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ABSTRACT. The role of Broyden's method as a powerful quasi-Newton method for solving
unconstrained optimization problems or a system of nonlinear algebraic equations is
well known. We offer here a general convergence criterion for a method akin to
Broyden's method in RY. The approach is different from those of other convergence

proofs which are available only for the direct prediction methods.
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1. INTRODUCTION.

Let ¥:DcR"—s Rl be an F-differentiable functional having an optimum
*
x € int (D).
*
Then the vector x at which the optimum of f is realized, satisfies the equation

Vf(x) = P(x) =0
___33 , s-a——, cee __33 )T. Our concern in this paper is iterative
%' 3x X

2
methods for the solution of simultaneous non-linear equations

In the above, V = (

F(x) = 0; F: R® —— K" 1.1)
in the case when the complete computation of F' is infeasible.
In the case, F = P, solving (l.1) means in effect finding the minimizer of¢.
The algorithm under consideration takes the form
I YanF(xn) (1.2)
where Hn is generated by the method in such a way that the quasi-Newton equation
Hn+l (F(xn+l) - F(xﬂ)) = x!ﬁ". b Xn (1.3)
is satisfied at each step.
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The step length Yn is chosen to promote convergence. By analogy with the DFP-

method (Davidson [1], Fletcher and Powell [2]) for unconstrained optimizations and by
considering what is desirable when f is Llinear, Broyden [3] in 1965 suggested an

alzorithn by which H is obtained from Hn by means of a rank-one update.

n+l
In the case of minimizing problems, Dixon [4] called a method perfect if Yo = Y:
is obtained through 1line searches and a direct prediction method if Y, = 1. The
iterative procedures (1.2) and (1.3) may be described as follows:

Choose non-singular Ho R™™ and also X rR™,
For n = 0,1,2,... let s, = -yanF(x“) (1.4)
Y, being chosen such that

e Ol < flEx)] ]

X1 = %, + s, (1.5)

yo = Flx ) - F(x ) (1.6)
1f Yo = 0 then “n+l= Hn (1.7)

m T T
and choose v. R such that v.y =1 and v H 8 # 0.
n n’n nnn
T

Let Hn+l = “n + (3n - Hnyn)vn. (1.8)

Broyden's [3] method (sometimes called his first or good method) results from
T

choo;ing Vo T Hnsn/s:l-lnyn in (1.8) and 1s defined for Yo # Oonly so long
as s Hy #0.

n n'n

Broyden's second or bad method results from choosing Vo < yn/y.rr\yn where Yo + 0
and 1s defined so long as yTH-ls + 0.

nn n

The convergence results that are available to date are proved for the direct
prediction method [5). Broyden has shown that his (first) method converges locally at
least linearly on nonlinear problems and at least R-Superlinearly on linear problem

[6].

Later Broyden et al [7] showed that both Broyden's good and bad methods converge
locally at least Q-superlinearly.

More and Trangstein [8] subsequently proved that 'locally' could be replaced by
"globally" when a modified form of Broyden's method is applied to linear systems of
equations. On the other hand, Gay showed in 1979 [5] that Broyden's good and bad
methods enjoy a finite termination property when applied to linear systems with a non-
singular matrix. He has also proved that Broyden's good method enjoys local 2m-step
Q-quadratic convergence on non-linear systems.

Recently, Dennis and Walker [9] have made generalizations of their results [71,
[10] and have put forward convergence theorems for least—change secant wupdate
methods. Decker et al, have considered Broyden's method for a class of problems
having singular Jacobian at the root [11].

Our concern is to consider the method (1.2) which is not necessarily a direct
prediction method. Our method is not perfect because in the case of minimization
problems exact line searches have not been performed. However, the scalars do reduce

”F(x)“ at each step. It may however be noted that perfect methods are not efficient
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[10]. Our method can thus be viewed as an intermediate between direct prediction and

perfect methods.

We have called our method Broyden-like because although we have used Broyden's
good method we have taken Bo to be an M-matrix [l12] unlike Broyden [3]. We have
used componentwise partial ordering in R" to prove monotone convergence of the
sequence X We have asserted that under certain conditions,ﬂn can be taken as non-
negative matrices. In our analysis, F {is taken as an isotone operator ([12].
Operators which are monotonically decomposible (MDO) [13] can also be brought within
the scope of our convergence theorem. A local linear convergence is achieved.
Experiments with numerical problems are also encouraging. Even where Newton's method

has diverged, our method converges in a small number of iterations.

Section 2 contains mathematical preliminaries. Section 3 contains convergence
results. Section 4 gives the algorithm. Numerical examples are presented in section

5 while we ILncorporate some 'discussion' in section 6.

2. MATHEMATICAL PRELIMINARIES.
DEFINITION 2.1. The componentwise partial ordering in R™ is defined as follows:
T
For x,y‘R“,| X = (xl,xz,...xm)

y = (yl,yz,-..ym)T, x >y if and only if
X, > yi, i=1,2,.0om,
X > y<{=>x >yand x #y.
DEFINITION 2.2. We define for any x,y&R", such that x < y, the order

interval [11] o
<x,y> = {u R /x < u<y}.
DEFINITION 2.3. A mapping F:D R™ —— R™ is isotone (antitone) [12] on D0 D
if Fx < Fy (Fx > Fy) whenever x < y, x,yeDo.
DEFINITION 2.4. We denote by L(Rm) the space of mxm matrices.

We introduce a partial ordering 1n L(Rm) which is compatible with the
componentwise partial ordering in rR™.

DEFINITION 2.5. A real mxm matrix (aij) with a,

be an M-matrix [12] if A is non-singular and A-l> 0.

1

j < 0, for all 1 # j is defined to

In what follows, Hn = B; , so that Bn is a replacement for the Jacobian

J(xn)' and thus Bn satisfies the quasi-Newton equation

ann-—l =y,_p»n= 1,2,000 (2.1)

According to Broyden's good method, the update formula for Bn is given by

T +
(B“sn - yn)s“
By =B, - —4 (2.2)

8§
nn

(n)

= (oM - (v -
In what follows we denote s, (s1 ), Yo (Yi ) Bn (bij

y, 1=1,2,...m,

j=1,2,¢cem. T

LEMMA 2.1. (1 - --—‘,I‘.—n) is a square matrix whose diagonal elements are positive

$n® (n) (n)
i

and off-diagonal elements are non-positive provided s > 0 and s > 0 for at least

one 1i.
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The proof is trivial.
LEMMA 2.2. Let the following conditinons be fulfilled:

. _ . (n) (n) (n)
(i) B_=(b.."), by ii

. i <0, Eor all i,j, i =3, b

(ii) Bn is a strictly diagonally dominant matrix

(iii) {x } is a monotonic increasing sequence in the order sense.

(n) (n) (a-1) (m) _  (n-D)

. T )Jl
(iv) TTTTT _"""f"' “(a) : Tttt "J
i g D)

(n)’

is small compared to |b

) (n),_(n) _ (n 1) (n) (a-1),,_(n)
[ (s ) - (y y )ls
) lb(“)' < b(“) + 1 k - 1k-__K_ __4___W,-____K_-____ —
1#3 ( (n))_
1 %i
Then Bn+l is an M-matrix.

PROOF. It follows from conditions (i) and (ii) that Bn is an M-matrix [12].

Since Bn satisfies the Quasi-Newton equation (2.1)

T
PN N T = L ML = L
n n yn n T
S s
nn
. .y th
and the (I,J) element of B, is given by
[b(n) (n) _ (n- 1) G (n) (n l))] (n)
(n) _k _kA_____A _A___k__‘___k_'_-____ .
lJ f sgn)
J ]
since x_ is a monotonic increasing sequence s = x - x_» 0. In the neighborhood
n n n+l n
* -
of the solution x , s(n) will be small and s(n)- s(n D will still be smaller in
(n) (n)
magnitude. s / J ) will also have at most a finite magnitude.
If bg;) #0, i # j, the signs of bgg) will determine the signs of b§g+l).
Therefore the diagonal elements of b§;+l) will be strictly pos}tive and the off-
diagonal elements strictly negative. Since Bn is a strictly diagonally dominant

matrix the strict diagonal dominance property of Bn will be maintained by virtue of

+1
condition (v).

Let us denote

L (n), (m)_ _(n-1) (n)__(n-1) (n)
e Py G s D - Oy Ty D sy
L, (n),2
by c(31) j(sj )
Condition (v) implies that
)
_ () (n) (n) (n)
. 1 ; (bij + cij ) <€ bii + ciy (2.4)

and since lb;n)l is large compared to |c(n)| ,(2.4) implies that

gy O] D)
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REMARK 2.1. If however Bn+l ceases to be an M-matrix, we can without violating

the constraint (2.1), pre-multiply the first term in the expression for Bn*l by a

s s
strictly positive diagonal matrix Pn of the same order of Bn’ such that Pan(I- —%—E)

s's
becomes the predominant term in the expression for §n+l as given below. non
T T
5 “n®n Yn5n
Bn+l = P B (L - ~%-—0 T (2.5)
.5y $.5n

Thus, if Bn is already a strictly diagonally doninant matrix with b§n) <0, 1+ j and

bgg) >0, B +1 will also be a strictly diagonally dominant matrix with b§;+l) <o,
i #j, and b(n D > 0. Therefore, if Bn is an M-matrix we can always construct
Bn+l( n+l) as an M-matrix without affecting the condition B s, = Yu
-1_ -1
Writing Bn = H and B atl Hn+l’ we obtain from (2.5)
Sns: B;lp-lynsz -1
Hn+l = [Pan(I -t )]
s's s s
n n
s sT B—lP ly T
=@ --An,n n__nn—lB-l—l
T T n n
s s s s
nn n n
which is approximately equal to
sT
1+ (s —HP'ly)—i—]HP'l.
n nn°n T nn
s s
n'n
St -1 b
Writing s, = Bn+lyn = Hn+lyn' which is approximately equal to ann Yo» Hn+1 can be
taken as . . sTHnP-—l
= - - LIRS 2.6
B, =HP" +(s -HP y) T, o (2.6)
Yn
% n'n

Therefore, H as expressed by (2.6) satisfies the Quasi-Newton equation

n+l
Hetdn = %n° ()

LEMMA 2.3. Let the diagonal elements of bi of the strictly diagonally dominant
matrix Bn satisfy the condition Ib(n)' < M, for all 1, where M(>0) is a finite

constant. Then

1
®
™

(n)

1
> M

are the eigenvalues of Bn.

PROOF. By the Greschgorin theorem,

(n)|

')‘in) (n)| < 3. b

1%

By strict diagonal dominance of B N
(n) (n)
[\ < 2o P < M.
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Therefore,

1
'A(")‘ > an 0.

The above lemma ensures that the lower bound of the eigenvalues of Hn = Bn are

strictly positive for all n and heace H remains nonsiangilar at each iteration. The
stability of the iteration process is therefore guaranteed.
. . m
In what follows HH denotes an arbitrary norm in R and the operator norm is

induced by the particnlar vector norm.

3.1. CONVERGENCE.

THEOREM 3.1. Tet the following conditions be fulfilled:

(i) F:DC.Rm -—— Rm is Frechet differentiable on a counvex set DOC D.

(ii) Do includes the null element and xo, yoe Do such that if x < y then the
order interval <x,y>C.D0.

(iii) F(x) < 0, for all x Do and F 1is isotone 1i.e. if x <y, F(x) < F(y) for

all x,y eDO.
(iv) xoeDo is an initial approximation to the solution and x, 2 0 and F(xo) < 0.

(v) The operator G = I - A H F is such that GD)C Do .
C

(vi) The operator B = (b(j)) a strictly diagonally dominant matrix
with b(°) < 0, for all i,j,i#j, and b(i) > 0.
_ (n)
(vii) For Bn = I.j
(n) ,_(n) (n-1) (n) (n-1) (n)
Ik bk (s1§__-sk “) 0 " =y _)-]“s |
X(sgn))2

i
is small compared to 'b(n)| n=20,1,2,...

2. (n),_(n) (n-1) (n) _ (n 1), _(n)
Do) ), 1k b (57 sy ) = Gy ) S5
b1 iy z( (n) 2 ’

(viii)

# e

o
[

n=0,1,2,...
(ix) |b (“)l <(KD>0,n=01,2,...
(x) The scalars Yn(> a > 0) are to be chosen such that

o B
(a) F(x) < ynan(xo) <0, n>1

Yn-lHn-l

(b) ?:)p [T - ALY x)] < [1 - Yoo B F (xn—l)]’ xé(xn__l, xn>

(xi) F'(x) is Frechet differentiable for all xéDo.
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. ' n _ -
(xii) hi: [ YoHoF (xo)] [xl xo] 0 in the order seunse.

Then starting from X, > 0, an initial approximation to the solution of F(x) = 0
is the sequence [xn} of Broyden-like approximations defined by

X1 = X T YanF(xn), n=20,1,... (3.1)

which converges to a solution of the equation F(x) = 0.

If 1in particular, it 1is possible to find a positive convergent matrix A,

i.e., A" > 0 as n*>», then the error at the nth stage is given by
* n -1
e = x [ < aa-a7" x- x| (3.2)
PROOF. Conditions (iii), (iv) and (xa) yield

X, =X, YOHOF(xo) > X, >0 (3.3)

By (v), 0 < xléDOC D. Hence leé Do.

. -1
Bo is an M-matrix [12] by (vi). Hence HO Bo >0, s, x) X, > 0.

Because of conditions (vi), (vii) and (viii) and because s, >0, it follows from (2.2)

that Bl is an M-matrix. Therefore, Hl = BI‘ » 0.

Isotonicity of F, together with conditfon (xa) yield,
0 > YlHlF(xl) > YIHIF(XO) > YOHOF(xo). (3.4)
Hence %Xy > X, > 0. Thus X, < Xy =X YOHOF(xO) = leé DO.
Let us assume by way of induction that 0 < xkél%f k=1,2,...n, and Bk is an M-
(k)
3

matrix, k = 1,2,...n, with b1 <0, 1 # j.

Since Bn is an M-matrix, Hn > 0,
>
By conditions (iii) and (xa) yanF(xn) YanF(xo)
P cee ees
> Yy H F(x )
oo o

Therefore, x_ <
ore, x X+l

< Xo- YanF(xo)
< x -y HFx)
n oo o
= Gx €D
n_ o
Using the fact that Bn is an M-matrix with bin) < 0, i#j, xn< Xi41? and the
conditions (vii) and (viii), we can conclude from Lemma (2.2) that Bn+l is an M-matrix

with b§;+l) <0, i#].

Therefore the induction is completed.
Thus, {xk} is a monotonic increasing sequence in the order sense and xke Do’ for
all k.

Now, 0 € x, = X, =X =X~ Yl“l [F(xl) - F(xo)]

- [YIHIF(XO) - YOHOF(xo)]

% e "H [F(xl) - F(xo)lo
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Do being a convex set and using the mean value theorem in R™ we obtain from (3.5)
1
X, - < [ 11 -y HF + - - ’ .
y T X ; t VG + el = x DT () —x e 0 e < (3.5)
stands for differentiation in the Frechet sense.

Here '

Again since F'(xO + t(x‘ - xo)), 0 <t <1l 1is Gdifferentiable,
F'(x0 + t(x1 - xo)) is semi-continuous [12].
Therefore, the operator Gl(t) = F'(x° + t(x1 - xo)) is continuous in t [0,1]. We

thus have the following from (3.6)

- - 1 + - -
0 < %, X < sgp [ YlHlF (xo t(x1 xo))l(xl xo)

= - Al - - -
[0 - v H F'(x + tlx, x N1 (xy= %) 3.7
assuming the supremum is attained at t =¢t, 0 <t < 1.

By (xb), (3.7) further simplifies to

0<x, - x <[I- YHE (D] (=g = %)) (3.8)
Arguing analogously as before,
1
X+l " %n < ! [(r - yanF'(xn_l + t(xn - xn—l))] (xn - xn_l)dt

- ' - -
< supll YanF (xn_l + t(xn xn_l))] (xn xn-l)

t
= _ ' oy - -
[ YnFnF (xn_l + t(xn xn_l))] (xn xn—l) (3.9)
assuming that the supremunm is attained at t = t.
Condition (xb) further reduces (3.9) to
- - ' -
*n+l *n <1 Yn—lHn—lF (xn-l)] (x“ xn—l)
< — L -
(L - y HF (xo)] CI
- ' n - .1
< [1 YOHOF (xo)] (x1 xo) . (3.10)
n+p-1 K
- - ' - .
Hence Xnep ~ *n < kin [1 yOHOF (xo)] (xl xo) (3.11)

Since [I - YOHOF'(xo)]n (xl— xo) > 0 as n*eo it follows from (xii) that {xn} is a

Cauchy sequence and the space is complete,

*
x = lim xR (3.12)
n+o n
Using convergence of {xn} it follows from (3.12) that

lim YanF(xn) = 0. (3.13)
Now , F(xn) =

Therefore using (ix), (x) and the strict diagonal dominance of Bn
2k
HEGOI] € 25 [lxpyy = %ol | > 0 as noe (3.14)
Continuity of F yields that
*
F(x ) = 0.

*
Hence x 1is a solution of the equation F(x) = 0.

Further if I - YOHOF'(xo) < A, (3.11) reduces to
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n+p-1 K

Xatp ~ *n < T Ak - xo) (3.15)
k=n

The ercor (3.2) follows from (3.15) by making p+= and then taking ”.H.

In the next theorem we provide a bound for the inverse Jacobian approximation.
THEOREM 3.2. Let in addition to the conditions of theorem (3.1), the following

conditions be satisfied:
@ |[Freo - || < v ||x-y||, for all x,y€D
() [P (x )1 extsts and ||1E1(x)17}|] < 8
@ | E (1 - v F G N k- x )| < 8y

Then
[T - T HF' (xo)H

< ool ” (3.16)
1- B'Y'HkEO a- YoHoF.(xo)) (xl- xo)l|

IR R N

PROOF. Following Rheinboldt and Ortega [12] we show that [l"‘(x)]—l exists at all

the iteration points.

Let @ (xo.(B"V')-l) denote the closed sphere with X as the center and (B'y')"l

as the radius.
1

Let D, =2 (x_,(8'Y) 0D,
Then, for x €D ve have
erco - el < v fx - x || < 178 (3.17)
Now, 1 - (e e )17 P
e e 1™ ) - G| <ot =1 (3.18)

Therefore [!-"(x‘))]-l F‘(xl) has an inverse and hence for xeDl, F'(x) has an inverse.

Moreover, for xeDl, using the Neumann Lemma we get

1

(o017 = EF e )17 (e B 0l TP e )] (3.19)

Therefore,

® -1
AR I LGS IER AL CAb i I
* n 1
< n-to (B'y'”x - x°||) = T:'—B—'_Y—"T]-)_(—-x:n- (3.20)
since B'Y'Hx - xOH <1
Therefore for xeDl
-1 g
e || < IR (3.21)
{xn} being a monotonic increasing sequence it follows from (3.10) and condition (c)

of Theorem (3.2),

Nx, = x 1] < HREy = v BF e 0 o) - x| < By (3.22)
Hence xné& (XO,B'Y')nDO' D,

Utilizing condition (xb) and (3.21) we get
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e e ™ =y = e =y i freot (e )1 ™|

<=y m e e e

B[t - v i )]
N o n—x -_--x-- (3.23)

Using (3.10) and the monotonic increasing property of {xn} we further conclude that

-1
[1F o TR T RSN L 5 N1 S
n n nzl -k
S SR LR O} R O |
THEOREM 3.3. If condition (xb) of Theorem 3.1 1is replaced by the following
condition:
(L -y H F'(x )) > a' sup (I - y H F'(x )) (3.24)
n-1 n-1 x€D

al > l, n>1

and all other conditions of theorem 3.1 are fulfilled then the superlinear convergence

of the sequence {xn} is ensured.

5 - X - '
PROOF. 1lim (I YanP (xn)) < sup (I yanF (xn))

n+e x D
1Y 1
— - Al
< o (1L YOHOF (xo)), (a > 1)
a
»0as n + =, (3.25)
*
If lim x_ = x then
nro
* * *
0<x - Xoop = X T X T Yan[F(x ) - F(Xn)]

1 * *
=({ [T -y HF(x +tlx-x D] (x-x)Hde .

By arguments analogous to theorem 3.1

*
'|x*-xn+l|' < . ZTE l]"[ - yanF'(xn + t(x -xn))|| 'lx-xn".
’
Therefore,
||x* - xn+1'| *
—_— sup I -y HF(x +tx-x))
[]x"- x || t€l0,1] I rnoon 2
The continuity of F'(x) for xé DO and relation (3.25) yield,
IESEE |
lim B < lim (I - v B F'(X)) = 0 (3.26)
SENTREF T

This proves superlinear convergence of {xn}.

REMARK 3.1. It may be noted that conditions (vii) and (viii) of theorem 3.1 are
required only to prove that Bn+1
be raised as to how one can know these conditions In advance. From computational

is an M-matrix provided Bn is so. The question may

experience one can say that such conditions are usually satisfied. If that is not so,
we have indicated in remark 2.1 how Bn+l can hbe made an M-matrix when Bn is so.

4, ALGORITHM.

Step 1. Find Do: x < x < X in which F(x) is isotone.
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Step 2. Choose x €D and x 2 0 s.t. F(x ) < 0

o o o) o
Step 3. Choose HO >0, Y= 1 and compute Xy k = 0.
Step 4. C te A =1 -y HF' .

P Compute A v, OF (xo)
n
- L] -
If (I YOHOF (xo)) (x1 xn) + 0 for some n » no go to step 5, otherwise

go to step 3.

s . = - =
tep 5. Compute Sk kakF(xk) v Xeal X + Sk and F(xkﬂ)
Step 6. If F(xk+l) £l 0(10-4) stop, otherwise go to step 7.
T
Step 7. Compute Ve = Flrpyy) - F(Xk), S B Y
T
If Skayk =0, Hk+l' l-lk go to step 8.
H:sk T
Ot herwise Hk+l= Hk + (sk - Hkyk) [—.f;{———]
Sk
Step 8. Compute Ve St Yk+1“k+lF(xo) > Ykl'\‘l"(xo)
Step 9. If I - kakF (xk) > sup [r - yk+ll{k+lF'(x)] go to step 10,
xe<xk 'xk+1>

otherwise go to step 8.
Step 10. If k = k+1, go to step 5.

REMARK 4.1, (i) The implementation of the conditions (xa) and (xb) for the
determination of the scalar Y, can be done by a computer. (ii) The matrix Pn in note
(2.1) is arbitrary except that the elements of Pn are greater than P, (>0). This must
lead to some arbitrariness in H

n+l’

on Pn in addition to the conditions of (xa) and (xb). Hn+1 so generated is however a

solution of the Quasi-Newton equation. (iii) The total number of multiplications and
respectively is (m-hnz), 2m2+m, Zm2 + 3m,

In that case the choice of Yo+l covertly depends

divisions in finding X1’ Hk+l and Vsl

i.e. sz + Sm. (iv) The number of function evaluations is mz + 2m.

5.1 NUMERICAL EXAMPLE.

We take an example [l4] in which every equation is lfnear except for the last

equation which is highly non-linear. We choose

PG = [£,00)]7, 1= 1,2,...81

n
where £, = (WD) + al v p o, 1= 1,2 ... W1
j=1
14
N
and fN(x) = -1 + 1 xj .

j=1
The problem was run for N = 5, 10 and 30. We take xi = 0.5 so that F(xo) < 0.

Incidentally F(x) is isotone.
Define Do’ the rectangular parallelepiped given by 0.5$x1\<l.0, i=1,2,...N, and
o o o
choose Y, = 1. Ho = (hij) where hij = 0,1, i # N, hNN = 0.5. hij Ol.

A= [I - yOHOF'(xo)] is a convergent matrix. i#§
We summarize our computational experience in table 1. The computations were

performed on a Burroughs computer at the R.C.C. Calcutta using a FORTRAN IV

language. We solved the problem and in each case the exact solution was obtained. In
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table 2 we provide a comparison of our results with those of Newton's method and

Brown's method. For computational results of Newton's method and Brown's method see

[14].

Table 1
Dimension(N) No. of iterations(n) X F(x) CPU Time
T
5 5 (1,1,1) 0 3.637 sec
10 5 (Iyl,eee, )T 0 4.462 sec
30 6 (0,07 0 8.548 sec
Table 2
Dimension(N) Newton's method Brown's Method Broyden-like method
5 Converged in 18 its Converged in 6 its Converged in 5 its
10 Diverged Hx”; ~10>  Converged in 9 its  Converged in 5 its
30 Diverged Hx”i ~ 106 Converged in 9 its Converged in 6 its
2

Although Brown's method has taken a larger number of {iterations it may take less
CPU time than that of the Broyden-like method because Brown's method is quadratically

convergent.

6. DISCUSSIONS.

(1) In the case of Broyden's method the initial estimate Bo is found by taking a
finite difference analogue of F'(xo). We are considering the casg where the complete
computation of F'(x) 1s infeasible. In our Broyden-like method we start with Bo an M-
matrix so that Ho > 0. Since F 1is an isotone mapping it could be that all the
entries of F'(x ) are non-negative. Nevertheless we can choose Bo such that

HBO— F'(xo)“ is sufficieantly small. Such a Bo satisfies the Quasi-Newton
Moreover we have used Broyden updates (good method) and as such we have

(i1) In the case of DFP's method, Ho is

equation.
called our method the Broyden-like method.
always taken as a symmetric positive-definite matrix. Moreover, a symmetric M-matrix
is positive definite [12].

definite matrix as in DFP's method.

Hence our Hn can sometimes turn out to be a positve-
(111) Theorem 3.1 can only provide us with non—

negative solutions of nonlinear equations. With a suitable translation we can

transform the given equation into another equation having non-negative solutions
(iv)

"majorization principle" has been utilized or where the Euclidean norm of
-1

Ei(Ei = A Bi_

convergence theorem 3.1 is applicable where F is isotone.

only. Our convergence proof seems to be much more elegant than the cases where
(v) The
This restricts the sphere
the

I, for linear system of equations Ax = b) has been utilized.

of applicability of the theorenm. However, in a large number of problems,
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nonlinear operators are Monotonically Decomposible (MDO) [13] and convergence theorems
along the line of theorem 3.1 can be developed for such operators. The result would

be communicated in a separate paper.
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