ON CERTAIN REAL HYPERSURFACES OF QUATERNIONIC PROJECTIVE SPACE
 JUAN DE DIOS PEREZ
 and
 FLORENTINO G. SANTOS

Departamento de Geometria y Topologia
Facultad de Ciencias. Universidad de Granada
18071-GRANADA. SPAIN
(Received April 25, 1990)

ABSTRACT. We classify certain real hypersurfaces of a quaternionic projective space satisfying the condition $\sigma(R(X, Y) S Z)=0$.

KEY WORDS AND PHRASES: Quaternionic projective space, real hypersurface.
1980 AMS SUBJECT CLASSIFICATION CODES: 53C25, 53C40.

1. INTRODUCTION.

Let M be a connected real hypersurface of a quaternionic projective space $Q P^{n}, n \geq 2$, with metric g of constant quaternionic sectional curvature 4. Let ξ be the unit local normal vector field on M and $\left\{\psi_{1}, \psi_{2}, \psi_{3}\right\}$ a local basis of the quaternionic structure of $Q P^{n}$, (See [1]). Then $U_{1}=\psi_{1} \xi, i=1,2,3$ are tangent to M. It is known, [3], that the unique Einstein real hypersurfaces of $Q P^{\boldsymbol{n}}$ are the open subsets of geodesic hyperspheres of $Q P^{n}$ of radius r such that $\cot ^{2} r=1 /(2 n)$. This paper is devoted to study real hypersurfaces M of $Q P^{n}$ satisfying the following condition

$$
\begin{equation*}
R(X, Y) S Z+R(Y, Z) S X+R(Z, X) S Y=0 \tag{1.1}
\end{equation*}
$$

for any X, Y, Z tangent to M, where R denotes the curvature tensor and S the Ricci tensor of M.
Concretely we prove the following:
THEOREM 1. Let M be a real hypersurface of $Q P^{n}, n \geq 2$, satisfying Condition (1.1) and such that $U_{i}, \mathrm{i}=1,2,3$, are principal. Then M is an open subset of a geodesic hypersphere of $Q P^{n}$ of radius $\mathrm{r}, 0<r<\pi / 2$, such that $\cot ^{2} r=l /(2 n)$.
Clearly condition (1.1) is weaker than R.S=0. Thus we also obtain
COROLLARY 2. The unique real hypersurfaces of $Q P^{n}, n \geq 2$, satisfying R.S $=0$ and such that $U_{i}, i=1,2,3$, are principal are open subsets of geodesic hyperspheres of radius $\mathrm{r}, 0<r<\pi / 2$, such that $\cot ^{2} r=1 /(2 n)$.

COROLLARY 3. A real hypersurface of $Q P^{n}, n \geq 2$, with $U_{i}, i=1,2,3$, principal cannot satisfy the condition $R . R=0$.

Where for any X, Y tangent to $\mathrm{M}, R(X, Y) \cdot T=\nabla_{X} \nabla_{Y} T-\nabla_{Y} \nabla_{X} T-\nabla_{[X, Y]}$ for any tensor field T on M, (see, for example, [5]).

2. PRELIMINARIES

Let X be a vector field tangent to M . We write $\psi_{i} X=\varnothing_{i} X+f_{i}(X) \xi, \mathrm{i}=1,2,3$, where $\emptyset_{i} X$ denotes the tangential component of $\psi_{\mathbf{2}} X$ and $f_{\mathbf{t}}(X)=g\left(X, U_{\mathfrak{z}}\right)$. From this, [4], we have

$$
\begin{equation*}
g\left(\varnothing_{2} X, Y\right)+g\left(X, \varnothing_{1} Y\right)=0, \quad \varnothing_{2} U_{t}=0, \quad \varnothing_{j} U_{k}=-\varnothing_{k} U_{j}=U_{t} \tag{2.1}
\end{equation*}
$$

for any X and Y tangent to $\mathrm{M}, \mathrm{i}=1,2,3$ and ($\mathrm{j} . \mathrm{k} . \mathrm{t}$) being a cyclic permutation of $(1,2,3)$.
From the expression of the curvature tensor of $Q P^{n},[4]$, the equations of Gauss and Codazzi are given respectively by
and

$$
\begin{align*}
R(X, Y) Z=g(Y, Z) X-g(X, Z) Y & +\sum_{i=1}^{3}\left\{g\left(\varnothing_{1} Y, Z\right) \varnothing_{1} X-g\left(\varnothing_{1} X, Z\right) \varnothing_{1} Y+\right. \\
& \left.+2 g\left(X, \varnothing_{1} Y\right) \varnothing_{1} Z\right\}+g(A Y, Z) A X-g(A X, Z) A Y \tag{2.2}
\end{align*}
$$

$$
\begin{equation*}
\left(\nabla_{X} A\right) Y-\left(\nabla_{Y} A\right) X=\sum_{t=1}^{3}\left\{f_{1}(X) \varnothing_{1} Y-f_{1}(Y) \varnothing_{1} X+2 g\left(X, \varnothing_{1} Y\right) U_{1}\right\} \tag{2.3}
\end{equation*}
$$

for any $\mathrm{X}, \mathrm{Y}, \mathrm{Z}$ tangent to M , where A denotes the Weingarten endomorphism of M . The Ricci tensor of M has the following expression

$$
\begin{equation*}
S X=(4 n+7) X-3 \sum_{t=1}^{3}\left\{f_{t}(X) U_{1}+h A X-A^{2} X\right. \tag{2.4}
\end{equation*}
$$

for any X tangent to M, h being the trace of A .
If $U_{\mathrm{i}}, \mathrm{i}=1,2,3$, are principal and have the same principal curvature α, this is constant, [4], and from (2.3) it is easy to see that

$$
\begin{equation*}
2 A \emptyset_{\mathrm{t}} A X=\alpha\left(A \varnothing_{1}+\phi_{2} A\right) X+2 \phi_{\mathrm{r}} X+2 f_{k}(X) U_{\jmath}-2 f_{\jmath}(X) U_{k} \tag{2.5}
\end{equation*}
$$

for any X tangent to M , where ($\mathrm{i}, \mathrm{j}, \mathrm{k}$) is a cyclic permutation of $(1,2,3)$.
3. PROOF OF THEOREM 1.

Let Z be a tangent field to M , orthogonal to $U_{\mathrm{i}}, \mathrm{i}=1,2,3$, and principal with principal curvature λ. Then, from Condition (1.1) and (2.4) we have
$\left(4 n+7+h \lambda-\lambda^{2}\right) R\left(U_{1}, U_{2}\right) Z+\left(4 n+4+h \alpha_{1}-\alpha_{1}^{2}\right) R\left(U_{2}, Z\right) U_{1}+\left(4 n+4+h \alpha_{2}-\alpha_{2}^{2}\right) R\left(Z, U_{1}\right) U_{2}=0$
where α_{1} is the principal curvature of $U_{1}, \mathrm{i}=1,2,3$.
From (3.1) and the identity of Bianchi we obtain

$$
\begin{equation*}
\left(3+h \lambda-\lambda^{2}\right) R\left(U_{1}, U_{2}\right) Z+\left(h \alpha_{1}-\alpha_{1}^{2}\right) R\left(U_{2}, Z\right) U_{1}+\left(h \alpha_{2}-\alpha_{2}^{2}\right) R\left(Z, U_{1}\right) U_{2}=0 \tag{3.2}
\end{equation*}
$$

that is,

$$
\begin{equation*}
\left.\left(3+h \lambda-\lambda^{2}-h \alpha_{1}+\alpha_{1}^{2}\right) R\left(U_{1}, U_{2}\right) Z+h \alpha_{2}-\alpha_{2}^{2}-h \alpha_{1}+\alpha_{1}^{2}\right) R\left(Z, U_{1}\right) U_{2}=0 \tag{3.3}
\end{equation*}
$$

From (2.2), (3.3) gives $h \alpha_{2}-\alpha_{2}^{2}-h \alpha_{1}+\alpha_{1}^{2}=2\left(3+h \lambda-\lambda^{2}-h \alpha_{1}+\alpha_{1}^{2}\right.$). Changing (U_{1}, U_{2}) in (3.1) by $\left(U_{2}, U_{3}\right)$ or $\left(U_{3}, U_{1}\right)$, respectively, we obtain

$$
\begin{equation*}
h \alpha_{i}-\alpha_{i}^{2}+h \alpha_{j}-\alpha_{j}^{2}=6+2 h \lambda-2 \lambda^{2}, i \neq, i, j=1,2,3 \tag{3.4}
\end{equation*}
$$

From (3.4) we get

$$
\begin{equation*}
h\left(\alpha_{i}-\alpha_{j}\right)=\alpha_{1}^{2}-\alpha_{j}^{2} \tag{3.5}
\end{equation*}
$$

thus either $\alpha_{1}=\alpha_{j}$ or $\alpha_{1}+\alpha_{j}=h$.
Let us suppose that $\alpha_{1} \neq \alpha_{2}=\alpha_{3}$. Then $\alpha_{1}+\alpha_{2}=h$. Thus $\alpha_{i}, \mathrm{i}=1,2,3$, must satisfy the equation $\alpha^{2}-h \alpha+\alpha_{1} \alpha_{2}=0$. Then we have $\left(h A-A^{2}\right) U_{i}=\alpha_{1} \alpha_{2} U_{i}, \mathrm{i}=1,2,3$, and from (2.4)

$$
\begin{equation*}
S U_{1}=\left(4 n+4+\alpha_{1} \alpha_{2}\right) U_{1} \tag{3.6}
\end{equation*}
$$

From (3.4) we also have $h\left(\alpha_{1}+\alpha_{2}\right)-\alpha_{1}^{2}-\alpha_{2}^{2}=6+2 h \lambda-2 \lambda^{2}$, but $h=\alpha_{1}+\alpha_{2}$. Thus $\alpha_{1} \alpha_{2}=3+h \lambda-\lambda^{2}$. This means that for any Z orthogonal to $U_{1}, \mathrm{i}=1,2,3,\left(h A-A^{2}\right) Z=\left(\alpha_{1} \alpha_{2}-3\right) Z$, and from (2.4),

$$
\begin{equation*}
S Z=\left(4 n+4+\alpha_{1} \alpha_{2}\right) Z \tag{3.7}
\end{equation*}
$$

From (3.6) and (3.7), M must be Einstein. But this is a contradiction (see [3]). Thus $\alpha_{1}=\alpha,=\alpha$, $i \neq j$. Then α is constant and from (3.4) we have

$$
\begin{equation*}
3+h(\lambda-\alpha)-\lambda^{2}+\alpha^{2}=0 \tag{3.8}
\end{equation*}
$$

But from (2.5), $\varnothing_{\mathrm{i}} Z$ is also principal and its principal curvature is $\mu=(\lambda \alpha+2) /(2 \lambda-\alpha)$. Thus we also get

$$
\begin{equation*}
3+h(\mu-\alpha)-\mu^{2}+\alpha^{2}=0 \tag{3.9}
\end{equation*}
$$

Then from (3.8) and (3.9) we obtain that either $\lambda=\mu$ or $\lambda+\mu=h$. If $\lambda=\mu, \lambda$ must satisfy the equation $\lambda^{2}-\lambda \alpha-1=0$. If $\lambda+\mu=h, \lambda$ must satisfy the equation $\alpha \lambda^{2}-2\left(\alpha^{2}+4\right) \lambda+\alpha^{3}+5 \alpha=0$. In both cases all the principal curvatures are constant. Thus, [3], M must be an open subset of either a geodesic hypersphere or of a tube of radius $\mathrm{r}, 0<r<\pi / 2$ over $Q P^{k}, 0<k<n-1$. It is easy now to see that the only ones satisfying (3.8) are open subsets of geodesic hyperspheres of radius r, ' $0<r<\pi / 2$, such that $\cot ^{2} r=1 /(2 n)$, (see [3]). This concludes the proof.
It is also easy to see that these real hypersurfaces cannot satisfy the condition R.R=0, and then Corollary 3 is proved because $\mathrm{R} . \mathrm{R}=0$ implies $\mathrm{R} . \mathrm{S}=0$.
ACKNOWLEDGEMENT: Research partially supported by GIST Grant PS 87-0115-C03-02

REFERENCES

1. ISHIHARA, S. Quaternion Kahlerian Manifolds, J. Differential Geometry, $\underline{9}$ (1974), 483-500.
2. KI, U.H., NAKAGAWA, H. and SUH, Y.J.: Real Hypersurfaces with Harmonic Weal Tensor of a Complex Space Form, (Preprint).
3. MARTINEZ, A. and PEREZ, J.D.: Real Hypersurfaces in Quaternionic Projective Space, Ann. di Mat., 145(1986), 355-384.
4. PEREZ, J.D. and SANTOS, F.G.: On Pseudo-Einstein Real Hypersurfaces of the Quaternionic Projective Space, Kyungpook Math. J. $\underline{25}(1985), 15-28$.
5. RYAN, P.J.: Homogeneity and Some Curvature Conditions for Hypersurfaces, Tôhoku Math. J., 21(1969), 363-388.
