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ABSTRACT. In this paper, solution of a pair of Coupled Partial Differential equations

is derived. These equations arise in the solution of problems of flow of homogeneous

liquids in fissured rocks and heat conduction involving two temperatures. These

equations have been considered by Hill and Aifantis, but the technique we use appears to

be simpler and more direct, and some new results are derived. Also, discussion about

the propagation of initial discontinuities is given and illustrated with graphs of some

special cases.
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i. INTRODUCTION.

In this paper we solve a pair of coupled Partial Differential Equations, which

pair may arise in a number of physical situations, including, e.g., flow of homogeneous

liquids in fissured rocks [i] and heat conduction involving two temperatures [2]. Such

equations have been considered by Hill [3], by Hill and Aifantis [4,5] and by Lee and

Hill [6], wherein they have arrived at the same solutions as those in this paper, albeit

by a different technique. Our method, in which inversion depends upon the idea behind

equation (3.5), appears to be simpler and more direct than that of these investigators.

Also, we have deduced some results from these solutions which are not derived in

literature. See also Gopalsamy and Aggarwala [7] where a slightly different pair of

coupled partial differential equations is considered in a different setting.

2. THE PROBLE

We wish to find solutions u(x,t) and v(x,t) of the equations
Ou DlV2u alu + blv (2 la)Ot
v D2v2vO’- + a2u b2v (2.1b)

(where al, bl,a2 and b2 are constants), with the initial conditions

u f(x) and v 0 at t 0, and with (identical)
homogeneous boundary conditions on u and v.
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3. SOLUTION

Taklng the Laplace Transform (u(x,t) (x,s)) of (2.1), we get

iv2su D alu blV / f(x) (3.]a

sT D2v2 + a2 b2 (3.1b

We now assume that there is a Fourier Transform ((x,s) (,s)) such that

v25 _2. Taking this Fourier Transform, we get

s -D12- al + bl$ + () (3.2a)

s -D22 + a2- b2 (3.25)

where () is the Fourier Transform of f(x).

These equations give

a2f(
v (3.3a)

D1D2(2+2 22)1) (2’+
where

(s+al)D2+(s+b2)D 1] J (s+al)D2-(s+b2)D1]2+4D1D2bla2
2D1D2

A C2+ 2, say. (3.3b)
OhTo invert v, consider the problem v2h with h f(x) at t 0 and the same

boundary conditions as on u and v.

Taking the Laplace and Fourier Transforms, we get

f() (3.4)
s + 2

If we now consider the fact that the inverse Fourier Transform of is given by

e
-st h(x,t)dt, then since

0
a2 ()

v 2- 2 2 2 2
D1D2( -1 + i + 2

it follows that the inverse Fourier Transform of is given by
2

Ie h(x,t)dt (3.5)
D1D2(2-1) 0

a2 -At sinh(tJ2 + C2
e h(x,t)dt (3.6)

D1D2 0 is2 + c2

e-Ath(x,t)Io(Bt sin 8)cosh(Ct cos 8)t sin 8 dSdt (3.7)
DID2 0 -0

(see [8], p.743(2))

a2 f f/2 [e-SklU -k3u -sk2u -k4u
"e + e e h(x,u)I0 (Bu sin 8)u sin 8 dSdu

2D1D2 0 0

(3.8a)

where

k3,4

D1 + D2 D 1 D2kl,2 2D1D2 cos

Dlb2 + D2a1 Dlb2 D2a1
2D1D2 2D1D2 cos 8

(3.8b)

(3.8c)
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The inverse Laplaqe Transform must now be performed w.r.t, s (s t) and noting

that, with the usual notation,

e-St6(t-)dt e-s (3.9)
0

(where 6 is the Dirac Delta function), it is given by

a2 r [/2 [e-k3u -k4u
v

2DID2 -0-0
6(t-Ukl) + e 6(t-uk2) I0 (Bu sin 8)h(x,u)u sin 8 dOdu. (3.10)

Using 0 f(u)6(t-klU)du iii f[l)’ we get

a2 /2 t -k3t/kl
v

2D1D2 IO kll
e

a
2 fv/2 t -k4t/k2

+
2biD2 |-0 k2

e

Io(t B sin 8/kl)h(x,t/kl)Sin 8 d8

Io(t B sin 8/k2)h(x,t/k2)sin 8 d8

where

I 1
+ 12 (3.11)

1 1
Putting u ] in I 1, u ] in 12, and combining the two integrals, we get

a2te-6t D1 -Tut
v

D1 D2
e Io(qt)h(x,ut)du (3.12)

2

a1 b2 Dlb2 -alD2
Y= 6: andD1 D2 D1 D2

n [D 1 D2. J ](Dl-U)(u-D2)]. (3.13)

Now, using (2.1b) and the fact that v2h @h/@t, we get, after some

simplification
-6t D 1 j-alt 1Jl-le ; e_TUt u D2t Il(t)h(x,ut) D 1

uu e h(x,Dlt) +
D1 D2 D2

du. (3.14)

where

and

case the solution becomes

-at DI
ae

v
Dl D2

t h(x,ut)Io(/t)du (4.1a)

e-at D1 J U- D2a t h(x,ut)Ii(t) D1 u
u e-ath(x,D1 t) +

D1_ D2 D2

2a J’ ’[ (u-D2) (Dl-U) (4 lc)[D 1 V2[

(4. Ib)

The most important case for applications is when aI a2
b I b2 a. In this

4. SPECIAL CASE

relations [3].

Equations (3.12), (3.13) and (3.14) give the solution to our problem.

It may be noted that equations (3.5) and (3.1b) may be used to invert these
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If, in this case, we assume that h(x,t)dx 1 for all t, we readily obtain

v dx e
-t

sinh at (4.2a)

u dx e cosh at (4.2b)

which shows that if initially the "u-sys%em is supplied with a "unit" of heat and no

heat is escaping from the boundaries (the boundary conditions on h are the sme as those

on u or v) then half of the heat goes into the "u-system" and the other half goes into

the "v-system" at the rate implied by equations (4.2). It is interesting to note that

this result is independent of the relative magnitudes of D 1 and D2.

In many cases h(x,t) is given s a sum (or integral) of a function of x

multiplied by a function of t. If we assume

h(x,t) F (x) e-t (4.3a)

integration gives

and

where

where

-t
h

-t
u e x Dlt) + e Z F(x)G(t) (4.3b)

-t
v e Z F$(x)H(t) (4.3c)

-lit (DI+D2)/2 A

G(t) e cosh(tJA+A) I
2 2

-Alt]sinh(tJ A+;)-e (4.3d)

A1 (DI-D2), A2 a

To obtain equations (4.3), we need

Dl ] u D2_,, duI1 ;D2 e-$utll (nt) D I u

and

where n is given by (4.1c).

If we put u D
1
sin28 + D2cos28

we get

D 1 e-Xut I0(nt)du

and

D 1 D2 -Xt(DI+D2)/2
II ’’2 e (I3-I4)

/2

12 2 cosh(Alt cos x)I0(A2t sin x)sin x dx
"0

13 2 cosh(Alt ’cos x)I0(A2t sin x)dx
"0

where

(4.3e)

(4.3f)

(4.4a)

(4.4b)

and
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/2

14 2 ; sinh(Alt cos x)II(A2 t sin x)cos x dx.
0

These integrals may be evaluated with the help of known results (see, e.g.[B]

pages 742(1) and 743(2)).

5. SEPARATION OF VARIABLES

It is to be noted that equations (4.3) may also be derived by assuming the

solution to be of the type u __FB(x)G(t)’ v ____FB(x)HB(t) where F(x) are solutions of

v2F + EF 0, solving the resultant pair of ordinary differential equations in GE and

HE with G I, HE 0 at t 0 and superposing. The same process may also be used to

solve equations (2.1), in which case the results are

-alt
u e h(X,Dlt) + Z FE(x)GE(t)

v Z F(x)HE(t)
where

where now

k (DIE + D2 + aI + b2)/2
AI (DIE + a I D2 b2)/2

6. PROPAGATION OF INITIAL DISCONTINUITIES

(5. la)

(5.1b)

then the initial discontinuities of u and v are immediately smoothed out. If D1
# 0 and

-b2t -b2t/E2, soD2 O, then for large values of E in (5.1), HE(t) e /E and G/(t) e

that if Z FE(X) (= f(x)) is discontinuous at some point, then this initial discontinuity

of u is smoothed out for t > O. If, however, D 1 0 and D2
# O, then for large values

-alt -alt }of , HB(t) e /E and GB(t) e + O(), so that, while the initial

discontinuities of u do not get propagated into v, they stay as discontinuities of u and

-alt
decay exponentially as e The same statement is also true for discontinuities in

normal derivatives across some surface.

If D1 O, and we eliminate v from equations (2.1), we get

@2u
D2 V2u alD2V2u + (al+b2)

@u + (alb2-a2b1)u O. (6.1)

@u
If now we prescribe the initial values of u and and the boundary values of u for

term in u. We shall disregard this term in GE(t) in this discussion. If now DID2 # O,

It is to be noticed that the last term in GE(t) simply cancels out the first
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(6.1) and if the initial values of u as we approach the boundary do not coincide with

the boundary values of u as we approach t 0, then there is an inltia] discontinuity in

u near the boundary which does not die out immediately. The boundary condition on u in

this case should be modlfled from the consideration that for D2
# 0, there are no

discontinuities in v and then, integration of (2.1a) gives

-alt -alt rt alO
u(s,t) u(s,0)e + e J e blV(S,0)d0 (6.2)

o

where s is a point on the boundary. If, e.g., u(x,0) P0’ u(s,t) PI for t > 0

(which, using (2.1a), gives blV(S,t) alP1
for t 0), (6.2) gives

-alt
u(s,t) P1 + (P0-PI)e (6.3)

This equation once again indicates that the initial discontinuities of u (P0-PI in this

-alt
case) die out exponentially as e The result in equation (6.3) coincides with the

@v 0 Inone obtained in [i] for the case when - term is absent in (2.1b) and D 1

equation (6.2), u(s,O) Lim u(x,O). In (6.3), PO and P1 are constants. Also f(x) (or
xs

@f/Sn in the case of possible discontinuities in the normal derivatives) in the above

dlscussion is assumed to be such that Z F(x)/ (or Z(@F(x)/@n)/ respectively) is

uniformly convergent. The symbol x denotes a vector in n-dimensions throughout, however

the following examples and graphs are given for n 1.

Examples" We give some examples to illustrate the above results. Numerical values are

indicated in Figs. 1-6. aI a
2

b I b
2

1.

I x
1. In this case f(x) x/2 for 0 S x < .5 and f(x) 2

for .5 x S 1.

D1 0 and D2 1. Fig. 1 illustrates the decay of discontinuity in 8u/#x at x .5.

2. f(x) is the same as in example 1. D 1 l, D2 O. Fig. 2 illustrates the

smoothing of discontinuity for t O.

3. f(x) 0 for 0 S x .5 and f(x) 1 for .5 x 1. u v 0 at x 0 and

x I. Fig. 3 illustrates the decay of discontinuity in u at x .5 and the

modification of boundary value at x i. D 1 O, D2 I.

4. Same as example 3 but with D 1 l, D2 O. Discontinuities are smoothed out

in Fig. 4.

5. In this case f(x) 1 cos wx, @u/@n 0 at x 0 and x 1. Fig. 5

illustrates u 1/2, v 1/2 as t . D1 O, D2 1.

6. Same as example 5 with D1 l, D2 O.
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auFIG. I. DECAY OF DISCONTINUITY IN at x 0.5.
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SMOOTHING OF DISCONTINUITY FOR t 0.
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0.2 0.4 0.6 0.8 .0
DECAY OF DISCONTINUITY IN u at x 0.5.

"’’
0.0 0.2 0.4 0.6 0.8 1.0

FIG. 4. DISCONTINUITIES ARE SMOOTHED OUT.
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0.0 0.2 0.4 0.6 0.8 1.0

FIG. 5. u , v AS t =, D 0; D2 =-[.

Q. 0 0.2 0.4 0.6 0.8 1.0

i, D2 0.FIG. . u , v - AS t oo, DI
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