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ABSTRACT. In this paper a Parseval-Goldstein type theorem involving the Widder poten-
tial transform and a Laplace type integral transform is given. The theorem is then shown

to yield a relationship between the/C-transform and the Laplace type integral transform.

The theorem yields some simple algorithms for evaluating infinite integrals. Using the the-

orem and its results, a number of new infinite integrals of elementary and special functions

are presented. Some illustrative examples are also given.

KEY WORDS AND PHRASES. The Widder potential transform, the Laplace traform,
the 2-transform, the E-transform the modified Bessel function of the third kind or Mac-
donald’s function.
1980 AMS SO’BJECT CI,ASSIFICATION CODES: Primary 44A10, 44A15; Secondary

38A40, 44A35.

1. INTRODUCTION
Widder [1,2] presented a systematic account of the potential transform

( )/()’[f(); ] +
d

Widder pointed out that the potential transform is related to the Poisson integral represen-

tation of a function which is harmonic in a half plane and gave several inversion formulae

for the transform and applied his results to harmonic functions. Srivastava and Singh [3]
gave the following Parseval-Goldstein type formula:

/0 j0’[J’(,); 1 (:) /() ’[(u); 1 a (..)

for the Widder potential transform. Srivastava and Yiirekli [4] gave the following Parseval-

Golstein type relation involving the Laplace transform, the Fourier sine transform nd the
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Widder potential transform:

.[f(u),zl.T’.[g(u),zldx f(z)’P[g(u),xldz (1.3)

where is the Laplace transform and .T’ is the Fourier sine transform. There axe numerous

analogous results in the literature on integral transforms. (See, for instance, Goldstein [5],
Srivastava [61, Srivastava and Panda [71 and Yiirekli [81.

The objective of this paper is to establish a Parseval-Goldstein type relation between

the potential transform and a Laplace type integral transform called 2-transform where

the 2-transform is defined as

2[f(x);Yl x e-’ f(x) dx. (1.4)

If we make a change of variable in the integral on the fight-hand side of (1.4), one

obtains

:[f(); 1 f(,/l. (1.

Comparing (1.15) with the definition of Laplace transform we obtain the following relation-

ship between the Laplace transform and the -transform

Z:[I(); 1
We also obtain identities relating the K;-transform

c[l(); ] /-g() I(,) (.7)

to he -transform, where K,,(x) is the Bessel function of the third kind (it is also known
as the Meedonald function), md the Lapla:e transform to the -transform. Using these
resulgs we show how one can extend tables of Laplace and I’Iankel transforms. (See Erdlyi
et al. [9, 101, Oberhettinger [11], Oberhettinger and Badii [12].) or definitions of special
functions that are used in the paper, the reader is referred to Oldham and Spmier [111],
and Erdlyi et al. [14].

We note that if we write .M[f(x); 9] F() where .,M represents any integral trans-

form, we mean the .M-transform of f(x) exists and it is

2. A PARSEVAL-OLDSTEIN THEOREM AND ITS COROLLARIES
LEMMA 2.1. We have

1

provided that the integrals involved converge absolutely.
PROOf: Using the definition of the -transform we obtain

:2[:2[f(x); z]; y] ze xe-r’’’f(x) dx dz (2.2)

Changing the order of integration on the fight side of (2.2), which is permissible by the
absolute convergence of integrals, we have from (2.2) that
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Now the result follows from (1.1) and (2.3).
THEOPM 2.1. We have

x 2[f(Y); z] 2[g(z); z] dz Y f(!/) P[g(z); V] dv. (2.4)

provided ha[ [he inegs involved converge absolutely.
PROOF: Using he definition of he 2-rgorm we obn

Chging he order of integration, which is peissible by he hypothesis, d hen using
[he definition of [he 2-rsform we find [ha

,[f(N); ] 2[g(z); ] d N f(v) [[g(z); ]; ] d. (2.6)

Now the rtion fofiows from mma 2.1.

MARK 2.1. We have

= ,[g(u); =l z[/(z); =l a= g(N) [f(z); ], (2.7)

since the relation (2.4) is symmetdc with respect to fd 9. Using the relations (2.4) d
(2.7) we obtn the Pe-Goltein type formula (1.2). Thus, Threm 2.1 generizes
relation (1.2).

COROLLARY 2.1. We hve

provided that he intes involved converge eblutely.
PROOf: he idengigy (2.8) follows iediately er lein h() [();] in

ghe relation (2.4).
COROLLARY 2.2. We have

(2.9)

provided that the integrals involved converge absolutely.
PROOF: We set f(!/) e-=’’’ in Theorem 2.1. Then

LT,2[f(tJ); x] !/e
-(=’+=’)’’

1

.( + x)"

Now the assertion (2.9) follows from (2.4) and (2.10).
THEOIZEM 2.2. If Rev > -I

1,ICy[!/,+’ f(!/); z] 2" z,+1/2 2 x2"-2 2 /(!/); -’
provided that the integrals involved are absolutely convergent.

(2.0)

(2.11)
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PROOF: We set g(u) u"J,,(zu) in Theorem 2.1, where J,, is the Bessel function of
the first kind of order v. Using relation (1.6) and then making use of the Laplace transform
table (see [9, formula (30), p. 185]) we have

1 [, (zu1/2
1 z z__ (2.12)- Cxp--

Now in order to evaluate the potential transform of the function g(u) we use Lernrna 2.1

and obtain

The ;-transform on the right-hand side of (2.12) may be evaluated by using the relation

(1.6) and then the Laplace ransform table (see [9, formula (20), p. 146]). Thus

P[(,I; 1 (- (.

Substituting the results (2.12) and (2.14) into (2.4) of Theorem 2.1 gives

/0 ()/0Z --2--Iy+ K(zy) f(y) dy exp --x :=[y(y); x] dx. (2.15)

Now the assertion follows by making the change of variable x t/2 and then by using the

definitions of the K:-transform and the :2-transform.
It is well known that

(r)1/2 e-’, (2.16):() :_()

(see [13, p. 306]). Using (2.11) and (2.16) we obtain the identities in the following corollary:
COROLLARY 2.3. We have

provided ghag he inte involved are ablutely convergent.. EXAMPLES
We shN1 illustrate he above resets by sever exples. In the following exple

EXAMPLE .1. We show that

[.-’;z] =.-,z-r 5 + r 5 + + ()

provided that Re p > IRe v[- ].
We t f(y) y--] in Threm 3.2. Ming u d identity (1.6) we obtn

1]
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Substituting (3.2) into (2.11) we findprovided that Re(p- u) > .
Now forma (3.1) follows ter evMuating the -trform on the right side of equation

(3.3).
InteM trfforms evMuated in Exples 3.2, 3.4 d 3.8, d in the appendix, to

the best of the author’s knowledge, M1 new.

EXAMPLE 3.2. We show that

g +i.; .()-- r( + )+s__,l (a.)

where Re > -2 d S, is the Lommel function.

We t I() sin in hrem .2. Ming use of (1.6) d hen tables of Laplace
ransfor (see [12, foula 7.1, p.4l) we obtn

1[ 1]+sin; = sin;

+ (a’)

where 1/4a. Substituting the function f into (2.11), d using (.g) d (1.6), we find

L=[=+’+=;C

Now (3.) fonow f,om tm of Lp= t,fo,= ( [12, fo= 3.1, p.22]).
Using the techque of xple 3.2, we provide tion resets in the appendix.

In the following exple we obtn a well known result (Erd]yi [9, forma (30) p.

153]) a speci ce of Exple 3.2.

EXAMPLE 3.3. We show that

[sin(ag’);,]:{(- C(,))cost+ (- S(,))sin,}, (3.7)

where t= z/(ga), =d C(t) =d S(t) e the esnel integs.
We t -1/2 in (3.g). Using (2.16) =d the definition of the -tr=sfo we

obtn

[sina;z]=S (z)a-’, g (3.s)

It follows from a foa on the Loel function ( [12, p. glfi]) that

s_,,(t) [3(t)+ _(t)- (t) _(t)], (3.)

where J(t) is the Bessel fction of order d J(t) is the Anger-Weber function of

order . However, we have

J,(t) sint =d J_,(t) cost, (3.10)
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see [13, p. 306] and

.11/2 (t) t{[C(t S(t)] cost + [C(t) + S(t)] sint} (3.11)

J_1/2(t) V/-- {[C(t)+ S(t)] cost- [C(t)- S(t)] sint} (3.12)

see Oberhettinger and Badii [12, p. 415].
Now, substituting (3.10), (3.11) and (3.12) into (3.9) and then using (3.8) we obtain

formula (3.7).
EXAMPLE 3.4. We show that

(z).. (x+4ax:) -1/2;z =2 (ra)-nr + exp a K a
provided that -1 < Rev < 1, Rea > 0.

We set f(y) y-exp(-ay) in Theorem 2.2. Making use of (1.6) and then using
tables of Laplace transforms (see [12, formula 5.3, p.37]), we obtain

2-"F ( ) x-" (4ax2 + 1) "-1/2 (3.14)

provided that Re v < 1. Using tables of Hankel transforms (see [10, formula (24), p. 132])
we obtain

1 ,r rz 1/2

provided that Rea > 0 and -1 < lieu < 1. Now formula (3.13) follows from substituting
(Z.l) =d (Z.) i=to (z0) =d thi (1.).

EXAMPLE 3.5. We show tha

4 (az-).
where Eft(x) is the eor fction.

We set f(y) y-z sin ay in Corolly 2.3. Ming u of (1.6) d then tables of

inteM trffos (s [12, formda 7.76, p. 66]) we obtn

1
sin; = sinl;

2

It follows from ebles of Laplace ros (s [12, fortune 7., p. 4])

Now fortune (.16) follows from subsituging (.18) d (.19) into (2.17). Sillily,
forma (.17) follows from substituting (.18) d (.19) ingo (2.18) of Corolly 2..
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APPENDIX
A. SOME K:-TRANSFORM PAIRS

The following formulae (A.1) through (A.5) are consequences of Theorem 2.2. The

techniques of Example 3.1 and 3.2 are used to obtain these results.

,, y’+1/2 sinay2;z 2(2a)-+1/2 F(v +2)z+’] S__,],] aa (A.1)

where Re >-2.

c +1/2o; -()-"-1/2 r(,+ 1)/ s__,1/2 (a.)

where Re u >-1.

1 z-1/2 [Ci (a) sin (a) si (a) cs (a) (A.3)



where Ci(x) and si(x) are cosine and sine integrals, respectively.

C2[V-1/2sinavZ;z] =z-]-Ci aa sin aa -si a c g +

zl_, [-Ci ()cos ()-si ()sin ()] (A.4)

/Cv !/V+1/2sin2a!/2; z 2"-4(2a)-"- r(v + 3)zv+ s_v_,1/2 aa (A.5)

where Re v > -3.

B. SOME LAPLACE TRANSFORM PAIRS
The following formulae (B.1) through (B.5) result from Theorem 2.2 and Corollary

2.3. The techniques of Example 3.4 and 3.5 are used to obtain these results.

. [z_2g(4az2 z) t_fi+S; z] z’’
t’ (v+12 z z

-p exp(aa)W,,1/2(aa) (B.1)

where 2Re/ < 1 -[Rev[ Rea > 0 and Wt,,. is the Whittaker function.

a- z1/2

+ z1/2 (B.2)

where Re p > IRe vl- , D, is the parabolic cylinder function and mFn is the hypergeo-
metric function.

sn (rCt= ()) ] r( )
x1/2 (x2 +x +1/2_

sin -+v
_

s -+ (B.3)

where -1 < Rep < 2 and Y. is the Bessel function of the second kind of order v.

where Re v > -1.

x-’ exp P -v, xx ;z r’ 22"+3 a1/2 F v + S_2._., 1/2 az1/2 (B.5)

where Re v > -I.


