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ABSTRACT. The translation complement of the flag transitive plane of order 49 [Proc.
Amer. Math. Soc. 32 (1972), 256-262]) constructed by Rao is computed. It is shown that
the flag transitive group itself is the trauslation complement and it is a solvable

group of order 600.

1. INTRODUCTILON.

Rao [1] has constructed a non-Desarguesian translation plane w of order 49 and
exhibited a collineation group that is transitive on the distinguished points of w.
In this paper we have computed the translation complement G of = and shown that the
flag transitive collineation group is the translation complement of w. Further, G is

a solvable group of order 600.

2. DESCRIPTION OF » AND ITS FLAG TRANSITIVE COLLINEATION GROUP.

Throughout this paper F, (a,b,c,d), det M and d.p. denote the finite field GF(7),

the two by two matrix (::), the determinant of M and the distinguished point

respectively.
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The translation plane = under study was constructed through a l-spread set £ over
F (see Lemma 3.1 of [1, p.258]) whosz elements L,, 1| < 1 < 49, were generated by
L. = (AL,P) A
i+1 i
where A = (1,0;1,4), P = (5,6;0,6), Ll = (0,0;0,0) and [‘25 = (2,0;5,3) and it may be
constructed as follows:
Let V ={(x,9)|x,y € FxF, y = xL;} and V_= {(0,y)]0 = (0,0),y € FxF}. The
incidence structure whose points are the vectors of F[‘ = V and whose lines
are Vi, 0 <1< 49, and their right cosets in the additive group of V with inclusion

as the incidence relation is the translation plane .

Any nonsingular linear transformation on V induces a collineation of = if and
only {f the 1linear transformation permites the subspaces V , 0 < i < 49, among
themselves. Lemma 4.1 of [1] and Theorem 1 of [2] are now used in this paper to

compute the collineations of w. Rao has shown that the lienar transformations
A A uv
Rs(P o)ands-(wz)

where U = (0,3;5,0), V = (3,5;0,5), W = (4,5;2,5) and Z = (6,0;2,1) on V induce
collineations on w and their actions on the set of d.p.s. of ware
R:(0,1,2,...,24)(25,26,27,...,49)
$:(0,38)(1,45,24,31)(2,27,23,49) (3,34,22,42) (4,41,21,35)
(5,48,20,28)(6,30,19,46)(7,37,18,39)(8,44,17,32)
(9,26,16,25)(10,33,15,43)(11,40,14,36)(12,47,,13,29).

From the actions of R and S, it is clear that the group G' = <R,S> is transitive

on the set of d.p.s of = and consequently G' is flag transitive group of .

3. SPREAD SETS OF w AND SOME OF THEIR PROPERTIES.

We say that a spread set over F of x has a det. structure (al,a2 18453, 185 ,a6) if
the nunber of matrices of the spread set which are of determinant i is at, 1 <1< 6.

It may be noted that the spread set L of w was counstructed by taking Vo ,Vl
and V2 as the fundamental subspaces (x = y,y = O and y = x respectively) and the det.
strucutre of £ is (9,9,6,8,8,8). We now construct another l-spread set &' from
L of wwith the fundamental subspaces vo,v38 and Vl', since the spread set 2 is not
amenable for easy computations and we study some properties of &' and det. structures
of certain matrix representative sets of wx. This information 1is useful in the

computation of the translation complement G of =.

Let T be a 4x4 matrix given by T = (g g) where C = (5,6;1,3), D = (4,4;5,0),

I =(1,0; 0,1) and O is the 2x2 zero matrix. Define for each Lie 2,1 <1 < 49,
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M, =C +
‘4i c LiD

Let £' = (M|l < i < 49}, T™e matrices M/, | < L < 49 are listed in table 3.1. The

entry a,b under the heading C.P. of Hi indicates that the matrix Mi has the

characteristic polynomial A2+ax + b, It may be noted that the det. structure of &' is

(4,12,6,12,6,8). T A,B € GL(2,F) then the det. stracture of A '2'B is
(4,12,6,12,6,8) Lf det A'B = 1

(12,4,6,12,8,6) if det Alg =2

(6,6,4,8,12,12) Lf det A”'B

3
(12,12,8,4,6,6) if det A~ B = 4
(6,8,12,6,46,12) if det A B =75
(8,6,12,6,12,4) 1f det A" B = 6

We say that the above det. structures are the allied det. structures of &' .

Table 3.1
i My C.P. of M i My C.P. of M,
1 (5,6;1,3) 6,2 26 (2,5;0,6) 6,5
2 (2,3;6,3) 2,2 27 (4,2;3,6) 4,4
3 (1,5;1,0) 6,2 28 (5,534,3) 6,2
4 (1,0;0,1) 5,1 29 (6,2;2,0) 1,3
5 (0,2;5,4) 3,4 30 (4,5;0,5) 5,6
6 (4,0;1,5) 5,6 31 (1,63;6,5) 1,4
7 (2,4;55,6) 6,6 32 (6,653,1) 0,2
8 0,1;3,2) 5,4 33 (5,432,1) 1,4
9 (5,2;0,2) 0,3 34 (6,1;0,3) 5,4
10 (3,3;2,5) 6,2 35 (1,3;4,6) 0,1
11 (4,6;2,2) 1,3 36 (5,3;3,0) 2,5
12 (0,4;4,5) 2,5 37 (3,2;5,3) 1,6
13 (3,5;0,4) 0,5 38 (0,0;0,0)
14 (2,1;2,6) 6,3 39 (4,1;5,1) 2,6
15 (0,652,4) 3,2 40 (0,536,1) 6,5
16 (6,434,2) 6,3 41 (3,431,4) 0,1
17 (0,3;1,1) 6,4 42 (6,3;5,2) 6,4
18 (5,0;6,4) 5,6 43 (4,3;4,4) 6,4
19 (2,0;3,3) 2,6 44 (1,2;5,5) 1,2
20 (4,4;6,0) 3,4 45 (3,634,0) 4,4
21 (2,2;4,1) 4,1 46 (2,6;1,6) 6,6
22 (3,1;3,4) 0,2 47 (6,5;6,2) 6,3
23 (5,1;5,0) 2,2 48 (1,4;2,3) 3,2
24 (1,1;3,5) 1,2 49 (3,0;6,6) 5,4
25 (6,0;1,2) 6,5

The planes associated with £ and &' are isomorphic and the isomorphism is given
by T. Without any loss of generality we take the plane associated with L' as =
since &' is one of the spread sets of wn. The collineations R and S now become the
collineatons a and § of w, where a = T-IRT, § = T-IST. The actions of a and § on the

set of d.p.s of w are same as R and S. Therefore < a,§ > is8 the flag transitive
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collineation group of m. Since § is a collineation of n, 62 = (g g) where Q =
(2,5;3,5), R = (3,2;5,4) is also a collienatlon of = and (ts action on the set of
dep.s of n Ls given by
62: () (38)(1,24)(2,23)(3,22)(4,21)(5,20)(6,19)(7,18)
(3,17)(9,16)(10,15) (11,14) (12,13)(25,26)(27,49)
(28,48)(29,47)(30,46)(31,45)(32,44)(33,43)(34,42)
(35,41)(36,40)(37,39)

LEMMA 3.1. A-l!;' A ="', if and only if A is a scalar matrix.
PROOF. If A is a scalar matrix then the lemma follows trivially. Conversely
suppose that A—ll' A= {A‘IMA/M € L'} = L'. From table 3.l. we notice that %' contaiuns

bl

:‘49 and MH with the characterlstic polynomials xz +3and A° +5 respectively and no

other matrix of £' has these polynomials as the characteristic polynomial. Therefore,
-1 -1

we have, A MgA = M9 and A M13A = Ml’}' Taking A = (a,b;c,d) and solving the

simultaneous equations obtained from M9A = AM9 and M“A = AM.l3 we get b =c¢ = 0 and

a = d. Hence the lemma.

LEMMA 3.2. Let Mk € 2'. The spread sets £' and &'M !

k  Are conjugate Lf k=4, 21

and are not conjugate otherwise.
PROOF. The first part of the lemma follows from lemma 3.1 and the collineation

62 when k=4 and k = 21 respectively. 1If £&' and !,'M;l are conjugate then their det.

structures must be same and this is possible if the det Mk = 1. Therefore %'

and % M;l

determinant 1 are Mk,kﬂlo,Zl,'iS and 41. If k=35 then Mllul:l el'M-l and 1its

are not conjugate {if deth#l. The wmatrices of &' which are of

characteristic polynomial is Az + 4X + 3. The spread sets &' and 2',M are not

conjugate since £' does not contain a matrix with the characteristic polyn:rfial
A2+ 4) +3. We reject k=41 by observing the characteristic polynomial of M3M‘:l and
using the same argument as in the previous case. The lemma now follows.

Let Mk € L'. The det. structures of &' - Mk = {M-Mkl M e 2,'}‘ are computed and are
furnished in the table 3.2 for specified values of k. This information is useful in

the sequel.
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Table 3.2.

k The det. structure k The det. structure

of l’—Mk of l'-Mk
1 (9,9,6,8,8,8) 25 (6,10,8,4,14,6)
2 (6,7,11,7,11,6) 27 (6,11,10,11,4,6)
3 (7,7,8,6,10,10) 28 (,8,5,9,12,9)
4 (6,10,8,6,10,8) 29 (6,4,14,10,8,6)
5 (13,4,5,13,8,5) 30 (12,5,6,7,11,7)
6 (8,6,10,6,10,8) 31 (7,10,6,9,5,11)
7 (5,6,11,5,10,11) 32 (12,7,11,5,6,7)
8 (7,7,10,12,6,6) 33 (8,5,5,9,9,12)
9 (6,6,10,8,9,9) 34 (5,9,8,16,6,4)
10 (2,10,8,10,8,10) 35 (16,9,4,5,6,8)
11 (9,2,10,9,8,10) 36 (11,6,10,11,6,4)
12 (10,6,7,10,8,7) 37 (10,9,11,7,5,6)

4., THE TRANSLATION COMPLEMENT G OF .

Let G0 be the group of all collineations of = that fix the d.p. 0; G0,38 be the
group of all collineations of = that fix the d.p.s. 0 and 38 and G0,38,A be the group
of all collineations that fix the d.p.s 0, 38 and 4.

LEMMA 4.1. G is generated by scalar collineations and it is of order 6.

0,38,4
PROOF. Any collineation o ¢ 00,38,4

A € GL(2,F), satisfying the condition that for every matrix m € L' there exists
a matrix N e £' such that A-lMA = N. That {is, A-ll' A= 2'. By lemma 3.1 we have A =

(a,0;0,a), a ¢ F, a # 0 and oalways induces a collineation of = fixing all the d.p.s.

is of the form o= (3 g) for some

of m. Such a collineation o0 1is called a scalar collineation. 1If a is a generator of
F then G =< o> and it is of order 6. Hence the lemma.
0,38,4 2
LEMMA 4.2. G0 38 = <§"> and it is of order 12.
’
PROOF. Any collineation B € G
0,38

A,B ¢ GL(2,F). Further A and B must satisfy the condition that for each

is of the form B = (3 g) for some

matrix M € &' there exists a matrix N € £' such that A_IMBla N. Taking M = M4 we get
a condition that A-IB € L'. Let A-IB = Mk for some k, 1 € k < 49, k # 38. Then we
obtain that the spread sets L' and &'M

kl are conjugate. By lemma 3.2 we have k=4 and

21. Therefore every collineation B ¢ G0 18 either fixes the d.p. 4 or maps the d.p. 4
’
onto the d.p. 21 and hence B either fixes the d.p. 4 or interchanges the d.p.s 4 and

2l. Since 62 is a collineation of G

0,38 interchanging the d.p.s 4 and 21,

we have

G §2 = <o,6> = <65

0,38 = 0,38,4 ©0,38,4

since < o> <62>. Further, 'GO 38| = 2|G 12. Hence the lemma.
’

LEMMA 4.3. GO = GO,38.

PROOF. If y ¢ GO and maps the d.p. 38 onto the d.p.k then § is of the form
§ = (g g) for some A,B and D ¢ GL(2,F), satisfying the condition that for each matrix
M € L' there exits a matrix N ¢ 2' such that A_I(B + MD) = N and A-lB = Mk' That {is,

for every matrix M € ' there exists a matrix N € 2' such that N-Mk = A_lMD. Suppose

0,38,4' =

that the collineation y maps the d.p.k onto the d.p.k' then 6_2yé2 € Go and maps the
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d.p. 38 onto the d.p.k'. Observing the action of 62 on the d.p.s, it is therefore

enough if we take the values of k from ([,25,j| I <1 <11, 27 < j € 37}. For these
1

values of k the det. stcucture of £' - Mk t5 same as the det. structure of A &' D.
That is, for these values of k the det. structure of &' - Mk must coincide with one of
the allled det. structure of &', This 1is nat possible (see table 3.2).

f v ¢ G0 then y fixes the d.p. 38 and therefore y ¢ G Hence the lemma.

0,38°
THEOREM 4.4. The translation complement G of w Ils <a,8> and it Is a solvable
group of order 600.
PROOF. Since <a,8> is transitive on the set of all d.p.s

49
of n, G = G,a. where a, {s a collineation of = which maps the d.p. 0 onto the d.p.

I and 1t ;ay? ge{taken frf)m {a,8>. The order of G = 50x(order of GO) = 600. 1In view
of lemma 4.3, G = <a,8>. Notice that 6—1u6 = u7 and G <a> (e} is a solvable series
of G. Therefore G is a solvable group and hence the theorem.

[t is 1interesting to note that the flag traunsitive group of = itself is the
translation complement of m and the two flag transitive planes of order 25 constructed

by Foulser [3] also possess this property [4,5].
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