BEST APPROXIMATION IN ORLICZ SPACES

H. AL-MINAWI and S. AYESH

Department of Mathematics Kuwait University P.O. BOX 5969, 130 Safat Kuwait

(Received April 17, 1989 and in revised form December 23, 1989)

ABSTRACT. Let X be a real Banach space and (Ω, μ) be a finite measure space and ϕ be a strictly increasing convex continuous function on $[0,\infty)$ with $\phi(0) = 0$. The space $L_{\phi}(\mu, X)$ is the set of all measurable functions f with values in X such that

 $\int_{\Omega} \phi(||c^{-1}f(t)||)d\mu(t) < \infty \text{ for some } c > 0. \text{ One of the main results of this paper is:}$

"For a closed subspace Y of X, $L_{\phi}(\mu, Y)$ is proximinal in $L_{\phi}(\mu, X)$ if and only if $L^{l}(\mu, Y)$ is proximinal in $L^{l}(\mu, X)$ ". As a result if Y is reflexive subspace of X, then $L_{\phi}(\phi, Y)$ is proximinal in $L_{\phi}(\mu, X)$. Other results on proximinality of subspaces of $L_{\phi}(\mu, X)$ are proved.

1. INTRODUCTION.

Let ϕ be a convex Orlicz function, i.e. ϕ is a continuous, strictly increasing convex function defined on $[0,\infty)$ with $\phi(0) = 0$ and let (Ω,μ) be a finite measure. For a real Banach space X, let

$$L_{\phi}(\mu, X) = \{\text{measurable function } f: \Omega + X: \int_{\Omega} \phi(||c^{-1}f(t)||)d\mu(t) < \infty$$

for some c > 0. Define a norm on $L_{\mu}(\mu, X)$ by

$$\left|\left|f\right|\right|_{\phi} = \inf \{c > 0: \int_{\Omega} \phi(\left|\left|c^{-1}f(t)\right|\right|)d\mu(t) < 1\}.$$

A subspace Y in a Banach space X is called proximinal if for each x \in X there is at least one y \in Y such that $||x - y|| = d(x,y)=\inf \{||x-h||, h \in Y\}$. The element y is called best approximant of x in Y. Set $P(x,Y) = \{y \in Y: d(x,y) = ||x-y||\}$.

In this paper we prove that for a closed subspace Y of a Banach space X, $L_{\phi}(\mu,Y)$ is proximinal in $L_{\phi}(\mu,X)$ if and only if $L^{1}(\mu,Y)$ is proximinal in $L^{1}(\mu,X)$. In [1] Deeb and Khalil, have shown the same result for the linear metric space $L_{\phi}(\mu,X)$ with ϕ modulus function and some Banach space X. As a consequence, if Y is a reflexive subspace of a Banach space X then $L_{\varphi}(\mu,Y)$ is proximinal in $L_{\varphi}(\mu,X).$

The proximinality of some closed subspaces in X are discussed. Throughout this paper Ω will be the unit interval [0,1], ϕ convex, strictly increasing with $\phi(0) = 0$, $\phi(1) = 1$ and X is a Banach space. See Deeb and Khalil [1,2,3], Light and Cheney [4], and Khalil [5] for more details about proximinality and related topics.

2. PROXIMINALITY IN $L_{\phi}(\mu, X)$. LEMMA 2.1. If ϕ is convex, then $L_{\phi}(\mu, X) \subseteq L^{1}(\mu, X)$. PROOF. Let $f \in L_{\phi}(\mu, X)$, then

 $\int_{0}^{1} \phi(||c^{-1}f(t)||)d\mu(t) < M \text{ for some } c \text{ and some } M$

By Jensen's Inequality, [6]

$$\phi\left(\int\limits_{0}^{1} \left|\left|c^{-1}f(t)\right|\right| d\mu(t)\right) \leq \int\limits_{0}^{1} \phi\left(\left|\left|c^{-1}f(t)\right|\right|\right) d\mu(t) < M$$

or

$$\phi(\int_{0}^{1} \left| \left| e^{-1} f(t) \right| \right| d\mu(t)) < M.$$

Hence

$$\int_{0}^{1} \left| \left| c^{-1} f(t) \right| \right| \, d\mu(t) < \phi^{-1}(M).$$

Therefore

$$\int_{0}^{1} \left| \left| f(t) \right| \right| d\mu(t) < c \phi^{-1}(M) < \infty.$$

Hence $f \in L^{1}(\mu, X)$.

LEMMA 2.2. Let Y be a subspace of X, then for each f $\in L_{\phi}(\mu,X)$

dist(f,
$$L_{\phi}(\mu, Y)$$
) = inf{c > 0: $\int_{0}^{1} \phi | c^{-1} dist(f(t), Y) | d\mu(t) < 1$ }.

PROOF. For any $g \in L_{\phi}(\mu, Y)$ we have,

$$\begin{split} \left| \left| f - g \right| \right|_{\phi} &= \inf \{ c > 0 \colon \int_{0}^{1} \left(\left| \left| c^{-1}(f(t) - g(t)) \right| \right| \right) d\mu(t) < 1 \} \\ &> \inf \{ c > 0 \colon \int_{0}^{1} \phi(\left| c^{-1} dist(f(t), Y) \right|) d\mu(t) < 1 \}. \end{split}$$

By taking the infimum over g ϵ $L_{\dot{\varphi}}(\mu,Y)$ we get

dist(f,L_{$$\phi$$}(μ ,Y)) > inf {c > 0: $\int_{0}^{1} \phi(|c^{-1}dist(f(t),Y)|)d\phi(t) < 1$ }.

Conversely, let $\epsilon>0$ and let f' be a simple function in $L_{\varphi}(\mu,X),$ such that

$$\left|\left|f-f'\right|\right|_{\phi} < \varepsilon$$
. Write $f' = \sum_{i=1}^{n} \chi_{i} x_{i}$, where $x_{i} \in X$ and χ_{i} are the characteristic

functions on A_i which are disjoint measurable sets in [0,1]. It is clear that f' ϵ L $_{\varphi}(\mu,X)$. Select h_i ϵ Y such that

$$\phi(c^{-1}||x_i - h_i||) < \phi[c^{-1}dist(x_i, Y) + \varepsilon], \quad \text{for some } c > 0.$$

Let
$$g = \sum_{i=1}^{n} x_i h_i$$
, then
$$\int_{0}^{1} \phi(||c^{-1}g(t)||) d\mu(t) = \sum_{i=1}^{n} \phi(||c^{-1}h_i||) \mu(A_i) < \infty.$$

Hence $g \in L_{\phi}(\mu, Y)$, then

$$\left|\left|f-g\right|\right|_{\phi} = \left|\left|f-f'+f'-g\right|\right|_{\phi} < \varepsilon + \left|\left|f'-g\right|\right|_{\phi}$$

But dist(f, $L_{\phi}(\mu, Y)$) < $||f-g||_{\phi}$

$$\begin{aligned} & \epsilon + \inf \{c > 0; \int_{0}^{1} \phi(c^{-1} | |f'(t) - g(t) | |) d\mu(t) \leq 1 \} \\ &= \epsilon + \inf \{c > 0; \sum_{i=1}^{n} \int \phi(c^{-1} | | x_i - h_i | |) d\mu(t) \leq 1 \} \\ &= \phi + \inf \{c > 0; \sum_{i=1}^{n} \phi(c^{-1} | | x_i - h_i | |) \mu(A_i) \leq 1 \} \\ &\leq \epsilon + \inf \{c > 0; \sum_{i=1}^{n} \phi[c^{-1} dist(x_i, Y) + \epsilon] \mu(A_i) \leq 1 \} \\ &= \epsilon + \inf \{c > 0; \int_{0}^{1} \phi[c^{-1} dist(f'(t), Y) + \epsilon] d\mu(t) \leq 1 \} \\ &\leq \epsilon + \inf \{c > 0; \int_{0}^{1} \phi(c^{-1} dist(f(t), Y) + | |f(t) - f'(t) | | + \epsilon) d\mu(t) < 1 \} \\ &\leq \epsilon + \inf \{c > 0; \int_{0}^{1} \phi(c^{-1} dist(f(t), Y) + 2\epsilon) d\mu(t) \leq 1 \}. \end{aligned}$$

Since ε is arbitrary, we have

dist(f,L_{$$\phi$$}(μ ,Y)) < inf{c > 0: $\int_{0}^{1} \phi(c^{-1}dist(f(t),Y))d\mu(t) < 1$ }.

REMARK 2.1. For $f \in L_{\phi}(\mu, X)$,

$$\left|\left|f\right|\right|_{\phi} = \inf\{c > 0: \int_{0}^{1} \phi(\frac{\left|\left|f(t)\right|\right|}{c})d\mu(t) \le 1\} = C_{o}$$

such that $\int_{0}^{1} \phi(\frac{\left|\left|f(t)\right|\right|}{C_{o}})d\mu(t) = 1.$

COROLLARY 2.1. Let Y be a closed subspace of X. To an element f of $L_{\phi}(\mu, X)$, g of $L_{\phi}(\mu, Y)$ is a best approximant of f in $L_{\phi}(\mu, Y)$ if and only if g(t) is a best approximant of f(t) in Y.

PROOF. Let g(t) be a best appoximant of f(t) in Y. This means that

$$\left|\left|f(t) - g(t)\right|\right| \le \left|\left|f(t) - y\right|\right|$$
 for all t and for all y ε Y.

It follows that for any h $\in L_{\phi}(\mu, Y)$

$$||f(t) - g(t)|| \le ||f(t) - h(t)||$$
 for all t.

Since $\boldsymbol{\varphi}$ is increasing, we have

$$\phi(c^{-1}||f(t) - g(t)||) \le \phi(c^{-1}||f(t) - h(t)||)$$
 for any $c > 0$.

Then

$$\int_{0}^{1} \phi(e^{-1}||f(t) - g(t)||) d\mu(t) \leq \int_{0}^{1} \phi(e^{-1}||f(t) - h(t)||) d\mu(t).$$

Therefore

$$\inf \{c > 0: \int_{0}^{1} \phi(c^{-1} | | f(t) - g(t) | |) d\mu(t) \le 1\} \le \inf \{c > 0: \int_{0}^{1} \phi(c^{-1} | | f(t) - h(t) | | d\mu(t) \le 1\}$$

or

$$\left|\left|f-g\right|\right|_{\phi} \leq \left|\left|f-h\right|\right|_{\phi} \text{ for a ll } h \in L_{\phi}(\mu, Y).$$

Conversely, let g be a best approximant of f in $L_{\phi}(\mu, Y)$, then $dist(f, L_{\phi}(\mu, Y)) = ||f-g||_{\phi}$. By Lemma 2.2 and the previous remark, we have $||f-g||_{\phi} = inf\{c > 0: \int_{0}^{1} \phi(c^{-1}dist(f(t), Y))d\mu(t) \le 1\} = c_{o}$ such that $\int_{0}^{1} \phi(\frac{|f(t)-g(t)||}{c_{o}}) d\mu(t) = \int_{0}^{1} \phi(\frac{(dist(f(t), Y))}{c_{o}}) d\mu(t) = 1.$ Hence $\int_{0}^{1} [\phi(c_{o}^{-1})||f(t)-g(t)||) - \phi(c_{o}^{-1}dist(f(t), Y))]d\mu(t) = 0$

since ϕ is strictly increasing and $\phi(c_0^{-1}||f(t)-g(t)||) > \phi(c_0^{-1}dist(f(t),Y))$ then ||f(t)-g(t)|| = dist(f(t),Y).

Now we prove the main theorem of this paper. THEOREM 2.1. Let Y be a closed subspace of X, then the following are equivalent:

- (i) $L_{\phi}(\mu, Y)$ is proximinal in $L_{\phi}(\mu, X)$
- (ii) $L^{1}(\mu, Y)$ is proximinal in $L^{1}(\mu, X)$.

PROOF. (ii) + (i). Let $f \in L_{\phi}(\mu, X)$, then by Lemma 2.1 $f \in L^{1}(\mu, X)$. By the assumption, there exists $g \in L^{1}(\mu, Y)$ such that

 $\left|\left|f-g\right|\right|_{1} \leq \left|\left|f-h\right|\right|_{1}$ for every $h \in L^{1}(\mu, Y)$.

By lemma 2.10 [3], we have

$$||f(t) - g(t)|| \leq ||f(t) - y||$$
 for all t and for all y $\in Y$.

Hence by Corollary 2.1 it follows that g is a best approximant of f in $L_{\phi}(\mu, Y)$.

Conversely: (i) + (ii). Define a map

$$J: L^1(\mu, X) \to L_{\emptyset}(\mu, X) \text{ by } J(f) = \hat{f} \text{ where } \hat{f}(t) = \frac{\emptyset^{-1}(||f(t)||)}{||f(t)||} f(t)$$

if $f(t) \neq 0$, and zero otherwise. Then for c = 1

$$\int_{0}^{1} \phi(||c^{-1}\hat{f}(t)||)d\mu(t) = \int_{0}^{1} \phi(||\frac{(\phi^{-1}(||f(t)||)}{||f(t)||} f(t)||)d\mu(t))$$
$$= \int_{0}^{1} \phi(||f(t)||)d\mu(t) < \infty$$

for all $f \in L^{1}(\mu, X)$. Hence $J(f) \in L_{\phi}(\mu, X)$. Since ϕ is strictly increasing, it follows that J is (1-1). To show that J is onto, let $g \in L_{\phi}(\mu, X)$, then take

$$f(t) = \frac{\phi(|g(t)|)}{|g(t)|} g(t)$$

if $g(t) \neq 0$ and zero otherwise. Clearly $f \in L^{1}(\mu, X)$ and

$$J(f) = \frac{\phi^{-1}(||f(t)||)}{||f(t)||} f(t)$$

= $\frac{\phi^{-1}(\phi(||g(t)||))}{\phi(||g(t)||)} = \frac{\phi(||g(t)||)}{||g(t)||} g(t)$
= $g(t)$.

Thus J is onto. Now let $f \in L^1(\mu, X)$, then $\hat{f} \in L_{\phi}(\mu, X)$. By assumption there exists $\hat{g} \in L_{\phi}(\mu, Y)$ such that

$$\left|\left|\hat{f} - \hat{g}\right|\right|_{\varphi} \leq \left|\left|\hat{f} - \hat{h}\right|\right|_{\varphi} \text{ for all } \hat{h} \in L_{\varphi}(\mu, Y),$$

then by Corollary 2.1 we have

$$\begin{aligned} \left\| \hat{f}(t) - \hat{g}(t) \right\| &\leq \left\| \hat{f}(t) - y \right\| \text{ for all } y \in Y \text{ or} \\ \left\| f(t) - \frac{\left\| f(t) \right\| \phi^{-1}(\left\| g(t) \right\|)}{\left\| g(t) \right\| \phi^{-1}(\left\| f(t) \right\|)} g(t) \right\| &\leq \left\| f(t) - \frac{y \left\| f(t) \right\|}{\phi^{-1}(\left\| f(t) \right\|)} \right\| \text{ for} \\ \text{all } y \in Y. \quad \text{Pur } w(t) = \frac{\left\| f(t) \right\| \phi^{-1}(\left\| g(t) \right\|)}{\left\| g(t) \right\| \phi^{-1}(\left\| f(t) \right\|)} g(t). \end{aligned}$$

Using the facts that $||g(t)|| \leq 2||f(t)||$ since $0 \in Y$ and $\phi^{-1}(2||f(t)||) \leq 2(\phi^{-1}(||f(t)||))$ we can show that $w \in L^{1}(\mu, Y)$ as follows

$$||w(t)|| = \frac{||f(t)|| \phi^{-1}(||g(t)||)}{\phi^{-1}(||f(t)||)}$$

$$\leq \frac{||f(t)|| \phi^{-1}(2||f(t)||)}{\phi^{-1}(||f(t)||)}$$

$$\leq \frac{2||f(t)|| \phi^{-1}(||f(t)||)}{\phi^{-1}(||f(t)||)}$$

$$= 2||f(t)||.$$

Now take any h $\in L^{1}(\mu, Y)$ then

$$\frac{\phi^{-1}(||f(t)||)}{||f(t)||} h(t) \in Y \quad \text{for all } t.$$

Hence

$$||f(t) - w(t)|| \le ||f(t) - \frac{||f(t)||}{\phi^{-1}(||f(t)||)} = \frac{\phi^{-1}(||f(t)||)}{||f(t)||} h(t) ||$$

= ||f(t) - h(t)|| for all t and for all $h \in L^{1}(\mu, Y)$, so $L^{1}(\mu, Y)$ is proximinal in $L^{1}(\mu, X)$.

As a corollary.

COROLLARY 2.2. If Y is a reflexive subspace of X, then $L_{\varphi}(\mu,Y)$ is priximinal in $L_{A}(\mu,X).$

PROOF. It follows from the main theorem and Theorem 1.2 in Kahalil [5].

THEOREM 2.2. Let Y be a proximinal subspace of X. Then for every simple function f $\epsilon L_{\phi}(\mu, X)$, P(f, $L_{\phi}(\mu, Y)$) is not empty.

PROOF. Let
$$f = \sum_{i=1}^{n} \chi_{A_i} x_i$$
 be a simple function in $L_{\phi}(\mu, X)$, where A_i are disjoint measurable sets in [0,1]. Set $g = \sum_{i=1}^{n} \chi_i y_i$, where $y_i \in P(x_i, Y)$. Let h be any

element in $L_{\phi}(\mu, Y)$, then

$$\begin{split} \left\| f - h \right\|_{\phi} &= \inf\{c > 0: \int_{0}^{1} \phi(\left\| | c^{-1}(f(t) - h(t)) \right\|) d\mu(t) < 1 \} \\ &= \inf\{c > 0: \sum_{i=1}^{n} \int_{A_{i}} \phi(\left\| | c^{-1}(f(t) - h(t)) \right\|) d\mu(t) < 1 \} \\ &= \inf\{c > 0: \sum_{i=1}^{n} \int_{A_{i}} \phi(\left\| | c^{-1}(x_{i} - h(t)) \right\|) d\mu(t) < 1 \} \\ &> \inf\{c > 0: \sum_{i=1}^{n} \int_{A_{i}} \phi(\left\| | c^{-1}(x_{i} - y_{i}) \right\|) d\mu(t) < 1 \} \\ &= \inf\{c > 0: \int_{0}^{1} \phi(\left\| | c^{-1}(f(t) - g(t)) \right\|) d\mu(t) < 1 \} \\ &= \left\| \| f - g \| \right\|_{\phi}. \end{split}$$

Hence $g \in P(f, L_{\phi}(\mu, Y))$. THEOREM 2.3. Let Y be a closed subspace of X. If $L_{\phi}(\mu, Y)$ is proximinal in $L_{\phi}(\mu, X)$, then Y is proximinal in X.

PROOF. From Theorem 2.1, $L_{\phi}(\mu, Y)$ proximal in $L_{\phi}(\mu, X)$ implies that $L^{1}(\mu, Y)$ is proximinal in $L^{1}(\mu, X)$. By Theorem 1.1 [2] this also implies that $L^{\infty}(\mu, Y)$ is proximinal in $L^{\infty}(\mu, X)$. For x $\in X$, define $f_{x}: \Omega + X$ by $f_{x}(t) = x$ for all $t \in \Omega$. It is clear that $f_{x} \in L^{\infty}(\mu, X)$ for every x $\in X$, so there exists $h \in L^{\infty}(\mu, Y)$ such that

$$\left|\left|f_{x}-h\right|\right|_{\infty} \leq \left|\left|f_{x}-w\right|\right|$$
 for every w $\epsilon L^{\infty}(\mu,Y)$.

In particular take $w = f_v$, so

$$\begin{split} \left|\left|f_{x}-h\right|\right|_{\infty} \leq \left|\left|f_{x}-f_{y}\right|\right|_{\infty} \text{ for every } y \in Y \\ &= \left|\left|x-y\right|\right| \quad \text{for every } y \in Y. \end{split}$$

But $||x - h(t)|| = ||f_x(t) - h(t)||$

<
$$||f_x - h||$$

< $||f_x - f_y||$
= $||x - y||$ for every y $\in Y$.

Hence every t ε [0,1] gives a best approximant of x in Y. Therefore Y is proximinal in X.

The next theorem needs the following definitions:

DEFINITION 2.1. The subspace Y is called ϕ -summand of x if there is a bounded projection Q: X + Y such that

 $\phi(||\mathbf{x}||) = \phi(||(Q(\mathbf{x})||) + \phi(||(\mathbf{I}-Q)(\mathbf{x})||) \text{ for all } \mathbf{x} \in X. \text{ Where I is the identity map on X.}$

DEFINITION 2.2. The subspace Y is called 1-complemented in X if there is a closed subspace Z in X that X = Y + Z and the projection P: X + Z is a contractive projection.

THEOREM 2.4. If Y is 1-complemented in X, the $L_{\phi}(\mu, Y)$ is proximinal in $L_{\phi}(\mu, X)$. PROOF. Let X = Y \downarrow Z, P: X > Z be a contractive projection from X onto Z. Hence x = (L-P)x + p(x), $||P(x)|| \leq ||x||$. For f $\in L_{\phi}(\mu, X)$, set f = (I-P)of, f₂:

pof. Let $\check{p}: L_{\varphi}(\mu, X) + L_{\varphi}(\mu, Z)$ and

$$p(f) = pof = f_2$$
 for all $f \in L_{\emptyset}(\mu, X)$.

fhen $\stackrel{N}{\rightarrow}$ is a contractive projection onto $L_{\phi}(\mu, Z)$ and $L_{\phi}(\mu, X) = L_{\phi}(\mu, Y) + L_{\phi}(\mu, Z)$. Hence $L_{\phi}(\mu, Y)$ is 1-complemented in $L_{\phi}(\mu, X)$. By Lemma 1.6 [2] $L_{\phi}(\mu, Y)$ is proximinal in $L_{\phi}(\mu, X)$.

REFERENCES

- 1. DEEB, W. and KHALIL, R. Best Approximation In $L^p(\mu, X)$, 0 . To appear in Journal of Approximation Theory.
- 2. DEEB, W. and KAHLIL, R. Best Approximation in L(X,Y). To appear in <u>Math. Proc.</u> <u>Camb. Phil. Soc.</u>
- 3. KHALIL, R. and DEEB, W. Best Approximation in $L^p(\mu, X)$ II. To appear in <u>Journal</u> of <u>Approximation Theory</u>.
- LIGHT, W.A. and CHENEY, E.W. <u>Approximation Theory in Tensor Product Spaces</u>. Lecture Notes in Math. 1169, 1985.
- KHALIL, R. Best Approximation in L^P(I,X). Math. Proc. Camb. Phil. Soc. 49 (1983), 277-279.
- 6. ROYDEN, H.L. Real Analysis. Macmillan Publishing Co., Inc., New York, 1968.
- SINGER, I. <u>Best Approximation in Normed Linear Spaces by Elements of Linear</u> Subspaces, Springer-Verlag, 1970.