TWO PROPERTIES OF THE POWER SERIES RING

H. AL-EZEH
Department of Mathematics
University of Jordan Amman, Jordan
(Received July 31, 1986 and in revised form October 29, 1986)

ABSTRACT. For a commutative ring with unity, A, it is proved that the power series ring $A \llbracket X D$ is a PF-ring if and only if for any two countable subsets S and T of A such that $\mathrm{S} \subseteq \mathrm{ann}(\mathrm{T})$, there exists $\mathrm{c} \varepsilon$ ann(T) such that $\mathrm{bc}=\mathrm{b}$ for $\mathrm{all} \mathrm{b} \varepsilon \mathrm{S}$. Also it is proved that a power series ring $A \llbracket X D$ is a PP-ring if and only if A is a PP-ring in which every increasing chain of idempotents in A has a supremum which is an idempotent.

KEY WORDS AND PHRASES. Power series ring, PP-ring, PF-ring, flat, projective, annihilator ideal and idempotent element. 1980 AMS SUBJECT CLASSIFICATION CODE. 13B.

1. INTRODUCTION.

Rings considered in this paper are all commutative with unity. Let $A \llbracket X \rrbracket$ be the power series ring over the ring A. Recall that a ring A is called a PF-ring if every principal ideal is a flat A-module. Also a ring A is called a PP-ring if every principal ideal is a projective A-module.

It is proved in Al-Ezeh [1] that a ring A is a PF-ring if and only if the annihilator of each element $a \varepsilon A$, ann(a), is a pure ideal, that is for $a l l b \varepsilon$ ann (a) there

A A exists $c \varepsilon$ ann(a) such that $b c=b$. A ring A is a PP-ring if and only if for each a εA, A
$\underset{A}{\operatorname{ann}(a)}$ is generated by an idempotent, see Evans [2]. In Brewer [3], semihereditary A power series rings over von Neumann regular rings are characterized. In this paper we characterize $P F-$ power series rings and $P P-$ power series rings over arbitrary rings.

For any reduced ring A (i.e. a ring with no nonzero nilpotent elements), it was proved in Brewer et al. [4] that

$$
\underset{\mathrm{A} \llbracket x \rrbracket}{\operatorname{ann}}\left(a_{0}+a_{1} X+\ldots\right)=N \llbracket x \rrbracket
$$

where N is the annihilator of the ideal generated by the coefficients a_{0}, a_{1}, \ldots

2. MAIN RESULTS.

LEMMA 1．Any $\mathrm{PF}-$ ring A is a reduced ring．
PROOF．Assume that there is a nonzero nilpotent element in A ．Let n be the least positive integer greater than 1 such that $a^{n}=0$ ．So $a \varepsilon \operatorname{ann}\left(a^{n-1}\right)$ ．Because A is a PF－ ring there exists $b \in \underset{A}{\operatorname{ann}}\left(a^{n-1}\right)$ such that $a b=a$ ．Thus $a^{n-1} \stackrel{A}{=}(a b)^{n-1}=a^{n-1} b^{n-1}=0$ since $\mathrm{ba}^{\mathrm{n}-1}=0$ ．
Contradiction．So any $\mathrm{PP}-$ ring is a reduced ring．
THEOREM 2．The power series ring $A \llbracket X \rrbracket$ is a $P F-r i n g$ if and only if for any two countable sets $S=\left\{b_{0}, b_{1}, b_{2}, \ldots\right\}$ and $T=\left\{a_{0}, a_{1}, \ldots\right\}$ such that $S \underset{A}{C}$ ann (T) ，there exists $c \varepsilon \underset{A}{\operatorname{ann}(T)}$ such that $b_{i} c=b_{i}$ for $i=0,1,2, \ldots$

PROOF．First，we prove that $A \llbracket X \square$ is a PF－ring．
Let $g(X)=b_{0}+b_{2} x+\ldots$, and

$$
\begin{aligned}
& f(X)=a_{0}+a_{1} X+\ldots, \text { and let } \\
& g(X) \in \underset{A \llbracket X \rrbracket}{\operatorname{ann}(f(X)) . \text { Then } g(X) f(X)=0 .}
\end{aligned}
$$

The ring A is inparticular a $P F-r i n g$ because for $a l l b \varepsilon$ ann (a) ，there exists $c \varepsilon \underset{A}{\operatorname{ann}(a)}$ such that $b c=b$ ．So by Lemma 1 ，A is a reduced ring．Thus

$$
b_{i} a_{j}=\text { for } a l 1 i=0,1, \ldots ; j=0,1,2, \ldots
$$

So

$$
\left\{b_{0}, b_{1}, \ldots\right\} \subseteq \underset{A}{\operatorname{ann}\left(a_{0}, a_{1}, \ldots\right) . ~ S o ~ b y ~ a s s u m p t i o n, ~ t h e r e ~ e x i s t s ~}
$$

$c \varepsilon \underset{A}{\operatorname{ann}}\left(a_{0}, a_{1}, \ldots\right)$ such that $b_{i} c=b_{i}$ for $a l l i=0,1, \ldots$ Hence $g(X) c=g(X)$ and $c \varepsilon \operatorname{ann}(f(X))$ ．Consequently，the ring $A \llbracket X \rrbracket$ is a PF－ring．Conversely，assume

A【X】

$A \llbracket X D$ is a $\mathrm{PF}-\mathrm{ring}$ ．
Let $\left\{b_{0}, b_{1}, \ldots\right\} \subseteq \underset{A}{a}\left(a_{0}, a_{1}, \ldots\right)$ ．Let $g(X)=b_{0}+b_{1} x+\ldots$ ，and $f(X)=a_{0}+a_{1}+\ldots$ Then $g(X) f(X)=0$ ．Therefore $g(X) \varepsilon \underset{A \llbracket X \rrbracket}{\operatorname{ann}} \underset{X}{ }(f(X))$ ．Thus there exists $h(X)=c_{0}+c_{1} X+\ldots$
in ann $(f(X))$ such that $g(X) h(X)=g(X)$ ．
A【X】
Consequently，$h(X) f(X)=0$ and $g(X)(h(X)-1)=0$ ．Since A is reduced，

$$
c_{i} a_{j}=0 \text { for all } i=0,1, \ldots, j=0,1,2, \ldots \text { and } b_{i}\left(c_{0}-1\right)=0 \text { for all } i
$$

and $b_{i} c_{j}=0$ for $a l 1 j \geq 1$ ．Hence $\left\{c_{0}, c_{1}, \ldots\right\} \in \underset{A}{\operatorname{ann}}\left(a_{0}, a_{1}, \ldots\right)$ and $b_{i}\left(c_{0}-1\right)=0$ ． So $c_{0} \varepsilon \operatorname{ann}\left(a_{0}, a_{1}, \ldots\right)$ and $b_{i} c_{0}=b_{i}$ for $a l l i=0,1, \ldots$ ．Therefore the above condition holds．

Because any PP－ring is a $\mathrm{PF}-$ ring，every $\mathrm{PP}-$ ring is a reduced ring．On a reduced ring A ，a partial order relation can be defined by $a \leq b$ if $a b=a^{2}$ ．The following lemma is given in Brewer［3］and Brewer et al．［4］．

LEMMA 3．The relation \leq defined above on a reduced ring A is a partial order．
PROOF．Clearly the relation \leq is reflexive．Now assume $a \leq b$ and $b \leq a$ ．Then $a b=a^{2}$ and $b a=b^{2}$ ．So，$(a-b)^{2}=a^{2}-2 a b+b^{2}=0$ ．Because A is reduced $a-b=0$ ，
or $a=b$. To prove transitivity of \leq, assume $a \leq b$ and $b \leq c . ~ S o ~ a b=a^{2}$ and $b c=b^{2}$. Consider

$$
\begin{aligned}
(a c-a b)^{2} & =a^{2}\left(c^{2}-2 c b+b^{2}\right) \\
& =a^{2}\left(c^{2}-b^{2}\right) \\
& =a b(c-b)(c+b) \\
& =0
\end{aligned}
$$

because $b(c-b)=0$. Since A is reduced, $a c-a b=0$ or $a c=a b=a^{2}$. Therefore $a \leq b$.
THEOREM 4. The power series ring $A \llbracket X \rrbracket$ is a PP-ring if and only if A is a PP-ring in which every increasing chain of idempotents of A with respect to \leq has a supremum which is an idempotent element in A.

PROOF. Assume $A \llbracket X \rrbracket$ is a PP-ring, Let a εA. Since $A \llbracket X \rrbracket$ is a PP-ring and idempotents in $A \llbracket X]$ are in $A, \underset{A \llbracket X]}{\operatorname{ann}}(a)=e A[[X]$. We claim $\underset{A}{a n n}(a)=e A$. Because $e a=0$, rea $=0$ for $a l l r \in A$. Hence $e A \subseteq \underset{A}{\operatorname{ann}(a) . ~ N o w ~ l e t ~} b \varepsilon \underset{A}{a n n(a) . ~ H e n c e ~}$ $\mathrm{b} \varepsilon \underset{\mathrm{ann}}{\mathrm{an}}(\mathrm{a})$. Thus $\mathrm{b}=\mathrm{eg}(\mathrm{X})$ for some $\mathrm{g}(\mathrm{X})=\mathrm{b}_{0}+\mathrm{b}_{1} \mathrm{X}+\ldots$. Consequently, $\mathrm{b}=\mathrm{eb}_{0}$. A [X]

That is $\mathrm{b} \varepsilon \mathrm{eA}$. Whence A is a PP-ring.
To complete the proof of this direction, let $e_{0} \leq e_{1} \leq e_{2} \ldots$ be an increasing chain of idempotents in A 。 Because $A \llbracket X \rrbracket$ is a PP-ring and since idempotents of $A \llbracket X \rrbracket$ are in $A, \underset{A \llbracket X \rrbracket}{\operatorname{ann}}\left(e_{0}+e_{1} X+\ldots\right)=e A \llbracket X \rrbracket$. Now we claim $1-e=\sup \left\{e_{0}, e_{1}, \ldots\right\}$. Since ee $i_{i}=0, e_{i}(1-e)=e_{i}=e_{i}^{2}, i=0,1, \ldots$. So $e_{i} \leq 1-e$ for all $i=0,1, \ldots$. Let y be an upper bound of $\left\{e_{0}, e_{1}, \ldots\right\}$. So $e_{i} \leq y$ for $i=0,1, \ldots$.
Hence $1-y \varepsilon \underset{A \llbracket X \square}{\operatorname{ann}}\left(e_{0}+e_{1} X+\ldots\right)$.
Thus $1-y=e c$ for some ceA. Consequently,

$$
\begin{aligned}
y(1-e) & =(1-c e)(1-e) \\
& =1-e c-e+e c \\
& =1-e
\end{aligned}
$$

So $1-\mathrm{e} \leq \mathrm{y}$. Therefore $1-\mathrm{e}=\sup \left\{\mathrm{e}_{0}, \mathrm{e}_{1} \ldots\right\}$.
To prove the other way around, consider $\underset{A \llbracket X I}{\operatorname{ann}}(f(X))$ where $f(X)=a_{0}+a_{1} X+\ldots$.

Hence

$$
\begin{aligned}
& \underset{A}{\operatorname{ann}}(f(X))=\underset{A}{\operatorname{ann}}\left(a_{0}, a_{1}, \ldots\right) \llbracket X \mathbb{D} \\
& \underset{A}{\operatorname{ann}}\left(a_{0}, a_{1}, \ldots\right)=\bigcap_{i=0}^{\infty} \operatorname{ann}\left(a_{i}\right)
\end{aligned}
$$

$$
=\bigcap_{i=0}^{\infty} e_{i} A, e_{i}^{2}=e_{i}
$$

because A is a PP-ring.
Let $d_{0}=e_{0}, d_{1}=e_{0} e_{1}, \ldots, d_{n}=d_{n-1} e_{n}, \ldots$
One can easily check that

$$
\bigcap_{i=0}^{\infty} e_{i} A=\bigcap_{i=0}^{\infty} d_{i} A
$$

Also it is clear that

$$
\mathrm{d}_{0} \geq \mathrm{d}_{1} \geq \mathrm{d}_{2} \ldots
$$

Therefore

$$
1-\mathrm{d}_{0} \leq 1-\mathrm{d}_{1} \leq 1-\mathrm{d}_{2} \cdots
$$

By assumption, this increasing chain of idempotents has a supremum which is an idempotent. Let

$$
\begin{aligned}
& \operatorname{Sup}\left\{1-d_{0}, 1-d_{1}, 1-d_{2}, \ldots\right\}=d . \quad \text { So } \\
& \left(1-d_{i}\right) d=1-d_{i} \text { fo }: a 11 i=0,1, \ldots
\end{aligned}
$$

We claim that

$$
\bigcap_{i=0}^{\infty} d_{i} A=(1-d) A
$$

Now $1-\mathrm{d} \geq \mathrm{d}_{\mathrm{i}}$. So $(1-\mathrm{d}) \mathrm{d}_{\mathrm{i}}=1-\mathrm{d}$. Hence

$$
(1-d) A \subseteq d_{i} A \text { for } a l 1 i=0,1, \ldots
$$

Thus $(1-d) A \subseteq \bigcap_{i=0}^{\infty} d_{i} A$.
Let $y \quad \varepsilon \bigcap_{i=0}^{\infty} d_{i} A . \quad$ Then $y=d_{i} y_{i}, \quad i, 0,1, \ldots$.
Consequently

$$
\begin{aligned}
\left(1-d_{i}\right)(1-y) & =1+d_{i} y-d_{i}-y \\
& =1-d_{i}
\end{aligned}
$$

Because $y d_{i}=d_{i}^{2}=d_{i}^{2} y_{i}=d_{i} y_{i}=y$.
Therefore $1-d_{i} \leq 1-y$ for all $i=0,1, \ldots$.

Because

$$
\begin{aligned}
& d=\operatorname{Sup}\left\{1-d_{0}, 1-d_{1}, 1-d_{2}, \ldots\right\}, \\
& d \leqq 1-y . S o d=d(1-y)=d-d y
\end{aligned}
$$

Hence $\quad d y=0$. Thus $y(1-d)=y-y d=y$
That is $\quad y \in(1-d) A$. Therefore $\bigcap_{i=0} d_{i} A=(1-d) A$.
Consequently,

$$
\underset{A[[X]]}{\operatorname{ann}}(f(X))=(1-d) A[[X]]
$$

Therefore $\mathrm{A}[[\mathrm{X}]]$ is a PP-ring.

REFERENCES

1. AL-EZEH, H. On Some properties of Polynomial rings. I.J.M.M.S To appear
2. EVANS, M. On commutative PP-rings. Pac. J. Math. 4l(1972) 687-697.
3. BREWER, J. "Power series over commutative rings". Lecture Notes in pure and applied Mathematics No. 64, Marcel Dekker, New York and Basel (1981).
4. BREWER, J., RUTTER, E. and WATKINS, J. Coherence and weak global dimension of R [$[X]$] when R is Von Neumann regular, J. of Algebra 46(1977) 278-289.
