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ABSTRACT. For a commutative ring with unity, A, it is proved that the power series ring

AX is a PF-ring if and only if for any two countable subsets S and T of A such that

S Sann(T), there exists c e ann(T) such that bc b for all b e S. Also it is proved
A A

that a power series ring AX is a PP-ring if and only if A is a PP-ring in which

every increasing chain of idempotents in A has a supremum which is an Idempotent.
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i. INTRODUCTION.

Rings considered in this paper are all commutative with unity. Let AX be the

power series ring over the ring A. Recall that a ring A is called a PF-ring if every

principal ideal is a flat A-module. Also a ring A is called a PP-ring if every principal

ideal is a projective A-module.

It is proved in Ai-Ezeh [I] that a ring A is a PF-ring if and only if the annihila-

tor of each element a e A, ann(a), is a pure ideal, that is for all b e ann(a) there
A A

exists c e ann(a) such that bc b. A ring A is a PP-ring if and only if for each a e A,
A

ann(a) is generated by an idempotent, see Evans [2]. In Brewer [3], semihereditary
A

power series rings over von Neumann regular rings are characterized. In this paper we

characterize PF- power series rings and PP- power series rings over arbitrary rings.

For any reduced ring A (i.e. a ring with no nonzero nilpotent elements), it was

proved in Brewer et al. [4] that

ann (a
0
+ alX + ...) N X]]

AX

where N is the annihilator of the ideal generated by the coefficients aO, al,...

2. MAIN RESULTS.
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LEMMA I. Any PF-ring A is a reduced ring.

PROOF. Assume that there is a nonzero nilpotent element in A. Let n be the least

positive integer greater than such that a
n

0. So a e ann(an-l). Because A is a PF-

(an-I n-I A n-lbn-Iring there exists be ann such that ab a. Thus a (ab) n- a 0

n-i A
since ba 0.

Contradiction. So any PP-ring is a reduced ring.

THEOREM 2. The power series ring A X is a PF-ring if and only if for any two

countable sets S {bo, b I, b
2 and T {a0, al, ...} such that S ann(T), there

A
exists c e ann(T) such that b.c b. for i O, i, 2

A 1 i

PROOF. First, we prove that A X is a PF-ring.

Let g(X) b
0
+ b2X + and

f(X) a
0
+ alX + and let

g(X) ann (f(X)). Then g(X) f(X) 0.
AX

The ring A is inparticular a PF-ring because for all b e ann(a), there exists
A

c e ann(a) such that bc b. So by Lemma I, A is a reduced ring. Thus
A

b.a. for all i O, ..; j O, 2,I S

So

{b0, b ann(ao, a ). So by assumption, there exists
A

c e ann(a0, a such that b c b for all i O, Hence g(X)c g(X)
A I’ i i

and c e ann (f(X)). Consequently the ring AX is a PF-ring. Conversely, assume
AEX

A [IX]] is a PF-ring.

Let {b0, b _c ann(a0,A al, ...)........Let g(X) b
0
+ blX + and f(X) a

0
+ al+

Then g(x) f(X) O. Therefore g(X) e ann (f(X)). Thus there exists h(X) Co+ClX+...AEX

in ann (f(X)) such that g(X) h(X) g(X).
AEx

Consequently, h(X) f(X) 0 and g(X) (h(X) I) 0. Since A is reduced,

c.a. 0 for all i 0, j 0, i, 2 and bi(c0-1) 0 for all i

and bic 0 for all j Z i. Hence {Co, c anx(a0, a and bi(c0-1) O.

So co e ann(aO, a I, ...) and bic0 b.1 for all i O, I, Therefore the above

condition holds.

Because any PP-ring is a PF-ring, every PP-ring is a reduced ring. On a reduced

ring A, a partial order relation can be defined by a s b if ab a2. The following

lemma is given in Brewer[3] and Brewer et al.[4].

LEMMA 3. The relation defined above on a reduced ring A is a partial order.

PROOF. Clearly the relation s is reflexive. Now assume a b and b a. Then

2
b
2

ab a and ba So a-b
2 2 2

a 2ab + b O. Because A is reduced a b O,
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2
b
2

or a b. To prove transitivity of E, assume a b and b c. So ab a and bc

Consider

(ac ab) 2 2
b
2

a (c
2

2cb +

2 2
b
2

=a (c

ab(c b)(c + b)

0

2because b(c b) 0. Since A is reduced, ac ab 0 or ac ab a Therefore a < b.

THEOREM 4. The power series ring AX is a PP-ring if and only if A is a PP-ring

in which every increasing chain of idempotents of A with respect to N has a supremum

which is an idempotent element in A.

PROOF. Assume AX is a PP-ring. Let a e A. Since AX is a PP-ring and

idempotents in AX are in A, ann (a) eA [[ X We claim ann(a) eA. Because
AX A

ea 0, rea 0 for all r e A. Hence eA ann(a). Now let b e ann(a). Hence
A A

b e ann (a). Thus b eg(X) for some g(X) b
0
+ blX + Consequently, b ebO.

AX
That is b e eA. Whence A is a PP-ring.

< e be an increasingTo complete the proof of this direction, let e0e 2

chain of idempotents in Ao Because AX is a PP-ring and since idempotents of AX
are in A, ann (e0 + e X + eA X Now we claim e sup{e O, e ...}.

AEx
2

Since eei 0, ei(l e) e
i

e
i

i 0

So e. N e for all i O, Let y be an upper bound of {e
0,

e }. So
1

e. y for i O, I,
1

Hence y e ann (e
0
+ e iX + ...).

AEx
Thus y ec for some c e A. Consequently,

y(l e) (I ce)(l e)

ec e + ec

i- e

So e y. Therefore e sup{eO, e ...}.

To prove the other way around, consider a%xf(X)) where f(X) a
0
+ alX +

Hence

ann (f(X)) ann(a0 a ) X
AEX A

an(aO, a =/ ann(ai)
i=O
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e.A, e. e.
i=0

because A is a PP-ring.

Let do= e0, d e0e d
n

One can easily check that

d e
nn-I

e.A= f d. A
i=0 i=O

Also it is clear that

Therefore

do _> d > d
2

i- do < I- d _< 1- d
2

By assumption, this increasing chain of idempotents has a supremum which is an idempotent.

Let

Sup{l do d I, d2, ...} d. So

(I di) d d
i

fo,:all i 0,

We claim that

diA (i d)A.

Now d > d
i.

So (i d)d. d. Hence

(I -d)A diA for all i 0,

Thus (I d)A diA-i=O

Let y diA. Then y diYi, i,0,1,
i=0

Consequently

(i di)(l y) + diY d
i

y

l-d
i

d 2. 2Because yd
i 1 diYi diYi y"

Therefore d
i

y for all i 0,
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Because d Sup{l d
O

d I, d
2

},

d $ y. So d(l y) d dy

Hence dy 0. Thus y(l d) y yd y

That is y g (I d)A. Therefore d.A (i d)A.
i;O

Consequently,

ann (f(X)) (I- d) A[[X]]
A[[X]]

Therefore A[[X]] is a PP-ring.
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