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ABSTRACT: In this paper we obtain regions containing all the zeros of a class of

analytic functions whose coefficients are subject to certain conditions. Our

results sharpen some of the results known in this direction. Also we give some

examples to show that in some cases the regions obtained by our results are

considerably sharper than the regions obtained by known results.

KEY WORDS AND PHRASES.

functions.

Zeros of polynomials, rational functions, and other analytic

1980 AMS SUBJECT CLASSIFICATION CODE. 30C15.

I. INTRODUCTION AND STATEMENT OF RESUL’rS.

In this paper we obtain the regions containing all the zeros of certain classes

of analytic functions. Our results improve some of the results known in this

direction. We shall in fact be proving the following results which sharpen some of

the results of Azlz and Mohammad [I] and of Govil and Rahman [2].
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THEOREM I. Le__t f(z) aj zj i O, be .analytic in

l.f larg ajl < < ,/2, O, I, 2,..., and for some finite nonnega..tive integer

where

R C.)
2

2M

ere

and

b a ta1. (1.3)
o

The above theorem sharpens Theorem 6 of Aziz and Mohammad ill. If we take

k 0 in Theorem I, we get the following corollary which sharpens Corollary 5 of

Azlz and Mohammad [I].

COROLLARY I. Let; Cz) ’ ajz
j

b_ analytle in ,]z[-<t"

’ 1_ -< <-’/, " o, , ,..., o__ Iol z 1,1 z 11 z
does not vanish In

where

Here

and

b a ta (I 6)o

For t=l, the above corollary sharpens Theorem 3 of Govil and Rahman [2].

THEOREM 2. Le__t f(z) aj z _be aalytic in Izj<t. If
j--O

Re aj =e
j, and Im aj j=0, I, 2, and for some finite nonnegatlve integer

k, <ao<tal< "<tkk-- --> tk+lak+l --> then f(z) does not vanish in

Iz < R?,
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where

Here

o
a ji-O
o o

and

b a taI. (1.9)
o

This theorem sharpens Theorem 7 of Azlz and Mohammad [I]. If we take k=0 in

the above Theorem 2, we get the following corollary which generalizes and sharpens

Theorem 4 of Govll and Rahman [2].

COROLLARY 2. Let f(z) ? a.z be analytic in Izl<t. If
j=O J

’a_1=j+iS_,__ j=0,1,2, and O<o>tl> t22> then f(z) does not

vanish in

where

2
2M

(1.10)

Here

and

o
o j=O J (1.11)

b a ta (i 12)o o

As remarked earlier, Theorems and 2 are respectively the refinements of

Theorems 6 and 7 of Azlz and Mohammad [I]. For the sake of completeness we will

verify that Theorem sharpens Theorem 6 of Azlz and Mohammad [I], for which it is

sufficient to show that

because as can be easily seen, Mlit laolM. Now (I. 14) is equivalent to

(1.13)

which is true if and only if
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and since (1.15) is evidently true by Cauchy’s inequality [3, p. 84], the

inequality (I.13) is verified.

The fact that Theorem 2 is a refinement of Theorem 7 of [I] can be verified on

the same lines and we therefore omit the proof.

In general Theorems and 2 give results which are at least as good as

obtainable from Theorems 6 and 7 of Azlz and Nohammad [I|, but in some cases the

results obtained by Theorems and 2 are significantly better than those obtained

respectively from Theorem 6 and 7 of Aziz and Moha,nmad [I]. We illustrate this by

the following examples.

EXAMPLE I.

+ i Iz + I i z2 1 i z(’)’+(2- 2 2--" "-2 +--s2) +(2 +---) +""

[f we take t 2, k I, a /4, then Theorem 6 of Azlz and Mohammad

[I] gives that f(z) does not vanish in Izl < .4714045, while our Theorem 1

gives

EXAMPLE 2.

f(z) (l+i)+ (2+)z + (3+)z2 + (4+)z + (l+)z + (l+)z5

+ (l+)z +

If we take t I, k 3

f(z) does not vanish in zl < 0"333

2. LEMMAS.

We need the following lemmas.

LEMMA I. If f(z) is analytic in

The e,,xample

then Theorem 7 of Azlz and Mohammad [I] gives that

while by our Theorem 2, f(z) does not

<,-I-I Izl /l.I tzl/l,,I
I’<z’l<- /"-i"l

ba+zf(z) shows that the estimate is sharp.
b- z- az

Above lemma is due to Govll et al [4].

One gets easily from the above lemma, the following.

L EMMA 2. If f z is analytic in izl<_ and If(z)

LEMMA 3. Let f(z) ,7 ajzJ--O be analztlc in

larg ajJ _<a<_/2, j=0,1,2, the_n_



LOCATION OF THE ZEROS OF ANALYTIC FUNCTIONS 71

3. --l!] tla I-]a_ Io.. + (tlaj t+]aj_I I)sin .
The proof is omitted as it follows Iimaediately from the inequality (6) in [2].

PROOFS OF THE THEOREMS.

Proof of Theorem I. Clearly llm tJaj=O. We consider the function

F(z) (z-t)f(z)

+ z r taj)z
j-I-ta

j=l
aj_l-

-ta + G(z), say.

Using Lemma 3, we get for Izl t,

j=1
-i

k

k+l

+ 2 sine

I) cos + sin e +

M

Since G(O) O, G’(O)--ao-tal--b we get by Lemma 2, that for Izl< t,

Combining (3.1) and (3,2), we get for

I.-- labia. I- Iz. I-I . I..1-1

- 1..1. /11 I1.-1ol -to1../11 I-.I
> 0

(3.2)
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if

R1.

Consequently f(z) does not vanish in IzI<RI and the proof of Theorem 1 is

c stople re,

Proof of Theorem 2, Clearly lira tj O, lira , tj O, As before we
j+ j+ J

+ GCz), where GCz) s sameconsider the function F(z) (z-t) f(z) o
as In (3.1). The, o z t, we have

J=l J-1 j J=l
j-1 J

G’(O) a ta b, we can apply Lemma 2 to the function GCz) andSince G(O) O, o I

then proceeding on the lines of the proof of Theorem I, the proof of Theorem 2 can be

completed.
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