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ABSTRACT. Let A be the class of all operators T on a liilbert space H such that

R(T*kT), the range space of T*kT, is contained in R(T*k+I), for a positive integer k.

It has been shown that if T e A, there exists a unique operator C
T

on H such that

(i) T*kT T*k+ICT;
T,k+l T

k+l
(li) IICTII 2

Inf{.: . > 0 and (T*kT)(T*kT) * < . };

(ill) N(CT) N(T*kT) and

(iv) R(CT) c_ R(Tk+l)

The main objective of this paper is to characterize k-quasihyponormal; normal, and

self-adjoint operators T in A in terms of CT. Throughout the paper, unless stated

otherwise, H wlll denote a complex Hilbert space and T an operator on H, i.e., a

bounded linear transformation from H into H itself. For an operator T, we write R(T)

and N(T) to denote the range space and the null space of T.

KEY WORDS AND PHRASES. Self-adJoint, normal, unitary, quasinormal, hyponormal,

quaslhyponormal, k-quaslhyponormal, Isometry, partial isometry, null space, range

space and the projection.

1980 AMS SUBJECT CLASSIFICATION CODES. 47B20; 47B15.

I. INTRODUCTION

T is said to be quasinormal if T(T*T) (T*T)T, hyponormal if T*T )TT* or

equtvalently II ’ I xll .. k-quasihyponoral (Campbell and Gupta
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[I]) for a poslttve iateger k if T*k(T*T T’t’*)Tky 0 or equivalently

llT*’rkxll llTk+Ixll for each in H.

The purpose of this paper is to consder the class A of those operators T such

that R(T*kT) R(T*k+l) for a positive integer k. More prec[selv, our aim is

identify those operators T in A which are k-quashyponormal, normal and self-

adjolnt. The motivation is due to Embry [2] who conaldered the class of operators T

satisfying R(T)R(T*) and Patel [5] who discssed the class of operators T sat[fykng

R(T*T) R(T*2). If T A then by Douglas’ theo:em [3, eorem I] there exists a

unique operator CT such that

(i) T,kT T,k+l CT;

(T,kT) (T,kT), T,k+ Tk+(il) [[CT [2 Inf{: 0 and < }.

(Ill) N(CT) N(T*kT): and

(iv) R(CT) R(rk+l).

2. MAIN RESULTS.

By Douglas’ theorem [3, Theorem I], the class A contains all k-quaslhyponormal

operators.

THEOREM 2.1. An operator r in A is k-quas[hyponormal if and only if ____[[CT[ I.

Tk+Ix T
k+lPROOF. If IICTII I, llT*Tkxll IICT* II II xll

for all x in H and hence T is k-quaslhyponorma[.

Conversely, assume that T is k-quasihyponormal. Since

To prove our next result, we need the following lemma.

LEMMA 2. I. Let T be a quasinormal operator. Then for any positive integer k

(a) T,Tk Tk-IT,T

I(*/xll I  xll for all vectors x in H

(c) N(T*kT) c_N(T*k).
PROOF. (a) We prove it by induction on k. For k I, trivial. For k 2, again

it holds since T is quasinormal. Now assume that the result is true for any positive

integer m > 2. Then T*Tm+l (T*Tm)T (Tm- Tm-I Tm-11T*T)T (T*T)T TT*T TmT*T.
Hence by induction the result follows. (b) It is an immediate consequence of the fact

that if T ts quasinormal, then (T’T)k T*kTk for any positive integer k. (c)
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Let x e N(T*kT). Then T*kTx 0, i.e., T*T T*k-lx 0 by (a). Thus T*k-lx e N(T*T)

N(T). But N(T) c_ N(T*) since T is quasinormal. Therefore T*kx 0, i.e.,

x e N(T*k).
By using the lemma we obtain the following

THEOREM 2.2. Let T e A be a quasinormal operator. Then CT is a quasinormal

partial isometry with R(CT) R(Tk+I).

Isometry on R(Tk+I). But R(Tk+l) R(CT) N(C)+/-. Therefore C hence CT is a

partial isometry. Further, since the initial space of a partial Isometry S equals the

set of all those vectors x satisfying llSxll -llxll [4, p. 63] and since

C is an isometry on R(Tk+l), therefore R(Tk+l) e N(C) +/-, the initial space of C.
Hence R(Tk+l) N(C)

+/-
R(CT) R(CT) as R(CT) is closed.

We now prove that CT is quaslnormal. By making use of Lemma 2. again, we see

that N(CT) N(T*kT) N(T*k) N(T*k+l) N(C) since R(CT) R(Tk+I). From this it

follows that N(CT) reduces CT and since CT is a partial isometry, CT is of the form

A 0, where A is an isometry. This gives that CT commutes with C*T CT and hence CT

is quasinormal.

LEMMA 2.2. Let T 6 A be such that R(CT) R(T). Then N(T*kT) N(T).

PROOF. Since R(CT) R(Tk+l) R(T) and, by hypothesis, R(CT) R-o we

have R(CT) R(Tk+l) =...- R(T). Thus N(T*) N(T.2) N(T*k) N(T*k+I). Now,

if x 6 N(T*kT), then T*kTx 0, i.e. Tx E N(T*k) N(T*). That means T*Tx 0 or

x E N(T*T) N(T). This completes the proof.

Our next result gives a characterization of normal operators in A
THEOREM 2.3. An operator T in A is normal if and only if CT is a normal partial

Isometry with R(CT) R(T).

PROOF. Let T be normal. Then by Theorem 2.2, CT is a partial isometry with

R(CT) R(Tk+l) and hence R(CT) N(T*k+It N(T*) R(T). Thus by Lemma 2.2,

(CT (z,kz) (Z). Zhereore R(Cz) R(Z) (*)+/-= (Z) (Cz)+/-= R(C*z).
Since C C

T is the projection on R(C) and CTC is the projection on R(CT), we

conclude that CTC CCT.
Assume on the other hand that CT is a normal partial isometry with R(CT) R(T).

Since R(CT) R(Tk+l) e R(Tk) e R(T), we have R(CT) R(Tk+l)
R(Tk) R(T) and consequently N(T*)- N(T.2) -... N(C*T) N(CT) N(T*kT)
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is a

some on Tk+lx Tk+lxpartial i try R(CT) R(Tk+I), we have lT*Tkxll IC*T II II II for

each g in H. Thus llTyll llTyll for each y In R(Tk). He,lee llT*xll llTxll for

each in H, i.e., T is normal.

COROLLARY 2.1. Let T E A. Then T is normal and one-to-one if and only if CT is a

unitary operator with R(CT) R(T’)-.
PROOF. Suppose T is normal and one-to-one. Then by Theorem 2.3, CT is a normal

i
partial Isometry with R(CT) R(T). Since N(CT) N(T) {0}, we have N(CT) H and
thus CT is an Isometry and consequently CT is a unitary operator.

Conversely, if CT is a unitary operator with R(CT) R(T), T is normal by Theorem
2.3. Also by Lemma 2.2, N(T) N(T*kT) N(CT) {0}, therefore T is one-to-one.

The next corollary characterizes self-adJoint operators in A.
COROLLARY 2.2 Let T A. T is self-adjoint if and only if CT is the projection

on R(T).

PROOF. Suppose T is self-adjoint. Then by Theorem 2.3, R(CT) R(T) R(Tk+I).
Since TkT Tk+l CT and T is self-adjoint, we have Tk+l Tk+ICT i.e.,

c +l k+l. hi c z o (+l (). Ao C 0 o (----+/-
as R(T) R(CT) N(C). Therefore CT is the projection on R--.

Assume now that CT is the projection on R(T). Then R(CT)-R(T)and hence by

Lemma 2.2, N(CT) N(T,kT) N(T). Also, as in the proof of Theorem 2.3, we have

R(CT) R(Tk+l) R(T) and thus N(T*) N(T.2) N(C) N(CT) N(T)
i

Therefore T*x Tx for all x in R(Tk). Moreover T*kT Tk+lcT, implies

T*T
k

CTTk+l as C
T is self-adjolnt. But CT is the projection on R(T) R(Tk+I),

therefore CTTk+I Tk+l, That means T*y Ty for all y in R(Tk). Thus T*x Tx for

all x in H or T is self-adjoint.
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