K_ d upper ee inces run from 2 to

n. An example of such spaces is the Einstein Static Uverse. Moreover, the CC vector is

V [V(z1), Va(z,... ,z)] where V is bitry function of z other th az1 + bz + e

and Va defines a motion in K,_. This mes that K_ is a toffy geodesic hypersurface of

K1 x K_. Thus we are motivated to sume that the tgentiM component of the CC vector

in generates a motion in M.
As the ee when is space form, h been seussed in [9], we shM1 assume not to be

a space form in the subsequent discussions.

TEOREM 2.1. If an indefinite Einstein hypersurface M of dimension n 3, is embedded

isometricMly into a conformy flat space adtting GG generated by a vector field whose

tangentiM component is Killing in M, then the shape operator A at each point of M is either

diagonMizable or c be put into one of the follong forms:

A

a 1

0 a 1

0 a

a b

where a and b are arbitrary functions on M, with respect to some speciMly chosen basis. In the

last case, n is even and the signature of the metric of M is (n/2,n/2).

PROOV: A striaghtforward application of lemma 3.1 shows

Lvg 2og + TI (2.3)

where V is the vector field generating CC in . We decompose V int its tangential part and

normal part N as:

V +N, (2.4)

N denoting the unit vector field (g(N,N) +1) normal to M and f a scalar function on M.

Let us denote arbitrary vector fields tangent to M by X, Y, Z, W. Then eqn. (2.3) obtains

g(xV, Y) + g(yV,X) 2og(X,Y) + T--(X, Y),

where 7 denotes Levi-Civita connection of J/. Employing eqn. (2.4), Gauss and Weingarten

formulae in the above yields

(Lg)(X, Y) 2ag(X, Y) + 2.fg(AX, Y) + TRic(X, Y). (2.5)
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As is conformally flat, we have

g((t, ?)2,) [--(, )g(?,) --(t, 2)g(?,)
+ g(?, 2)Ri(X, if’) g(X, )mc(Y, )]/(. Z)

{/n(n- 1)}[g(]P,)g(’,)g(,])] (2.6)

The Gauss equation for M is

9(.(X, Y)Z, W) 9(R(X, Y)Z, W)

e{g(AY, Z)g(AX, W) g(AX, Z)g(AY, W)} (2.7)

where A is the shape operator of M. Using it in (2.6) gives

g(R(X,Y)Z, W) [Ric(Y, Z)g(X, W) rtic(X,A)g(Y, W)

+ g(Y, Z)Ric(X, W) g(X, Z)mc(r, w)]/(n 1)
(2.8)

{e/n(n- 1)}[9(Y, Z)g(X, W)- g(X, Z)g(r, W)]

+ [a(AY, Z)a(AX, W) a(AX, Z)(AY, W)]

Now, if we substitute ) lTd N and 17" Y, 2 z in (2.6), then

g((N,Y)Z,N) [{Ric(N,N) (ee/n)}/(n )]g(Y, Z)

+ (/(. 1)Pdc(Y, Z).

By the substitution X W e; where {e} is an orthonormal frame in M in eqn. (2.7),
multiplying by ei 9(ei, ei) and finally summing over i, we find

Ri---(Y, Z) eg(t(N, Y)Z,N) Ri---(Y, Z) e{tr.A)g(AY, Z) g(AY, AZ)},

keeping in mind that {ei, N} constitutes an orthonormal frame in/r. Eliminating g((N, Y)Z, N)
from the last two eqns. gets

rue(Y, z) {(n- 1)/(n- 2)}[mc(Y,Z)

+ {(enrti--7(N, N) e)/n(n 1)}g(y, z) (2.9)

+ e{(tr.A)g(AY, Z) g(AY, AZ)}]

Again, substituting Y g el, multiplying ei and then summing over i; in the above eqn. yields- r 2eRi--(g,N) e{(tr.A) tr.A}. (2.10)

By feeding eqn. (2.10)into (2.9) we obtain

Rie(Y, g) {(n )/(n 2)} [Rio(Y, Z) e{(tr.A)g(AY, Z) g(AY, AZ)}]
g(X, Y)[(n 2)(F/n) ," + e((/r.A) tr.A’)]
2(,=- 1)
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Through eqn. (2.5) and the hypothesis that generates motion in M, we find

Ric(Y, Z) -(2.f/r)g(AY, Z) + pg(Y, Z)

where p is a scalar function on M. A cumbersome computation using the last two equations

shows

Q I + OA A

Q being defined by g(QX, Y)= Pat(X, r), and

enb r + {2f(n 2)/(n 1)}tr.A e[(tr.A)2 tr.A} (2.11)

8 7tr.A 2ef(n 2)/(n 1) (2.13)

Now, using the Petrov classification scheme [10] for symmetric tensors, A can be cast into the

form:

where

is an (i x i)-matrix and

nl

C1

di,i di
0 di,,i di

Bi "’. (di +l)
"’. di

di,,i

is a (2tj x 2tj)-matrix. As per our hypothesis, M is Einstein, i.e. O (r/n)I. Thus, eqn. (2.11)
implies that the orders of block matrices Bi and Cj are <_ 2. Consequently, A has blocks of type:

dAj dj
o[,]o,

0 dj -
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or their combination. The second block can be transformed into x,0 x,1 by change of the basis:

{e, ’} {-e, ’}. Eventually, eqn. (2.11) can be put as

(er/n)I I + 0

M’atching corresponding entries we observe

0 2Aj, (0 2ak)lk 0
(2.14)

where (er/n) -$. If there are any blocks with/l’s (/5’s being non-zero) then a Aj 19/2,
for every j and k. Hence a’s and A’s are all equal to 0/2. From the last relation in (2.14) we also

observe that fl’s are rdl equal. Thus the relation-set (2.14) is equivalent to:

0=2A, 0=2c,

vi (19 + V/(192 40))/2,

Obviously, A cannot have both a and A blocks, otherwise A a and/5t 0. So, if A has only

A-blocks then vi A and

A=
0 A 1

0 A
tr.A nA

A 1

0 A

From A 0/2, we get tr.A n19/2. Thus, in virtue of eqn. (2.15) we find e 2tr .A 2A
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2ef/(n- 1)T. Consequently,

A

a 1

0 a 1

0 a

"..
a 1

0 a

where a’r(t- 1) 2el. On the other hand, if A has only a-blocks then v a 4- V/(1 -2)
which cannot be real, because B # 0; and hence there cannot occur any v-term in A. Eventually,
we find that all a’s 0/2 and

A=

Thus, 0 2a a and

"-. tr.A=na=n0/2.

a b

This completes the proof.

COROLLARY 1. Under the hypothesis of theorem 2.1, if M is improper then, either (A
aI)2 O, or (A- aI) -b:I, a, b being arbitrary functions on M and I the identity operator.

3. SHAPE OPERATORS OF PSEUDO-EINSTEIN HYPERSURFACES. In this section we

study pseudo-Einstein hypersurfaces in the same context as of the pre,ceding section. We prove

the following theorem for 4-dimensional hypersurfaces only because it is cumbersome to consider

the blocks of the shape operator in higher dimensions.

THEOREM 3.1. If a 4-dimensional pseudo-Einstein hypersurface M4 is isometrically embed-

ded into a conformally fiat space jr5 admitting CC generated by a vector field whose tangential
component generates motion in M4, then the shape operator A of M4 is either diagonalizable at

each point or can be put into one of the following forms:

a a b

A=
a -b a

or or
a 1 a b

Oa -ha

v 1

0 v
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where a,b,v and r/are scalar function on M4 and e e2 1, with respect to some specially

chosen basis.

PROOF: With respect to an orthonormal basis formed by U and three orthonormal vectors

orthogonal to U, we observe that the Ricci map can be represented by

z+er/

where e g(U, U) +1. Proceeding exactly as in the proof of theorem 2.1, up to eqn. (2.11) we
find that A has blocks of type

[]or
0 i

or

_
=

Therefore, either A will be diagonalizable at each point or can be put into one of the following
forms:

(1)
v’

A 1
(2)

A1 1

0 ’1 (4)(3)
A2 1

0 A,

Plugging the above listed forms of A into eqn. (2.11) shows that the type (2) is not possible

whereas the types (3) and (4) hold only if M4 is Einstein which is taken care of by theorem 2.1.

The remaining type (1) leads to:

Thus, in this case

A
v 1

0 v

Where v 0/2 and tr.A (8ef/3T) : V/(--ee/).
COROLLARY 2.. Under the hypothesis of theorem 3.1, if M is not Einstein then A is

either diagonalizable at each point or can be put in the form

A
v 1

0 v
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with respect to some specially chosen basis.

We now interpret the physical significance of a pseudo-Einstein space in the light of the

above corollary. Einstein’s field equations of general relativity can be written in suitable units as:

1
Pdc +(^- -r)g- T (3.1)

where T is the energy-momentum tensor of matter distribution. A comparison of eqn.(3.1) with

the defining eqn.(1.1) of a pseudo Einstein space, shows that

T p + (p +p)u (R) u

at each point or

a

On the other hand, if the signature of jQ5 is

0 v

-+ + +, then we have 6 e -1, V/(-e)
V/{-(p + p)} which is always imaginary for physically realistic matter. Consequently, M is

proper. For this later case, the energy condition: p + p > 0, is equivalent to saying that M4 is

proper.

4. EXAMPLE. Isometric embeddings of space-times has been used to obtain deeper insight into

the geometrical properties of the embedded space-time. This technique has also shed some light

on a number of global questions concerning singularities and causality properties. In particular,

several physically useful exact solutions have been found by the embedding technique, at least

for some cases of low embedding class [the maximum number of extra dimensions is called the

embedding class]. In fact, the maximal analytic extension of the Schwarzschild solution [3] was

found by the method of embedding.
In support of the above, we present an example of an isometric embedding of the type of

space-time described in this paper viz., 4-dimensional space-time of general relativity with an

isotropic matter of type I [3]. For details, we refer [71.
A 4-dimensional space-time is of embedding class 1 (i.e., a hypersurface) if there exists a

symmetric tensor fb satisfying:

]abcd e(’acbd ’ad’bc), e 4-1 (Gauss)

fb; fc;b (Codazzi)

where p and # are given by
1

p+-r-^=X, p+p= r/ (3.3)

Eqn. (3.2) represents an isotropic matter of type [3] with energy density p and pressure p,

provided g(U, U) -1 (signature of M being + ++). It is remarkable to observe that such a

space is non-Einstein because otherwise we would get the non-physical state + p 0.

The signature of hr5 could be -++++ or --+++ only. If M has the former (Lorentzian)
signature then 1. Moreover, since g(U, U) -1 we have e -1. Hence V/(-er/) v/(p + p)
which is always non-zero real (because # + p > 0). Thus, in this case either A is diagonalizable
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The field equations then yield (for A 0).

1
Rab Tab + rgab e( abCc ae’

All possible tensors f corresponding to the isotropic matter or Maxwell type are known.

Precisely, there are four different cases (for details, see [7], pages 360-367). Here we mention the

following one case related to this paper:

ISOTROPIC PETROV TYPE 0 SOLUTION.

T (p + p)u (R) u + pg, f Au (R) u + Bg,

p + p 2AB > O, p 3B >0, e l

Relating this case to the equations (3.2) and (3.3) we get

1 2AB, x=2AB-3B2+-r andA=0
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