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ABSTRACT. In this note, we consider the multipliers on weighted H spaces over

totally disconnected locally compact abellan groups with a suitable sequence of open

compact subgroups (Vilenkln groups). We first show an (HI,LI) multiplier result from

hlch Onneweer’s theorem follows. We also give an (HI,H multiplier result under a

condition of Baernsteln-Sawyer type.
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I. INTROUDCTION.

Recently, Onneweer obtained a weighted L
p

multiplier theorem [I, Theorem I] over

a Vilenkln group which is a generalization of Talbleson’s theorem over a local field.

In this note, we show a weighted (H ,LI) multlpler theorem under a weaker

hypothesis than [I, Proposition 2], and show the Onneweer’s theorem, by using an

extended interpolation theorem for weighted H and Lp spaces. We do not know whether

this multiplier is also a weighted (HI,H multiplier. But we are able to show that a

Baernsteln-Sawyer type condition [2] which is stronger than Onneweer’s, implies a

weighted (HI,H result. This is also a generalization of Theorem 2 [2].

2. DEFINITIONS AND NOTATIONS.

Throughout this note, G will denote a locally compact abelian group with a

sequence {Gn}... such that

(i) each G is an open compact subgroup of G,
n

C G and order (Gn/Gn+I) <(ii) Gn+l n

(iii) Gn G and Gn {0}.



666 To KITADA

Moreover we shall assume that G is order-bounded, i.e.;

B: sup [order (G /G ); n E Z} < =.
n n+l

Let F denote that dual group of G and for each n Z, let r denote the

annihilator of G Then we have
n

(i)’ each is an open co.act subgroup of I’,n

(if) rn rn+l and order (Fn+1 /rn order (Gn/Gn+1 )’

(iii)’ U r r and r [1}.
n n

We choose Haar measures p on G and X on r so that p(G0) x(r0) I, then

p(Gn) (X(rn)) := (ran) for each n Z. For an arbitrary set A we denote its

indicator function by A" The symbols and w will be used to denote the Fourier and

inverse Fourier transform respectively. It is easy to see that for each n Z we
’ -lrhave (G) ((rn)) We set Dn := ((Gn)) IG for each n Z.

n n n
We now define the weighted Lp spaces. For R, we define the function v on G

by v(x) (ran)- if x GnGn+l (n&Z); 0 if x O. We denote the Lp spaces with

respect to the measure d:= vd on G by LaP(G), simply Lp. Also for p < , we

set

G

Let S(G) be the set of all functions on G such that has compact support and

is constant on the cosets of some subgroup %(n depends on ) of G. The functions in

S(G) are called test functions on G. It is well known that if >-I, then S(G) is

dense in Lp for p < .
In order to define the weighted Hardy spaces on G, we first define weighted atoms

on G. Let < q =. A function a(x) on G is a (l,q) atom if there exists an

interval I I (x): x + G x G, n Z such that
n n

(f) supp a is contained in I,

I

llq a(1)-l, if < q <

and If q (R),

(iii) a(x)d 0.

The weighted Hardy space HI’q(G), simply H l’q is the space of all functions f on

on G such that f(x) I a(x),
0

where the ak’s are (1,q)a atoms and 7-IAkl <- We set I II inf I Xk[, where

the infi is taken over all such decompositions. en H l’q is a subspace of L and
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that

It also follows easily from the definition

HI,
I, q2 l,ql

C H C H

HI, Hwhenever < ql < q2 < " We denote
a

by a" In the following section, we show

that Hl’q H if -I < a 0 and < q < -.

We say that m L (r) is an (X,Y) multiplier (or a multiplier on X, when X Y)

if there exists a constant C > 0 so that

for all XS(C)

pwhere X and Y are equal to Hu or Lu.
According to [I], we say that EL (r) satisfies condition C(k,r) for

some k Z and r [I,") if there exist C, g > 0 so that for all , n Z with

n < have

sup {( f
Gn\Gn+

l(k; (x-y) (k)V(x)Ir d) y G

C (mn)I/r’ + (m)-, if < r < o,

and there exists C > 0 so that for all Z we have

sup I(k) (x-y) (k)V(x)IdB; y C} C, if r- I,

G
where k F

k
for each k Z and r’ denotes the conjugate exponent of r.

Let < a < 0o, p < and 0 < q o. A function f on G belongs to the Herz

space Ka’q(G), simply Ka’q if
P P

p

with the usuaI modification if q ’[3]o

f II pq) l/q < (R),

GAGn+

We now state the main theorems:

THEOREM I. Let L (r)and suppose that satisfies condition C(k,r) for some

k Z and r [I,). Then k is an (Ha’ La) multiplier for -I/r’ < a 0.

As a Corollary we obtain Theorem of [I]:

COROLLARY. Let L (). (1) Suppose that condition C(k,r) holds for all k Z,

for some r (I,), and with constants C and independent of k Z. If is a

L
2

multiplier on for some 0 with-I/r’ < 0 < I/r’, then is a multiplier on Lp for
all p, , such tat < p < and

(ii) If C(k,l) holds for all k & Z, and with C independent of k Z, then is a

multiplier on L
p
for < p <-.
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THEOREM 2. Let L (r) and suppose that there exist r [I, (R)) and s > 0 such

that

where +j: rj+l\ r
-1 < r’a O. J

Hfor each Z, then is a multiplier on for

3. PRELIMINARY RESULTS.

To prove Theorem 2, we need the "maximal function" characterization of H

locally in LL(G) we define the maximal function M f of f byf

Mf(x) sup (I) f If(Y) Idea(y)}’
I I

where the l’s are intervals containing x. When O, we denote M by M, simply.

LEMMA. Let > -1.

(’a) V a(x+G C V (x+G for all x G and n Z,
n a n+l

and is of type (p,p) on Lp for < p < ,H
a is of weak-type (1.1) on La a

If a 0, then for all interval I

Fo r

(d)

la(1) C l(1) fnf{va(y); y I, y 0}.

LIf 0, then M is of weak-type (I,I) on
a

PROOF. (a) and (c) are Lemmas l(b) and (c) in [I]. (b) follows from (a). By

(c), we have that Mr(x) C M f(x) for each x E G. Then (d) follows from (b).
a

L belongs to H ff and only if f*: Mf LITHEOREM A. Let a > -I. An f a
Moreover llfllHl fs equivalent to

A slight modification of the argument in [2] establishes the result, so we omit

the proof.

Hl,q HTHEOREM B. Let -I < = O. Then =, for < q < .
PROOF. We have already seen that H is continuously included in H l’q for each

< q < (R). In order to establish the opposite inclusion, it suffices to show that a

(1,q) atom a has the representation

a(x) S aj (x) (3. I)
0

where each aj is a <l,=)a atom and E IXjl C, C independent of a. Like the non-
weighted case, thls can be done by using the Calderon-Zygmnd decoposftion [4], [5].

Let a be a (1,q)a atom that is suppported on I: Xo+ Gn^(X0 qG, no Z). We
let b(x): (I)a(x), then supp b__.l, f b(x)d(x) O, .ndUllbllq,= , =c>.
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For t > 0 (we shall be expllct later), we denote the open set

(x G: Mq (b) > t}: [x G; Ma(Iblq)(x) > tq} by Ut. We note that U
t
C I for t

> I. (This is easily seen from the fact that for any two intervals in G, they are

disjoint or one contains the other). Lemma (b) implies that

and a(Gk) as k [l, Lemma (a)]. Thus we have the decomposlton

Ut: lj;j. where the lj’s are maximal disjoint sub-intervals of Ut. The Calderon-

Zygmund decomposition is now that b(x)-- gO(x) + hi, where gO(X) b(x) tf

x Ut; m(b,lj) if x E lj and hi(x) (b(x) g0(x)) lj(X), and where m(b,lj)

denotes the average of b over I] with respect to . Then the maximality of

the lj’s and Lemma (a), (b) imply that Ig0(x) Cot, Da-a.e. and

,,thjlqd=)l/q 2CC0t: Clt

Lemma (c). If we set (Clt)-lha bj, then bj is supported in lj, bj d 0 andby
q

(lj) for each J.

The idea will be now to do for each bj the same kind of decomposition that we

performed for b (with the same t) and to build an induction process which will

eventually lead to the decomposition (3.1). We shall use multl-indices for the

successive decomposition, in the following way:

b(x) gO(x) + I hj (x) gO(x) + CIt r. bj (x)

Jo 0 JO 0

go(X) + cit z (gj (x) + r.

JO o Jl hjo,j i(x))

Jo o
(x) + CIt g hjo ’jlJo,Jl

(x)

gO(x) + C It Z gJoJo
(x) +...+ (Clt)

n Z

Jo.... ,J n_igJO" "Jn-I

+ (C t)n g

JO,..-,Jn
j (x)
0"’" ’in

for each n N, where, bj0,...,jn_ := (Clt)-lhJo .....Jn-I and

(i) licl({Mqa (bjo,...,jn_ > t} c ua(jo.... ,in_l)/t
q

(x)

(3.3)
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<x
0 ’J n-

>t} --n lj
0 ’in

(fir) supp hjo,...,j cj hjo .,j.d"’On O’ ’in

(iv)
a(lJ

0.... ’in Ijo,... ,J
hJo ’’’" ’Jn Iq due)

I/q
Clt’

(v) Igj (x) Cot,
O’ ’j n-I

and n N.for every J0’ ’jn
By using (i), (ii) and (iv), we see that the L -norm of the last term in the right

hand side of (3.3) is bounded by (Ct

that Ct l-q < I, we have that

1-q)n+l a(1). llence for large t > 0 SO

b(x) gO(x) + CIt E gj (x) +

Jo o

+ (Clt)
n E gJ0 (x) + fn L

Jo .....Jn-I n-I

Let aO:ffi (CotPa(1))-Ig0 and :ffi (Cot)a( I ))-IaJO’’’" ’Jn-I Jo’ Jn-I gJO’ Jn-I
for

each Jo ’Jn-l’ n N, then these are (I,) atoms by (fit) and (v). Thus we obtain

that
-Ia(x) a(1) b(x)

Cota(1)-l(a(1)aO(x) + Cl t r. a lj aj (x) +

Jo o o

+ (Clt)
n E (lj )aj (x) +...),

O’ "’’Jn-I O’’’’’Jn-IJO Jn-I
which is the desired representation (3.1). For, the sum of the absolute value of the

coefficients of the right hand side is bounded by Cot (ctl-q)k: C, C

independent of a. This cgmpletes the proof.
0

THEOREM C. Let -I < a 0 and < Pl " Suppose that T is a sublinear

H by which we mean that there exists B0 such thatoperator of weak-type (I,I) on ,
for every f H and t > O;

H

L
PI

with constant B Then for < p < PI’ T is of typeand T is of weak-type on
a

(p,p) on LPa with constant depending only on BO, BI’ Pl and p.

PROOF. The proof is similar to the non-weighted case [4], [5].

Let f Lp and choose a q so that < q < p < Pl < " As in the proof of

Theorem B, we consider the open set Et:= {Mq f > t} {Ms(Ill q) > tq}, for t > O.
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Then we have the same kind of decomposition; E
t

From this we obtaln a

Calderon-Zygmund decomposition f gt + ht’ where gt f if x Et; m(f,lj)
if x , lj for each j, and h: h

t
Z hi,where hj :- (f gt I We then

have Igt (x) C0t and J J

f lhjl q dBa)I/q C1t(Ba(lj) I
J

for each J E N. Hence aj:= (Clta(lj))-lhj
is a (l,q) a atom and

h Clt E Ba(l )a E H l’q And Theorem B implies that h H wlth norm bounded
j j a a

by Cta(Et). The rest of proof proceed as in [4], [5] with a few modifications, so

we omit the details.

4. PROOFS OF THE MAIN RESULTS.

PROOF OF THEOREM I. Let-I/r’ < a 0. To prove the conclusion, it suffices to

II II C for every (I,)( ,show that K*a
l,a

atom a, where K:-(k Let a be such an

atom, supported on an interval I x
0

+ G
n

(x
0 G, n Z). We write

: IK*al dta f + f A + B, say.
G G\

Let first r (hence a 0). Then

A’ f IK*a(x) 2
dlJ) 1/2 f dlJ) 1/2 cJllJ 2

(),/2 , c ,()-* iJ(I) -c.

On the other hand,

B f If K(x-y)a(y) dl (y)l d(x) f f K(x-y)-K(x-x0))a/y)dB(Y)I dlJ(x)
GI G G I G

f la(y) d (y)f lK(x-y)-K(x-x0) dr(x)
I G I

f a(xo+Y) d.(y) f jg(x-y)-g(x)ld<x) , C f la(Xo+y)l d(y) ( C.
G GkG C
n n

hence the conclusion follows, when r I. is together with eorem C implies the

conclusion of rollary

Next, let r > I. To estite A, we use rollary (ll) and Lem (c). en

C a(1)
-I llr I/r’(I) (I) inf{va(x) x 6 I, x O} Ca(1)-I pa(1) -C.

On the other hand, using Lemma (c) again,
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y la(xO+Y))d.(y)y #K(x-y)-K() v(x+xO) d.(x)
G G\G

nn

n-I

=- G G\G+n

IK(x-y)-K(x)l va(x+x0) d(x)

n-I
(E y a(Xo+Y) da(y)f

G GG+n

IK(x-y)-K(x)[ r d(x)) 1/r

vat (x+xO) d(x))

G\G+

n-I +I/r’ - -I/r’Z la(x0+Y) d(x) (m) (mn) m)
G
n

1/r’

inf {v (x); x ( I, x # O}

n-1

C(mn)- S (m)
g

/C la(x0+Y) va(x0+Y) d(y) C(mn)-e (mn_l)e))ll..a..l,a C

n

This completes the proof

L
2

PROOF OF COROLLARY (i) Since L (r) is amultiplier on it follows from a

classical interpolation theorem for weighted spaces [6] and [I, Proposition I]

L
2

that is a multiplier on for all-laOl a < laOl. As in the proof of [I

Theorem I], the case where < p < 2 and -laOl a 0, has to be proved

L
2

Let < p < 2 and laOl a 0. Since each k, k Z is a multiplier on and

also a (HI,LI k
a

a) multiplier by Theorem I, it follows from Theorem C that is a

multiplier on Lp. The assumption that the constants C and are independent of k,

implies that is a multiplier on Lp.
(ii) This is already seen in the proof of Theorem I.

PROOF OF THEOREM 2. According to Theorem A, it suffices to show that

ll(@,a)v*lli,a C for all (1,)a atom a. Let avbe a (1,’) atom, supported on an

interval l:=x
0

+ Gn(X0 G, n Z). We set *a f. The case where r

(hence a O) is known [2, Corollary]. So we let < r < and -I/r’ < a O. Now

we write

f f*dpa f + f A + B, say.
G I G\I

I/r’ + g,
We first estimate A. Since K

r
e,(R) Lemma (b) and [2 Corollary]K

imply that lf*llr Cllfl[r Cllall "r Thus as in the proof of Theorem I, we have

that

A y (f*)rdla)I/r y Var, dl)i/r’ c l.ll .<>z=’
i i

Ca(1)
-I

a(I) C

inf{v (x); x I, x # 0}
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Let %(7): (Y, x0)(7) and b(x): a(x+x0). Then it is easily seen

that f @*a *b, supp b C and fbd, 0. Thus we have that
rl

b*D
k

0 if k n, and supp (b*Dk) Gn if k > n. Also (b*Dk)j:

(b*Dk)*(Dj+I-Dj) -0 if J ) k and (b*Dk) j bj if J < k. Moreover bj=0, if J < n.

Hence

Then,

B f f dc E f I(,j *bid.a= E E f
GI n G\I J=n i I Ili+

where If: x
0

+ G
i

for each i Z.

Now for f < n,

(4.2)

(+j ;*b(x) S (j)v (y)b(x-y)
G

If x lili+

:f / / f
li+ li\ li+ G\I

i

and y ( li+ x-y GiGi+IC G Gn. Also

if x Iili+ and y I
i, x-y G\GiC GGn. These, together with

supp b C G imply that the first and last terms of the right hand side of the
n

equality are zero. Thus (4.2) is bounded by

i

where Ji: li\li+I for each i 6 Z. Now, Lemma (c)
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||ence (4. ) is bounded by

E X f .,la(y+x0)IdB(y)iaf{v (x); I 0}
j=n i=- G i’

(=i)-:Ir’( S
Gi\Gi’+l

Since I =i
i

(i < n) and ,.llall

(<l>j)’,,’ (>) -d,.,(x) 1!-

B C E l (mi)
j =n i=-

-I/r’ f la(Y)idB(y) inf{v (x); e I, x 0}

(x) rd(x) ilrS .l(<i>j)
G iG i+

C Z r. m. (m.) S rdiJ)
n O iO i+

n-I n-I
II jJ#ll__ mj xC E l m C E )-e la. C. (4.4)

n K
E + I/r’ , n

nce, we have that ilf ill, C by (4.1) and (4.4). is completes the proof.
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