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ABSTRACT By using the Gronwall Bellman inequality we prove some limit relations

between the solutions of delay differential equations with continuous arguments and the

solutions of some related delay differential equations with piecewise constant

arguments(EPCA). EPCA are strongly related to some discrete difference equations

arising in numerical analysis, therefore the results can be used to compute numerical

solutions of delay differential equations. We also consider the delay differential

equations of neutral type by applying a generalization of the Gronwall Bellman

inequality.
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I. INTRODUCTION.

Recently, Cooke and Wiener [4] introduced a new class of delay differential

equations. These, so called delay differential equations with piecewise constant

arguments (EPCA) consolidate several properties of the continuous dynamical systems

generated by delay differential equations ([9]) and of the discrete dynamical systems

generated by difference equations ([i0]). In fact, a wide class of delay differential

equations with piecewise constant arguments can be rearranged to some difference

equations (see, e.g. [I], [2], [8]) which remind us of the numerical approximating

equations of some delay dfferential equations.

Our aim in this paper is to establish some approximating results for the

solutions of delay differential equations via the solutions of some related delay

differential equations with piecewise constant arguments.

Consider the delay differential equation
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m
(t) + Po(t)x(t) + E Pi(t)x(t-Ti) 0 t > 0 (i.I)

i-i

where for i i m Ti are positive real numbers and for i 0,I m,

Pi R+ R are continuous functions. Set max i
lim

Let [,] denote the greatest integer function, N the set of nonnegative integers.

For a fixed k e N, (k I), set h and define three delay differential equations

with piecewise constant arguments as follows

m
t i

6(t) + Po(t)u(t) + Pi(t)u([ -[ - ]]h) 0 t > 0
i-i

and

(1.2)h

t t
+(t) + Po(t)v([ ]h) + X Pi(t)v([ -[ - ]]h) -O, t > 0 (1.3)h

i-I
and

m
t t t t

(t) + po([ ]h)w([ ]h) + pi([ ]h)w([ -[ - ]]h) O,t ) O. (1.4)h
i-i

Note here, the theory of EPCA was initiated by Wiener, Cooke and Shah in [5] and

t
[ii] and some special EPCA with arguments ]h have been introduced in [6].

In the second section of this paper we show that the solutions of Uh(t), Vh(t)
and Wh(t) of equations (1.2)h, (1.3)h and (1.4)h, respectively, approximate the

solutions x(t) of Eq. (i.i) uniformly on any compact interval of [0,), as h 0

We also prove that these approximations are uniform on [0,), if (I.i) is an LI

perturbation of (t) 0, that is for all i 0,I m, Pi(t) t < Our proofs

are based on the well-known Gronwall Bellman lemma.

In the third section we extend some of these results to delay

differential equations of neutral type by using a generalization of the Gronwall

Belman lemma for the nonnegatlve solutions of the following inequality

t
y(t) f(t) + by(t-) + afoY(S-u)ds t ) 0

where f(t) is a given nondecreaslng continuous function and a > O, b 0, 0 and

) 0 are given constants.

2. DELAY DIFFERENTIAL EQUATIONS.

Consider the delay differential equation

m
(t) + Po(t)x(t) + X Pi(t)x(t-i) 0 t -> 0

i-I

where we state the following hypotheses

(HI for i 1,2 m, i are positive real numbers and max i
lim

(H2) for i 0,i m, the functions Pi R+ R are continuous.
The initial conditions associated with (2.1) are of the following type

x(s) (s), -T s 0 e c C([-,0],R)

(2.1)

(2.2)
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It is known ([3]) that under hypotheses (HI) and (H2) the initial value problem

(2.1) and (2.2) has a unique solution on [oT,) which is continuous on [-T,) and

continuously differentiable on [0,) The solution of (2.1) and (2.2) is denoted by

x()(t).

Let k > I be a fixed integer and set

h (2.3)

By using h we define the following three delay differential equations with plecewise

constant arguments"

m
t i

6(t) + P0(t)u(t) + E Pi(t)u([ -- ]]h) 0 t > 0 (2.4)h
i=l

and

and

m T
t t i

(t) + P0(t)v([ ]h) + Pi(t)v([ - ]]h) -0 t > 0
i-i

m T
t t t t i

(t) + p0([ ]h)w([ ]h) + Y pi([ ]h)w([ -- ]]h) 0, t>0.
i-I

With these equations we associate the following initial conditions

u(jh) #(jh) for j ok 0

and

and

v(jh) #(jh) for j -k 0

(2.5)h

(2.6)h

(2.7)h

(2.8)h

w(jh) #(jh) for j -k 0 (2.9)h
respectively, where e C

By solution of (2.4)h and (2.5)h we mean a function Uh(#)(t) which is defined

on the set (-k 0} U (0,) and satisfies the following properties:

(a) Uh()(t) is continuous on [0,)

(b) the derivative h()(t) exists at each point t [0 ) with the

possible exception of the points t nh, (n N), where finite one-sided

derivatives exist

(c) the function u(t) Uh()(t) satisfies Eq.(2.1) on each interval

[nh,(n+l)h] for n e N

The definitions of the solutions Vh()(t) and Wh()(t) of the initial value problems

(2.5)h (2.8)h and (2.6)h (2.9) h, respectively, are analogous and they are omitted.

First we prove the following existence and uniqueness result.

LEMMA 2.1. Assume that hypotheses (HI) and (H2) hold and h k >_ I)

and e C Then each one of the initial value problems (2.4)h (2.7)h, (2.5)h

(2.8)h and (2.6)h (2.9)h has a unique solution.

PROOF. Consider the initial value problem (2.4) h (2.7) h. For all n > 0 and

t [nh, (n+l)h) one has

t Ti- ]]h (n ki)h
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r i
where ki - i i n

Thus for t E [nh,(n+l)h) (2.4)h is equivalent to the following equation

m
6(t) + P0(t)u(t) + E Pi(t)u((n-ki)h) 0

i-I

By using the initial condition (2.7)h we find that u(t) is a solution of (2.4)h and

(2.7)h on [0,h) if and only if u(t) is a solution of

m
6(t) + P0(t)u(t) + Pi(t)(-kih) 0 0 t < h

i-I

and

u(0) (0)

But this initial value problem has exactly one solution which is continuously

differentiable on [O,h) and u(h) and (h) are defined, as t h Then one can

easily show, by the method of steps, that u(t) exists and is unique on [0,(R))

By using an argument similar to that given above one can prove that each one of

the, initial value problems (2.5)h (2.8)h and (2.6)h (2.9)h has one and only one

solution on [0,) The proof is complete.

m
Let C be defined by C -{@ E CI (0-) + P0(0)(0) + X Pi(0)(-ri) 0

i-i

where CI denotes the set of continuously differentiable maps of [-r 0] into R.

We now are ready to prove our convergence theorem.

THEOREM 2.1. Assume that hypotheses (HI) and (H2) hold and C is given.

Then the following statements are valid:

(a) the solutions x()(t), Uh()(t), Vh()(t) and Wh()(t of the initial

value problems (2.1)- (2.2), (2.4)h- (2.7)h (2.5)h- (2.8)h and (2.6)h- (2.9)h
respectively, satisfy the following relations for all T > 0

lira max x()(t) Uh()(t) llm max ]x(#)(t) Vh(#)(t)
h0 0,<t,<T h0 0,<t.<T

lim max [x()(t) Wh()(t) 0 (2.10)
h0 0.<t.<T

(b) If CI
0

then for all T > 0 there exist constants L- L(T,) and

M M(T,#) such that

x(#)(t) Uh(#)(t) < Lh 0 -< t <- T, h > 0 (2.11)

and

x()(t) Vh()(t) -< Mh 0 -< t < T, h > 0 (2.12)
(c) If for all i 0,I n the functions Pi(t) are Lipschitz-contlnuous

on any compact subinterval of [0,) and C then there exists a constant

N- N(T,#) such that

x()(t) Wh(#)(t) < Nh 0 -< t -< T h > 0 (2.13)

REMARK 2.1. It is known from Lemma 2.1 in [7] that C is a nonempty

and dense set in C
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PROOF OF THEOREM 2.1. (a) Consider the solutions x(t) x()(t) and Uh(t
-Uh()(t) of initial value problems (2.1) (2.2) and (2.4)h (2.7)h respectively.
Then from (2.1) and (2.4)h we find

m
t Ti(t) 6h(t) --Po(t)(x(t) Uh(t)) Pi(t)(x(t-Ti)-u([ - - ])h))

i-i

for all t > 0

Thus the function (t) -Ix(t) Uh(t)l satisfies (0) -0 and for all t > 0

t
m

sr(t) <- ;0( Po(S) (s) + Y- [Pi(S)[Ix(s-i)-u([ - lh)

t
m

s[0 d PO (s) (s) + IPi(S) ([ -- ]]h)ds + f(t)
i-I

where

f(t)- ; Pi(S)nX(S-,i) x([ -- lh) ds t )0
i

On the other hand,

s - ]]h s for all s ) 0

and by using the initial conditions one has

Z T i T is i s s([ K" - ]]h)- I(( K" - ]]h) Uh( K" - ]]h)I-o,

for all i I n and for all s ) 0 such that

stK- [-]h 0

Therefore we find that the function y(t) max (s) satisfies the inequality
0st

m
y(t) ;vi_Ell Pi(S) lY(s)ds + f(t) t 0

where we used that f(t) is a monotone increasing function. By Gronwall Bellman

inequality ([3]) we find

y(t) e f(t) t ) 0 (2.14)

By using the definition of the greatest integer function, we find for all i 1,2 m

and for all s ) 0

s-h s Ti -- ]]h h (2.15)

Set

(x’t,h) max

Then from (2.15) it follows that

s[x(s-Ti)-x( - ]]h) o(x’t,h) (2.17)

for all 0 s t and for all i i m Also,

m

iO
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and clearly (2.14) yields

m
t0 E Pi(S) ds

i=O t
m

y(t) -< e 0 E Pi(S) ds (x’t,h), t > 0
i=l

Since t(t) -Ix(t)-Uh(t) x()(t)-Uh()(t) y(t), we obtain

m
t0 Pi(S) ds
i-0

x()(t)-Uh()(t) e Y Pi(S) ds (x’t,h)
i

(2.18)

for all h- > 0 and t > 0

But the solution x()(t) of (2.1) (2.2) is continuous on [-T,)

(2.18) it can be easily seen that for all fixed T > 0

m

i 0 T
m

IPi(S) s (x’T,h) O,max x()(t)-Uh()(t) -< e Oi_l
as h, 0

By using an argument similar to that given above, we have

m

max lx((t)-Vh()(t) e ; Pi(S) s (x;T,h) 0,
0tT i 0

as h 0

It remains to consider the solutions x(t) x()(t) and w(t) Wh(#)(t
the equations (2.1) and (2.6)h, respectively. In that case

t t t(t)-(t)-p0([ ]h)(x([ ]h)-w([ ]h)) +

and hence from

(2.19)

(2.20)

of

m
t Ti t i tpi([]h)(x([ -[-]]h)-w([ -[-]]h))+(Po(t)-Po([]h))x([]h +

i-I

m
t t i t

(Pi(t)-Pi([]h))x([-[-]]h) + P0(t)(x(t)-x([]h)) +
i-i

m
t

Z Pi(t)(x(t-i)-x([ -[--]]h))
i-i

for all t ) 0

Set (t) x(t)-w(t) t > 0 Then (0) 0 and by integrating we obtain

m
s s s i

(t) ; (I PO([]h) l([]h)+ Zlpi([lh) l([ -[-llh)ds+g(t), tO,
i-1

where

m vit s s sg(t)-fod Po(s)-Po([lh)l([lh)+ z lpi(s)-pi([lh)llx([K -[--llh) lds +

(2.21)

m TiS
t>0
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But for all i I m and for all s > 0 the inequality

"r i
[- [-]l

yields

s i
([ g- - 11 h )- 0

Set y(t) -max (s) for t 0 Then
0<s<t

s i
([ -- ]]h) < y(s) i < i < m and s > 0

Moreover, g(t) is a monotone increasing function and hence (2.21) yields

t
y(t) < 0 Y Ipi([ ]h l)y(s)ds + g(t) t > 0

i-0

By Gronwall-Bellman lemma (see, e.g. [3]) this yields

m
t s;0 - [PiC[ ]h) ds
i-0

y(t) < e g(t) for all t > 0 (2.22)

On the other hand,

m m
Ix<s> I_ Pi(S) s e(x’t,h) (2.23)

for all t O, where e(x’t,h) is defined in (2.16).

By using the definitions of r(t) and y(t), from (2.22) and (2.23) we obtain for all
T > 0

max xC)(t)-w(#)(t)l -< e
0<t<T

m

i 0 (; _Zlpi(s)-pi([lh)l as max I*(,)1
i 0 T<s<T

m
+ ;zlPi(s)lds (x’T,h)) o as h 0 (2.24)

iO-

The proof of statement (a) is complete.

e C Then it can be easily seen that the solution(b) Assume that

x()(t) of (2.1) (2.2) is continuously dtfferenttable on [-T,) and clearly for
all T > 0 there exists a constant K K(T) such that

v(x’T,h) K h h 0

Set

and

L Ke

m

i 0 m

i 1

m

i0M Ke
m

t 0

(2.25)

Then (2.11) and (2.12) follow from (2.19) and (2.20) respectively Moreover,
if we assume that Pi(t)’s are Lipschltz-contlnuous on any compact interval [0,T], then
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there exists a constant mI ml(T such that

m
s s

X IPi(s)-Pi( ]h) -< ml(s-[ ]h) -< mlh
i-O

for all s [O,T]

Set m2 max x Pi (s)l and
0-<s-<T i-0

m
N- em2T(Tml + ;0 X IPi(S)l ds)

i-0

Then (2.24) and (2.25) yield inequality (2.13) and the proof of the theorem is

complete.

In the next result we give a condition which guarantees that the first two

approximations are uniform on the half line [0,m)

THEOREM 2.2. Assume that hypotheses (HI) and (H2) are satisfied and for all i

0,i m

; Pi<t)l dt < (2.26)

Let C be a given initial function. Then the solutions x()(t), Uh()(t and

Vh()(t) of equations (2.1), (2.4)h and (2.5)h respectively, satisfy the following
relations

sup Ix(#)(t) Uh()(t) 0 as h 0 (2.27)
t,O

and
sup Ix()(t) Vh()(t) 0 as h 0 (2.28)

PROOF. By using (2.26) it can be easily seen that the solution of (2.1)
(2.2) is bounded on [0,), and hence from (2.1) we find

m

;;i Pi(t)l dt sup x(t)l <

Thus for all h > 0

T)h h6t6T

and a(h) 0 as h 0

Set ,(;h)- max {] (t2)-(tl) t2-tl 6 h and tI t2 [-,,0] By
using the definition (2.16) of (x;T,h) and (2.29) we obtain

(x’T,h)
htT

max ((#;h) a(h)} b(h) for all h > 0

In that case, by using (2.26), (2.19) and (2.20) yield

m

i 0 m
max x(@) (t) -Uh(#) (t) e Inu X Pi(S) ds b(h), T 0
OtT i-I

and
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m

i0 m
E IPi(S) ds b(h) T > 0max x()(t)-Vh()(t) -< e 0i_O

respectively. Since # e C and a(h) 0 as h 0 we find that b(h) 0 as

h 0 and clearly (2.27) and (2.28) are satisfied. The proof of the theorem is

complete.

The following result shows that equations (2.4)h (2.5)h and (2.6)h are

strongly related to some discrete difference equations. In this paper the first

forward difference of a function f(n) is denoted by

af(n) f(n+l) f(n)

THEOREM 2.3. Assume that the hypotheses (HI) and (H2) are satisfied and k

1 is an integer. Set

riT
h- and ki - for all i- 1 m (2.30)

Then

(a) the solution Uh(#) (t) of (2.4)h (2.7)h is given by

t s-;Po(S)ds i;0Po(s)ds m
t <s);eOP0(Sl)dSlUh()(t -a(n)e nhPi ds a(n-ki) (2.31)

i-i

for all nh -< t < (n+l)h and n > 0 where {a(n)} is a sequence which satisfies the

difference equation

+l)hpo(s)ds
a(n+l) -a(n)e +

;PO(Sl)dSl; Po(s)ds m
r(n+llh(s) e ds a(n-kl)-O n>O (2.32)e Z nh i

i-I

a(n) #(nh) n -k 0

(b) the solution Vh(#)(t of (2.5)h (2.8)h is given by

m
t t

Vh()(t) (l-[nhPO(U)du)b(n) + X [nhPi(u)du b(n-ki) (2.33)
i-I

for all nh -< t < (n+l)h and n > 0 where {b(n) is a sequence which satisfies the

difference equation

m
(n+l)hpib(n) + ; +l)pho(u)du b(n) + X (s)ds b(n-ki) O, n > 0

i-I
nh

(2.34)

b(n) (nh) n -k 0

(c) the solution Wh()(t of (2.6)h (2.9)h is given by

m

Wh()(t) -c(n) (Po(nh)c(n) + Pi(nh)c(n-ki))(t-nh) (2.35)
i-i

for all nh < t < (n+l)h and n >- O, where {c(n)} is a sequence which satisfies the

difference equation
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m
Ae(n) + hP0(nh)c(n) + h Pi(nh)c(n-ki) 0 n > 0]

i-I

c(n) #(nh) n- -k 0

(2.36)

PROOF. We prove (a) only. The proofs of (b) and (c) are similar and they will

be omitted. Consider the solution u(t) Uh($)(t) of (2.4)h (2.7)h. Then we have

t
Ti

t
d 0P0(s)ds m

t 0P0(Sl)dSl
d- (u(t)e I Pi(t)u([ -[ - ]]h)e (2.37)

i-I

for all t ) 0

By integrating, from (2.37) it follows, for t e [nh,(n+l)h),

s
TiPo(s)ds Po(S)ds m

t oPO(Sl)dSl s
u(t)e -u(nh)e SnhPi(s)e u([ - - ]]h)ds

i-i

s
Po(S)ds m

t 0P0(Sl)dSl
a(n)e hPi(s)e ds a(n-ki) for n >- 0

i-I

where we use the notation

a(n) u(nh) for n- -k 0,I (2.38)

This means that u(t) -Uh(#)(t satisfies (2.31) with the sequence {a(n)} defined by

(2.38). We now show that {a(n)} satisfies (2.32). But, by continuity of the

solution, as t (n+l)h, (2.31) yields (2.32). The proof of the theorem is complete.

REMARK 2.2. Consider the nonlinear delay differential equation

(t) + f(t,x(t),x(t-;l) x(t-,m)) -0 t ) 0 (2.39)

with the initial condition

x(t) -#(t) - t 0 and # e C (2.40)

where f R+xRm R is a continuous function and for all i i m i > 0

and T max i Then one can generalize Theorem 2.1 for the initial value problem
lin

(2.39) (2.40) provided that f is a Lipschitz continuous function and the

approximating equations are given as follows"

t i t Tm
6(t) + f(t,u(t), u([ - - ]]h) u([ - - ]]h)) -0 (2.41)

and

t t I t m
(t) + f(t,v([ ]h),v([ - - ]]h) v([ - - ]]h)) -0 (2.42)

and
t t TI t m

(t) + f([]h,w([]h),w([ - [-]]h) w([ - - ]]h) -0 (2.43)

where h- and k > I is a given integer. Note that the equations (2.42) and (2.43)

can be rearranged to some difference equations while (2.41) cannot

3. NEUTRAL CASE.

Consider the delay differential equation of neutral type
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d
d- [x(t) + qx(t-r)] + px(t-y) 0 t 0 (3.1)

where
p, q e R, p # 0 and F, r e (0,) and r max {F,r} (3.2)

The initial conditions associated with (3.1) are of the following type

x(s) (s) -r s 0 c C([-r,0],R) (3.3)

Then it is known ([3]) that the initial value problem (3.1) and (3.3) has one and only

one solution on [-,) The unique solution of (3.1) and (3.2) is denoted by x().

T
Let k ) i be a given integer and h Set

r
and #h" (3.4)

In this section we approximate the solutions of (3.1) with the solutions of the equation

d t
d-- (u(t) + qu(t-mhh)) + pu([ h]h) 0 for t ) 0 (3.5)

tNote that Eq. (3.4) has two delayed arguments t-mhh and h ]h The first one

is continuous while the second one is piecewlse constant. Therefore the initial

condition associated with (3.4) is of "mixed" type

u(s) h(S) -mhh s 0 and u(jh) #(Jh), j "h 0 (3.6)
where for all i -mh -I and s (ih,(i+l)h]

(i+l)h-s s-lhh(S) (ih) h + #((i+l)h) h (3.7)

A function u(t) Uh(#)(t is a solution of (3.5) and (3.6) if u(t) is

defined on the set [-mhh,0 U {-h 0} U (0,m) and satisfies the following
properties:

(a) u(t) is continuous on [0,-)

(b) the derivative of u(t) + qu(t-mhh exists at each point t [0, -)

with the possible exception of the points t nh (n N), where finite

one-sided derivatives exist.

(c) the function u(t) satisfies Eq. (3.5) on each interval [nh,(n+l)h) for nz0

and the initial condition (3.6) is satisfied.

With initial value problem (3.5) and (3.6) we associate the delay difference

equation of neutral type

A(a(n) + qa(n-mh) + pha(n-h) 0 for n ) 0 (3.8)
and the initial condition

a(n) #(nh) for n -k 0 (3.9)
where A denotes the first forward difference, i.e., for a function f(n)

f(n) f(n+l) f(n)

Note here, the initial value problem (3.8) and (3.9) has a unique solution which is

denoted by ah(#)(n
We now are ready to state and to prove the following basic existence and

uniqueness result for the initial value problem (3.5) and (3.6).

TLEMMA 3.1. Assume that (3.2) is satisfied and h v where k > I is an

inteEer. Let # C be Eiven. Then the initial value problem (3.5) and (3.6) has a
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unique solution u(#)(t) Moreover, u()(t) is given by

u()(t) a(#)(n) n+l)h-t t-nh
h + a()(n+l)

h (3.10)

for all t e [nh,(n+l)h) and for all n 0 where a(#)(n) is the unique solution of
(3.8) and (3.9).

PROOF. It can be easily seen that a function u(t) is a solution of (3.5) if

and only if for all n e N and t [nh,(n+l)h)

d
d-- (u(t) + qu(t-mhh)) + pu((n-h)h 0 (3.11)

or equivalently

u(t) -qu(t-mhh) + u(nh) + qu((n-mh)h phu((n-h)h (3.12)

By the method of steps it can be easily seen that Eq. (3.12) has one and only one

solution satisfying (3.6), and clearly the initial value problem (3.5) and (3.6) has a

unique solution u(t) Uh()(t) By continuity of the solution, as t (n+l)h,

(3.12) yields

(u((n+l)h) + qu((n-mh)h)) + phu((n-h)h 0 for n 0

and u(nh) (nh) for n -k 0 This means that a(n) u(nh) where a(n)

is’the unique solution of (3.8) and (3.9). But from (3.11) it follows that the function

u(t) + qu(t-mhh is a piecewise linear function on 0 t < On the other hand,

u(t) is a piecewise linear function on -mhh s 0 Therefore u(t) is a piecewise

linear function on [0,) and clearly (3.10) is satisfied. The proof is complete.

We now are in a position to state the following convergence theorem.

THEOREM 3.1. Assume that (3.2) is satisfied and C is a fixed initial

function. Then the solutions x()(t) and Uh()(t) of the initial value problems

(3.1) (3.3) and (3.5) (3.6), respectively, satisfy the following limit relation

sup x(#)(t) Uh(#)(t)l 0 for all T > 0 (3.13)

T
as h- 0 or equivalently as k +

The proof of the above theorem uses a generalization of the Gronwall-Bellman

lemma for a continuous solution y [-a,) [0,m) of the inequality

t
y(t) f(t) + by(t-) + a ;0Y(S-u)ds t 0 (3.14)

provided that

(i) a > 0, b 0, > 0 and > 0 are constants and a max {,).

(ii) f [0,m) [0,) is a continuous and nondecreaslng function.

LEMMA 3.2. Assume that (i) and (li) are satisfied and the continuous function

y [-u,m) [0,m) satisfies (3.14). Then there exists a unique constant c > 0 such

that

cbe-c + ae"c c (3.15)

and

y(t) -< d(t)ect for t > 0 (3.16)

where
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d(t) max
f(t)

max e-CSy(s)| for t > 0 (3.17)
1-be’C _a<s<O

PROOF. It is clear that equation (3.15) has a unique solution c > 0 provided

that (i) holds. Moreover, i be-c > 0 Let > 0 be given and set

d(t) max f(t)+
l-be-c

(3.18)

where

max e’CSy(s) + } for t -o,
-asO

f(t) t 0
f(t)

f(0) -o t < 0

Then it can be easily seen that

y(t) < d(t)ect (3.19)

for all t e [-o,0] and from (3.14) it follows

y(t) < ((t)+) + by(t-) + a y(s-)ds t 0 (3.20)

We now show that (3.19) is valid for all t > 0 Otherwise, there exists tI > 0 such

that

y(t) < dt(t)ect -o t < tI and y(tI) d(tI) ectl (3.21)

But in that case (3.20) yields

Y(tl) < ((tl)+) + d(tl-)ec(tl’) + a id(s-)eC(S’)ds
Since f(t) is monotone nondecreasing we have that f(t) and d(t) are

monotone nondecreasing. Hence by applying (3.15) we obtain

Y(tl) < (tl)+ + dz(tl) e CeCtI + a -ce d(tl)(ectl I)
C

(tl)+ a -c l)eCtl -e a -ce d(tl) + d(t (e +- e
C C

i) + d(tl)ectl

ctIf(tl)+ (1-be C)d(tl) + d(tl)e
But from (3.18) it follows

(tI) + (l-be’C)d(tl)
and hence

y(tI) < d(tl)eCtl
This contradicts (3.21), and clearly (3.19) is satisfied for all t 0 .From (3.18) it

can be easily seen that

d(t) lim d(t) t 0
0+

therefore (3.19) implies (3.16), as 0+ The proof is complete.

REMARK 3.1. If f(t) cO is constant on [0,) and b 0 and 0 then

c- a is the unique positive solution of (3.15) and d(t) co for all t > 0. Thus

Lemma 3.2 reduces to the well known Gronwll-Bellman inequality ([3]).

REMARK 3.2. One can easily generalize Lemma 3.2 for the case of several delays
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in the following form:

Assume that y [-a,) [0,) is a continuous function such that

n
t

y(t) -< f(t) + biY(t-i) + 0 (a0Y(S) + I ajy(s-j))ds t > 0
i-1 j-1

provided that

(i)’ bi > O, i > 0, (i -< i -< ), and aj > 0 (0 -< J n) and

n

j 0, (ljn), are constants aj > 0 and max max i’ max u]
j-0 li ljn"

(ii)’ f [0,) [0,) is a continuous and nondecreasing function.

Then the equation

n
c bie ci + a0 + aje c- j-t

has exactly one positive root c and

y(t) d(t)ect t 0

where

d(t)- max {(I bie’Ci)’If(t), max e’CSy(s)}
i-I -os0

for t 0

We now are in a position to prove Theorem 3.1.

PROOF OF THEOREM 3.1. Consider the solutions x(t) x()(t) and Uh(t
Uh()(t) of the initial value problems (3.1) (3.3) and (3.5) (3.6), respectively.

Set

Yh(t) [ x(t) Uh(t) t > 0

0 -T-<t<0

Since x(0) -Uh(0) we find that Yh(t) is continuous on [-T,). On the other hand,

from (3.1) and (3.5) it follows

d
(x(t) Uh(t + qx(t-r) (t.mhh)) + t

d-- quh px(t-r) pu([ - lh]h) -0

and clearly

t
t(Yh(t)

+ qyh(t-,h) + q(x(t-r) x(t-mhh))) + pyh([ - lh]h) +

t
p(x(t-’) x([ lh]h)) -0 t 0

Thus, from (3.3) and (3.6), by integration we find

t s
Yh(t) + qyh(t-mhh) + q(x(t-r) x(t-,h)) + p ’oYh([ - h]h)ds

S
+ p (x(s-r) x([ lhlh))ds -0 t > 0

Set

fh (t) q] max Ix(s-r) -x(s-mhh)J + p ; x(s.F) -x([ lh]h)l ds t -> 00,<s,<t

In that case

Yh(t)l "< fh (t) + lYh(t’mhh)l + I S yh([ h]h)ds t > 0
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Let Zh(t) max Yh(S)l Since Yh(t) 0 -mhh t 0 and
-Tst

s s
yh( h]h) 0 wherever h] 0 we find

Zh(t) fh (t) + 4 Zh(t-mhh) + P
t;oZh(S)ds t ) 0 (3.22)

By virtue of Lemma 3.2, we have

Zh(t) dh(t)echt t 0

where ch is the unique positive solution of

el 4 e’Cmhh + pl c (3.23)
and

-Chmhhdh(t) max ((I-I 4 e )’Ifh(t) max e ChSzh(s)}
-asO

(I-I 4 e’chmhh)-Ifh(t) t ) 0
Thus

-ChmhhYh(t)l Zh(t) (i-I e )’Ifh(t for all t > 0 (3.24)

Now, by using the continuity of x(t) and an argument similar to that given in the

proof of Theorem 2.1 one can see that for all T > 0

max fh(t) O, as h 0 (3.25)
OtT

On the other hand,

r
mhh ]h r as h 0

therefore from (3.23) it can be seen that ch co as h O+ where co is the

unique positive solution of

4e"cr + a- c

Thus (3.24) and (3.25) yield

max Yh(t)l max x(#)(t) Uh(#)(t)l 0 as h 0
OtT OtT

for all T > 0 The proof of the theorem is complete.

REMARK 3.3. Applying Remark 3.2 one can easily generalize Theorem 3.1 for the

case of several delays.
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