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ABSTRACT. For positive operators on a Banach lattice, absolute continuity
conditions are considered. An operator absolutely continuous with respect to
T is compared to sums of compositions of T together with orthomorphisms or in
special cases projections. Consequences for compact operators on functions
spaces C(X) are considered.
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1. INTRODUCTION
For positive operators S and T between real Banach lattices several types

of "absolute continuity" have been defined. Here, we consider an absolute

continuity which will be applicable to spaces which are not necessarily

Dedekind complete. Several approximations of an operator absolutely

continuous with respect to T are provided in terms of sums of operators of

the form QiOToHi where Qi and H; are orthomorphisms. These approximations
are compared to results known for operators S less than T and for operators
on Dedekind complete Banach lattices. We also examine the relationship
between this and previous notions of absolute continuity. We begin by
recalling the following definitions.

DEFINITION. (Luxemburg [1]). Let E, F be Riesz spaces with S, T
positive operators from E to F. We say that S is absolutely continuous with

respect to T if for each positive element f in E, we have that Sf is in the
band generated by Tf.
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DEFINITION. (Feldman [2]). Let E, F be Banach lattices with S, T
positive operators from E to F. We say that S is 1-absolutely continuous
with respect to T if for each positive element f in E, we have that Sf is in
the closure of the order ideal generated by Tf.

We note that for linear functionals on E = C(X) (the continuous
real-valued functions on a compact topological space X) when E is Dedekind
complete, these two notions are equivalent to the usual definition of absolute
continuity. The absolute continuity introduced here will be shown to be
equivalent to the usual notion for functionals on any C(X).

In what follows we will refer to a decreasing sequence {Fk} of positive
elements of a Banach lattice E as a positive decreasing sequence in E. We
now introduce our version of absolute continuity.

DEFINITION. Let E, F be Banach Lattices and let S, T be positive
operators from E to F. We say that S is sequentially absolutely continuious
(s-absolutely continuous) with respect to T if for each positive decreasing
sequence {fi} in E and each positive linear functional ¢ on F, we have that
1im($(Tf))=0 implies 1im(¢(Sf,))=0.

We will be concerned with Banach lattices with quasi-interior points. An
element e of a Banach lattice E is a quasi-interior point if the order ideal
generated by e is dense in E. Recall that the order ideal generated by e is
the set of all elements whose absolute value is bounded by some multiple of
e. If E is equal to the order ideal generated by an element e then e is an
order unit. Recall that if E is a Banach lattice with quasi-interior point,
the elements of E can be represented as extended real valued functions on a
compact set X each finite on a dense subset (see [3]). We shall call X a
representation space for E. Further, this representation contains C(X) as a
dense order ideal. If E has an order unit, the representation is equal to
C(X). We denote by jrfhe subset of the linear operators from E to F which
consists of all those positive operators S, for which S is s-absolutely
continous with respect to T. Further, we denote the order ideal generated by
a positive operator T by <(T> and the set of positive operators which are less
than some multiple of T by <T>*.  In what follows, we identify elements in a
Banach lattice with a quasi-interior point with their representation as
extended real valued functions. If S and T are positive operators from a
Banach lattice E with a quasi-interior point e to a Banach lattice F, the
range of S and T is contained in the closure of the lattice generated by the
supremum of Se and Te. X will denote the representation space for E and Y the
representation space for the Banach lattice generated by the supremum of Se
and Te.

2. ABSOLUTE CONTINUITY.

We begin with 2 elementary lemmas.

LEMMA 1. Let S and T be linear functionals on C(X), the set of
continuous real valued functions on a compact Hausdorff space X. Then S is
s-absolutely continous with respect to T if and only if the measure associated
with S is absolutely continous with respect to the measure associated with T.

PROOF. We note that a linear functional ¢ on R corresponds to
multiplication, thus ¢(Tfn) converges to 0 if and only if TFn converges to 0.
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It is an easy exercise to see that S is s-absolutely continous to T then
the measure associated with S is absolutely continous with respect to the
measure associated with T.
The converse is a simple application of the Radon-Nikodym Theorem.
LEMMA 2. Let E be a Banach lattice with quasi-interior point e and let
¢ be a positive linear functional on E. Given a representation space X for

E, there exists a measure u such that for each g in E,

#(9) = Saduy.

PROOF . Since C(X) is dense in E and the sequence {gAne} converges in
norm to g for g non-negative, the sequence {¢(gAne)} converges to $(g). It
can be verified that the measure corresponding to the restriction of ¢ to
C(X) represents ¢.

We now give a sufficient condition for s-absolute continuity.

PROPOSITION 1. Let E be a Banach lattice with quasi-interior point e
and F a Banach lattice with S, T positive operators from E to F. [f for each
positive decreasing sequence of functions {fn} in E and for each y in the
representation space Y, the convergence of Tf (y) to 0 implies the convergence
of an(y) to 0 then S is s-absolutely continous with respect to T.

PROOF. Let ¢ be a linear functional on F and {f,} be positive decreasing
sequence such that ¢(TFn) converges to 0. By lemma 2, we have a measure u
such that ¢(g) = fgdu. In particular we have that [Tf_du converges to 0. For
each y in Y, define h(y) by

h(y) = inf {Tf (y)}.

Thus Sfhdu < ITfndu for each n or fhdu = 0. Setting A = {y| h(y) = 0}, we
have u(Y\A) = 0 and IYandu = IASFndu‘ Since h(y) = 0 on A and {Tfn(y)} is
decreasing, we have that Tfn(y) converges to 0 on A and thus SFn(y) converges
to 0 by hypothesis. Since Sf (y) < Sf;(y) and Sf,(y) converges to 0 on A,
the Monotone Convergence theorem implies

1im fySFadu = lim f4SF,du = 0

Thus we have that ¢(an) converges to 0, that is that S is s-absolutely
continous with respect to T.

We note that in the case when F = C(Y), the converse of the proposition
is also true since yoT defines a positive linear functional on F.

[t is obvious that if S < T then S is s-absolutely continous with
respect to T, i.e. contains <T>*. It is an easy exercise to show that 7
is closed and thus contains even the closure of <T>*.

PROPOSITION 2. 7vis a closed subset of L(E, F), the linear operators
from £ to F with respect to the operator norm. In particular, 74 contains the
closure of <T>*

We now compare and contrast these notions of order and absolute
continuity when the range is an M-space.



86 W. FELDMAN, C. PISTON AND C.E. PISTON

THEOREM 1. Let E be a Banach lattice with quasi-interior point and S, T
be positive operators from E to C(Y). Consider the conditions.

i) S is 1-absolutely continous with respect to T (in the sense of Luxemburg)
ii) S is 1-absolutely continous with respect to T
iii) S is s-absolutely continous with respect to T

iv) S is in the closure of <T>*.
Then we have

iv =) iii = ii => i
and no other implications hold.

PROOF. That (iv) implies (iii) is Proposition 2. To show that (iii)
implies (ii) we first note that if S is s-absolutely continous with respect
to T and f > 0, SFf(y) > 0 implies TfF(y) > 0. For a given € > 0 and g such
that 0 < g ¢ Sf, let A be the set {yl| (g - ee)(y) > 0}. Then A is compact
and hence there exists a A > 0 such that Tf > A(g - ee). Therefore we have
that Tf > A(Sf - ee) and thus (Sf - ee)Vy0 is in the order ideal generated by
Tf and therefore Sf is in the uniform closure of the ideal generated by Tf.
Thus we have (iii) implies (ii). That (ii) implies (i) follows from the fact
that the closure of the ideal generated by Tf is contained in the band
generated by Tf.

That no other implications hold is shown by the following examples. We
will assume that C(X) is endowed with the sup-norm topology.

EXAMPLE 1. We give here operators S and T such that S is absolutely
continuous with respect to T, but S is not t-absolutely continuous with
respect to T.

Define S and T from C[(0,!] to C[0,1] as follows.

Sf(x) f(x)
Tf(x) xf(x)

Sf is in the band generated by Tf and hence S is absolutely continous with
respect to T.

However, for each operator T’ such that T’'f is in <Tf>, we have for any
positive f in C(X), T'f(0) < ATFf(0) = 0, for some X in R*, and thus
T’F(0) = 0. Therefore,

1ISF - T'FI| 2 ISF(0) - T'F(0)| = ISF(O) 1.

If £(0) # 0 then Sf is not in the closure of the order ideal generated by Tf
and thus S is not t1-absolutely continuous with respect to T.

EXAMPLE 2. Here we give operators S and T such that S is t-absolutely
continous with respect to T, but S is not s-absolutely continous with respect
to T.

Let N" denote the one point compactification of N. Define operators
from C(N") to C(N") as follows.
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Sf(x) = f(x)

TF(x) = gzltf(n)]/(nz))l (1 denotes f(x) = 1)

Since Tf is constant, Sf is less than some multiple of Tf, i.e. in the order
ideal generated by Tf. Thus S is t-absolutely continous with respect to T.
However, by defining f (x) on N by

Fk(x) = x[k'n]

we have a positive decreasing sequence of functions on C(N') with Tf (x)

converging to 0 for each x in N, However, Sf) (=) = | for each k, and hence
does not converge to 0. Thus S$ is not s-absolutely continous with respect to
T.

EXAMPLE 3. Here we give operators S and T such that S is s-absolutely
continous with respect to T, but where S is not in the closure Y. We
define operators from C(N‘) to C(N') as follows,

SF = f

TF

(T, [F(N1/n?] + F(=))1.

Suppose that S is in the closure of <T>t. Let T'e<T>t. For x in N*, we
have for some A and for every £ > 0 in C(N').

T'F(X) < ATFO) = AE(F()I/n? + F(=))
Pick m such that m2 » 2X, and define a function g by

so <{ JEx 20 ]

We thus have g in C(N") and I1glle = 1. In addition, for every x in N',

T/g(x) < A(l/mé) < 1/2.
Thus,

18 = T711 2 118g - T'gil
2 ISg(m) - T'g(m)| > 1/2

and thus S can not be In the closure of the order ideal generated by T.
It is routine to check using Proposition | that S is s-absolutely
continous with respect to T.

3. APPROXIMATIONS.

The next several theorems give approximations which enlarge the scope of
previous results. Recall that a positive operator T from a Banach lattice E
into itself is an orthomorphism if and only if there exists an element m in E
such that Tf = mf for each f in E where the elements are viewed in the
representation (see e.g. (4], Thm. 4).
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The next theorem is based on a result for operators S which are
1-absolutely continous with respect to T on Dedekind complete M-spaces in [2]
using a similar argument.

THEOREM 2. Let E and F be Banach lattices with guasi-interior points
and let S, T be positive operators from E to F such that S is s-absolutely
continous with respect to 7. Then for every f in E, and every ¢ > 0, there
exist orthomorphisms H; on E and Q; on F, for a finite number of indices i,

such that

n
11(S “_EQiOTOHi)F” < €,
i=1

where |(+|| is the Banach space norm on F.

PROOF. 1If e is a quasi-interior point of E then for a given f in E*, we
have that e + f is also a quasi-interior point. Thus we can choose the
representation space X so that if f is in C(X) and Sf and Tf are in C(Y).
Now, assume that S is s-absolutely continous with respect to 7. For each
fixed y in Y, let uy and Vy be the measures corresponding to the functionals
(yoT) and (yoS), respectively. By the Riesz Representation Theorem,

Tf(y) (yoT)(f) Iquy and

Sf(y) (yoS) (f) J'dey.
As noted in Lemma 1, Vy << uy and thus we have by the Radon-Nikodym Theorem a
positive measurable function gy on X such that

Sf(y) = ffgyduy.

Since (yoS) is continuous, we have that S(1)y < «, and therefore 9y is in

Ll(X, uy). Given ¢ > 0 and f in C(X), there is an hy in C(X) such that
Ilgy - hy"l K e/llflle (see [5], Thm 25.10).

Thus we have

ITChyF) - SFlyl = 1f(hy-g,)fdu |
< Ilhy = g 11 1IflIL < e

Since T, S, f, hy
that for every z in Ny.

are all continuous, there exists a neighborhood Ny of y such

l[T(hyf) - SfFJzi < e

For each y in Y, choose such a neighborhood. Since Y is compact there is a
finite number of these neighborhoods which cover Y. We label the
neighborhoods N; for i = 1,2,...n. Further, functions q; in C(Y) can be
chosen (a partition of unity, see e.g. (6], p. 63) such that

0 < g g.l.'glqi = 1, and qg;(y) = 0 on the complement of N;. Let h; = hy'
where N; = Ny.
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Assume that z is in Y such that g;(z) # 0. Then z is in N; and
1SF(z) - T(fhy)(2)1 < ¢

and hence

9; (2) ISf(z) - T(fh;)(z)| < eq;(z).

Therefore, summing up over the index i, we have

n
@i @182 - T (@D < e f ap.

n
thus, I15f(z) -iglqi(z)T(Fhi)(z)l < e
Since z is arbitrary, this gives us

n
1 15F -igl QTfh;) 1. < €.
We define orthomorphisms Qi on C(Y) and H; on C(X) by

Q;fly) = aj(y)f(y)
Hif(x) = F(x)hj(x).

Thus we have by extending to E and F (e.g., see [2])

n
11(S = T QjoToH;)f 1, < €.
i=1

Hence, 1S -‘?l Q;OTOHIFI < & o 1,
ik

which implies for the)Banach space norm,

n
1S = Z QoToHFIl < lle « 111 = ¢« llell. = &

When the spaces involved are Dedekind complete, approximations of this
type have generally been given using projection operators (e.g. [7], [8]).

CORROLARY 1. Let E, F, S, T be as in the theorem. If E and F are
Dedekind complete, and if S is s-absolutely continous with respect to T then,
for each positive f in E and every ¢ > 0, there exist projection operators Qi
H; and real valued scalers a; for a finite number of indices i such that

n
11(S - L a;Q;oTeH;)f|] < e.
i-1

PROOF. If C(X) is Dedekind complete then we have that X is extremally
disconnected. In this case each simple function of the form oiX5j is
i

continuous, if 0; is open. Thus, following the proof of the Theorem we choose

n
hy to be a simple function of the Formiz:lai)(gi with H; open. Further, we

choose a; to be characteristic functions of clopen sets. Defining the
operators H; and Qj as
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H{F = FXi,

we observe that each Qj and H; are projections. The remainder of the proof
is similar to that of Theorem 2.

The next result, motivated by results which were established for
operators S which are in the ideal generated by T (on M-spaces by Aliprantis
and Burkinshaw [6] and on Banach lattices with quasi-interior points by Haid
[9]), is a direct corollary of Theorem 2.

COROLLARY 2. Let E and F be Banach lattices with quasi-interior points
and let S, T be positive operators from E to F such that S is s-absolutely

continous with respect to T. Then for every f in E, ¢ a positive linear
functional on F, and ¢ > 0, there exist orthomorphism H; on E and Q; on F,

for a finite number of indices i such that

$LIS -2 0 oToH ) C e

A further characterization of s-absolute continuity is given by the
following.

THEOREM 3. Let E and F be Banach lattices with quasi-interior points
and let S and T be positive operators from E to F. Then S is s-absolutely
continous with respect to T if and only if, given e > 0, f in E and ¢ a
positive linear functional on F, there exists an orthomorphism H on E such
that |¢(TH -S)g| < € for all g in E with ig| < f.

PROOF. Let S be s-absolutey continous with respect to T. If e is a
quasi-interior point of E then so is f + e. We choose a representation space
so that f is in C(X). For a linear functional ¢ we have that $0S << ¢oT as
measures on X (see lemma 1). Thus if for every h in C(X) we have

$0T(h) = fhdu
then there is a positive measurable function p’ such that
$0S(h) = fhp’'du
Letting h(x) = 1 for every x, we see that p’ is L’(u). and so there exists a

function p in C(X) such that |ip - p’Il} < &/lIfil.  Therefore for g such
that Igl < f, we have

1($0S)g - (¢0Tp)gl = [Jgp'du ~ fhgdul = Ifg(p - p’)dul
LClHip=plljligll, < &.

Let H be the orthomorphism defined by multiplication by p. Thus for every g
in E with Igl ¢ f, we have that

1$(TH - S)gl < e.

Conversely, let {f} be a positive decreasing sequence in E such that ¢(7f)
converges to 0. Again choosing X so that fy is in C(X), we have {fy} in
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C(X). By assumption, given ¢ > 0, there exists an orthomorphism H on E so
that [1¢(TH - S)Fnl < & for every n. Recall that H is a multiplication
operator, say multiplication by p in C(X). Now (¢0T) is a positive linear
functional on C(X) corresponding to a measure, say u. Since ¢(Tf,) = ffdu
converges to 0, it follows that Jfppdu = ¢(THf ) converges to 0. Thus ¢(Sf)
also converges to 0 and so S is s-absolutely continous with respect to T.

For compact operators on M-spaces, we have the following which is based
on a result for Dedekind complete spaces in [2].

THEOREM 4. Let X, Y be compact Hausdorff spaces and S, T be positive
operators from C(X) to C(Y). If S is s-absolutely continous with respect to

Tand T is compact, then S is compact if and only if S is the norm limit of
n

operators of the type -lei°T°Hi for a finite number of indices and each Q;
i= ’

and H; is an orthomorphism.
PROOF. If T is compact then each operator of the form Q;oleH; is

n
compact and hence so is the finite sum -lei°T°Hi' and thus S is compact.
1=
For the converse, we assume that S is compact. For every y in Y and
e > 0, denote by G the operator defined by
Gf = Sf - T(hyF).

where hy is the continuous function as described in the proof of Theorem 2.
Letting Hy be the orthomorphism on C(X) defined by multiplication by hy. we
have that G is compact, since both S and THy are compact. Further, as in the
proof of Theorem 2, we have

IGF(y) I < €.
We will show that there is a neighborhood Ny of y such that GF(NY) is
contained in (-3¢,3e) for all f in C(X) such that ||f{], € 1.
Assume that this is not the case. Then there exists a net [yo} inyY

such that y, converges to y, and there exist functions f, in C(X) with [1f |l
< 1 and satisfying both of the following

i) Gfgly,) > 3e, for all a.
11) Gf,(y) < E.

Since G is compact, there exists a subnet of {Gf,} converging to some
function g’ in C(Y). However, from condition ii) we have

g’(z) < 3e¢/2

for all z in some neighborhood W of y, while from condition (i) we see that

g’ (yy) > 3e
for all Ya in W, giving us a contradiction.
Therefore, there exists a neighborhood Ny of y such that GF(Ny) is

contained in (-3¢, 3¢), for all f with ||f]|, < 1. Repeating the construction
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process of Theorem 2, we find a partition of unity {q;} for a cover {N;} of Y
such that

0 <q; <1y Zaq;=1, and a;{y) = 0 on the compiement of N;.

Thus we have

n
1S = % QqoToH; 11 = sup (115 -i'_z‘l(qioToHi)fH- } < 3

n
and thus S is the norm limit of operators of the type iEIQl°T°Hi'

We further note that the approximation given in Theorem 2 is not, in

general, uniform. Let E = F = C(N') and define Sf(x) = f(x) and Tf(x) =

( Zfl-'(n)/n2 + f(~))l. As stated earlier S is s-absolutely continous with
n=

respect to T. T is compact (it has rank 1), but S is not compact. If the

approximation given in Theorem 2 were uniform, then Theorem 4 would imply S is
compact.

11.
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