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ABSTRACT. Let X be a real Banach space and (,) be a finite measure space and be a

strictly i1creasing convex continuous function on [0,) with (0) 0. The space

L(,X) is the set of all measurable functions f with values in X such that

is:

"For a closed subspace Y of X, L(,Y) is proximinal in L(u,X) if and only if

LL(,Y) is proxlmina[ in LI(,X) ’’. As a result if Y is reflexive subspace of X,

then L(,Y)is proximinal in L(,X). Other results on proximinality of subspaces

of L(,X) are proved.

INTRODUCTION

Let be a convex Orllcz function, i.e. $ is a continuous, strictly increasing

convex function defined on [0, =) with (0) 0 and let (,) be a [inlte measure. For

a real Banach space X, let

L(,X) {measurable function f: X: f (llc-I

A subspace Y in a Banach space X is called proximlnal if for each x e X there is

In this paper we prove that for a closed subspace Y of a Banach space X,

L#(,Y) is proximinal in L(,X) if and only if LI(,Y) is proximinal in LI(,X). In

I] Deeb and Khalil, have shown the same result or the linear metric

space L(,X) with # modulus function and some Banach space X. As a consequence, if Y

for some c > 0. Define a norm on L(v,X) by

llfll$ inf {c > O: (llc-lf(t)ll)d(t) I}.
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is a reflexive subspace of a Banach space X then L$(u,Y) is proximinal in L(u,X).
The prox|mina[Ity of so,e closed subspaces in X are discussed. Throughout this

paper fl wi[[ be the unit interval [0,I], convex, strictly increasing with

$(0) O, (I) and X is a Banach space. See Deeb and Khalil [1,2,3], Light and

Cheney [4], and Khal[l [5] for more details about proximinal[ty and related topics.

2. PROXIMINAL[TY IN L(,X).
LEMMA 2.1. If q Is convex, then L(,X) - LI(,X).
PROOF. Let f g L(,X), then

0

By Jansen’s Inequality, [6]

0 0

or

Hence

0

erefore

0

Hence f LI(I,X).
LEMHA 2.2. Let Y be a subspace of X, then for each f c L(p,X)

dist(f, h0(,W) inf{c > O: f 1 c-ldist(f(t)’Y)l d(t) I}.
0

PROOF. For any g L(,Y) we have,

0

tnf {c > O: f (]c-ldist(f(t),Y)l)d.(t)’" 1}.
0

By taking the infimum over g e L(v,Y) we get

dist(f,L(v,Y)) )inf {c > O: f (Ic-ldist(f(t),Y)i)dO(t) I}.
0
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Conversely, let > 0 and let ’ be a simple funcrion in L(p,X),such tllat

n
< . Write f’ XlXi, where x. e X and Xi are the characteristic

i=l

functions on Ai which are disjoint measurable sets in [0, I]. It is clear that

f’ e L(,X). Select h Y such that

n
Let g . xhi

then
i=!

n

I ,<11 
0 i=l

hl I>.<A> < =.

Hence g e L(g,Y), then

n

i=1

Since e is arbitrary, we have

dtst(f,L(p,Y)) (, tnf{c > O: f (c-ldtst(f(t),Y))dp(t) I}.
0

REMARK 2.1. For f e L@(u,X),

0
c o

lf(t)-)dg(t)such that f (--- C
0 o
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COROLLARY 2.1. Let Y be a closed subspace of X. To an elemen f of L(B,X), g

of L(,) Is a best approxlmant of in L(,Y) if and only if g(t) is a best

approxlmait of f(t) in Y.

PROOF. Let g(t) be a best appoximant of f(t) in Y. This means that

It follows that for any h e: L(B,Y)

Since is increasing, we have

-I

Then

0 0

Therefore

0 0

-h{t)

or

Conversely, let,,,,gbe a best approximant of f in L(v,Y), then

dlst(f,L(,Y)) llf-gll. By Lemma 2.2 and the previous remark, we have

"’’....Ilf-gll inf{c > 0: f (c-ldlst(f(t),Y)}d(t) I} c such that
0 o

f }(- dla(t) f }((dtse(f(tI,YI)
0 Co 0 Co

0

-1, t, strictly tnerea,tng andsince

No e prove the tn theorem of ehts paper.

TEO 2.1. Let be a elood ubepaeo o[ X, then the [ollotng are equivalent:
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(1) L(,Y) is proxtm[na! in L(U,X)

([i) LI(,Y) is proimina[ in LI(,X).

LO( LPROOF (it) (1). Let f p,X), then by Lemma 2.I f e (,X).

Lassumption, there exists g e (B,Y) such that

for every h : LI(v,Y).

By lemma 2.10 [3], we have

Hence by Corollary 2.1 it follows that g is a best approxlmant of f in L#(,Y).
Conversely: (i) (il). Define a map

By the

J:LI(p,X) Lo(p,X by J(f) . where .(t) f(t)

if f(t) O, and zero otherwise Then for c

L L#(for all f (,X). Hence J(f) e ,X). Since is strictly increasing, it

follows that J is (I-I). To show that J is onto, let g E L#(B,X), then take

if g(t) 0 and zero otherwise. Clearly f e LI(u,X) and

j(f) (I (t)l l)
II )ll

g(t).

LThus J^ is onto Now let f e (v,X), then L(B,X). By assumption there

exists g e L(,Y) such that
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for all L+(B,Y),

then by Corollary 2.1 we have

Now take any h LI(,Y) then

for al t.

Hence

As a corollary.

COROLLARY 2.2. If Y is a reflexive subspace of X, then L(p,Y)is prlxlmlnal

in

PROOF. It follows from the main theorem and Theorem 1.2 in Kahalll [5].

THEOREM 2.2. Let Y be a proxlminal subspace of X.

f e L(,X), P(f, L(,Y)) is not empty.

Then for every simple function

PROOF. Let f . XAiXi be a simple function in L(,X), where AI are disjoint

n
measurable sets in [0,I]. Set g 2 XlYi, where Yi P(Xl’ Y)" Let h be any

i=l
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element in L(p,Y), then

[nf{c > O: f <(llc (t<t)-h(t))l[)d(t) , I}
0

Hence g E P(f, L(,Y)).
THEOREM 2.3. Let Y be a closed subspace of X. If L0(p,Y) Is proxlminal

in L(p,X), then Y is proxlmlnal in X.

PROOF. From Theorem 2.1, L(,Y) proximal In L(,X) implies that LI(,Y) is

proximinal in LI( X). By Theorem I.I [2] this also Implies that L( ,y) is

proxlmlnal in L (,X). For x X, define fx: fl X by fx(t) x for all t ft. It

is clear that f L ,X) for every x X, so there exists h L (,Y) such thatx

w p,Y).

In particular take w f so
Y

llfx hll llfx fyll for every y s Y

for every y Y.

Hence every t E [0,I] gives a best approxlmant of x in Y. Therefore Y is proximinal

inX.

The next theorem needs the following definitions:
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DEFINITION 2.1. The subspace Y is called -summand of x there is a bounded

projection Q: x Y stJch rllat

on K.

DEFINITION 2.2. The subspace Y is called 1-complemented in X if. there is a closed

subspace Z [n X that X Y + Z and the projection P: X Z [s a contractive

projection.

THEOREM 2.4. If Y is l-complemented in X, the L(,Y) is proximinal in L(,X).
PROOF. Let X Y . Z, P: X Z be a contractive projection from X onto Z. Hence

pof. Let : L(,,X)+ L(,Z)an

p(f) pof f2 for all fL(It, X)

fheta Is a contractive projection onto L(,Z) and L(u,X) L(,Y) L(,Z).
Hence L,Y) is l-complemented In L(,X). By Lemma 1.6 [2] L(,Y) is proximlnal

In L(,X).
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