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Starting with the zero-square “zeon algebra,” the connection with permanents is shown.
Permanents of submatrices of a linear combination of the identity matrix and all-ones matrix
lead to moment polynomials with respect to the exponential distribution. A permanent trace
formula analogous to MacMahon’s master theorem is presented and applied. Connections with
permutation groups acting on sets and the Johnson association scheme arise. The families
of numbers appearing as matrix entries turn out to be related to interesting variations on
derangements. These generalized derangements are considered in detail as an illustration of the
theory.

1. Introduction

Functions acting on a finite set can be conveniently expressed using matrices, whereby
the composition of functions corresponds to multiplication of the matrices. Essentially,
one is considering the induced action on the vector space with the elements of the set
acting as a basis. This action extends to tensor powers of the vector space. One can take
symmetric powers, antisymmetric powers, and so forth, that yield representations of the
multiplicative semigroup of functions. An especially interesting representation occurs by
taking nonreflexive, symmetric powers. Identifying the underlying set of cardinality n with
{1, 2, . . . , n}, the vector space has basis e1, e2, . . .. The action we are interested in may be
found by saying that the elements ei generate a “zeon algebra,” the relations being that the
ei commute, with e2i = 0, 1 ≤ i ≤ n. To get a feeling for this, first we recall the action on
Grassmann algebra where the matrix elements of the induced action arise as determinants.
For the zeon case, permanents appear.

An interesting connection with the centralizer algebra of the action of the symmetric
group comes up. For the defining action on the set {1, . . . , n}, represented as 0-1 permutation
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matrices, the centralizer algebra of n × n matrices commuting with the entire group is
generated by I, the identity matrix, and J , the all-ones matrix. The question was if they
would help determine the centralizer algebra for the action on subsets of a fixed size,
�-sets, for � > 1. It is known that the basis for the centralizer algebra is given by the
adjacency matrices of the Johnson scheme. Could one find this working solely with I and
J? The result is that by computing the “zeon powers”, that is, the action of sI + tJ , linear
combinations of I and J , on �-sets, the Johnson scheme appears naturally. The coefficients
are polynomials in s and t occurring as moments of the exponential distribution. And they
turn out to count derangements and related generalized derangements. The occurrence of
Laguerre polynomials in the combinatorics of derangements is well known. Here, the 2F1

hypergeometric function, which is closely related to Poisson-Charlier polynomials, arises
rather naturally.

Here is an outline of the paper. Section 2 introduces zeons and permanents. The trace
formula is proved. Connections with the centralizer algebra of the action of the symmetric
group on sets are detailed. Section 3 is a study of exponential polynomials needed for the
remainder of the paper. Zeon powers of sI + tJ are found in Section 4 where the spectra of the
matrices are found via the Johnson scheme. Section 5 presents a combinatorial approach to
the zeon powers of sI+tJ , including an interpretation of exponential moment polynomials by
elementary subgraphs. In Section 6, generalized derangement numbers, specifically counting
derangements and counting arrangements, are considered in detail. The Appendix has
some derangement numbers and arrangement numbers for reference, as well as a page
of exponential polynomials. An example expressing exponential polynomials in terms of
elementary subgraphs is given there.

2. Representations of Functions Acting on Sets

Let V denote the vector space Qn or Rn. We will look at the action of a linear map on V
extended to quotients of tensor powers V⊗� . We work with coordinates rather than vectors.
First, recall the Grassmann case. To find the action on V∧� consider an algebra generated by n
variables ei satisfying eiej = −ejei. In particular, e2i = 0.

Notation. The standard n-set {1, . . . , n} will be denoted [n]. Roman caps I, J, A, and so
forth denote subsets of [n]. We will identify them with the corresponding ordered tuples.
Generally, given an n-tuple (x1, . . . , xn) and a subset I ⊂ [n], we denote products

xI =
∏

j∈I
xj , (2.1)

where the indices are in increasing order if the variables are not assumed to commute.
As an index, we will use U to denote the full set [n].
Italic I and J will denote the identity matrix and all-ones matrix, respectively.

For a matrix XIJ, say, where the labels are subsets of fixed size l, dictionary ordering is
used. That is, convert to ordered tuples and use dictionary ordering. For example, for n = 4,
l = 2, we have labels 12, 13, 14, 23, 24, and 34 for rows one through six, respectively.
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A basis for V∧� is given by products

eI = ei1ei2 · · · ei� , (2.2)

I ⊂ [n], where we consider I as an ordered �-tuple. Given a matrix X acting on V, let

yi =
∑

j

Xijej , (2.3)

with corresponding products yI, then the matrix X∧� has entries given by the coefficients in
the expansion

yI =
∑

J

(
X∧�
)

IJeJ (2.4)

where the anticommutation rules are used to order the factors in eJ. Note that the coefficient
of ej in yi is Xij itself. And for n > 3, the coefficient of e34 in y12 is

det

(
X13 X14

X23 X24

)
. (2.5)

We see that in general the IJ entry ofX∧� is the minor ofX with row labels I and column labels
J. A standard term for the matrix X∧� is a compound matrix. Noting that X∧� is ( n

� ) × ( n
� ), in

particular, � = n yields the one-by-one matrix with entry equal to (X∧n)UU = det X.
In this work, we will use the algebra of zeons, standing for “zero-ons” , or more

specifically, “zero-square bosons”. That is, we assume that the variables ei satisfy the
properties

eiej = ejei, e2i = 0. (2.6)

A basis for the algebra is again given by eI, I ⊂ [n]. At level �, the induced matrix X∨� has IJ
entries according to the expansion of yI,

yi =
∑

j

Xijej −→ yI =
∑

J

(
X∨�
)

IJeJ (2.7)

similar to the Grassmann case. Since the variables commute, we see that the IJ entry of X∨� is
the permanent of the submatrix with rows I and columns J. In particular, (X∨n)UU = per X. We
refer to the matrix X∨� as the “�th zeon power of X.”

2.1. Functions on the Power Set of [n]

Note that X∨� is indexed by �-sets. Suppose that Xf represents a function f : [n] → [n].
So it is a zero-one matrix with (Xf)ij = 1, the single entry in row i if f maps i to j.
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Figure 1: Configuration of sets: B = I \A, C = J \A.

The �th zeon power of X is the matrix of the induced map on �-sets. If f maps an �-set I
to one of lower cardinality, then the corresponding row in X∨� has all zero entries. Thus, the
induced matrices in general correspond to “partial functions”.

However, ifX is a permutation matrix, thenX∨� is a permutation matrix for all 0 ≤ � ≤
n. So, given a group of permutation matrices, the map X → X∨� is a representation of the
group.

2.2. Zeon Powers of sI + tX

Our main theorem computes the �th zeon power of sI + tX for an n×nmatrixX, where s and
t are scalar variables. Figure 1 illustrates the proof.

Theorem 2.1. For a given matrix X, for 0 ≤ � ≤ n, and indices |I| = |J| = �,

(
(sI + tX)∨�

)

IJ
=
∑

0≤j≤�
s�−j tj

∑

A⊂I∩J
|A|=�−j

(
X∨j
)

I\A,J\A
.

(2.8)

Proof. Start with yi = sei+tξi, where ξi =
∑

j Xijej . Given I = (i1, . . . , i�), we want the coefficient
of eJ in the expansion of the product yI = yi1 · · ·yi� . Now,

yI = (sei1 + tξi1) · · · (sei� + tξi� ). (2.9)

Choose A ⊂ I with |A| = � − j, 0 ≤ j ≤ �. A typical term of the product has the form

s�−j tjeAξB (2.10)

where A ∩ B = ∅, B = I \ A. ξB denotes the product of terms ξi with indices in B. Expanding,
we have

ξB =
∑

C

(
X∨j
)

BC
eC,

eAξB =
∑

C

(
X∨j
)

BC
eAeC.

(2.11)
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Thus, for a contribution to the coefficient of eJ, we have A ∪ C = J, where A ∩ C = ∅. That is,
C = J \A and A ⊂ I ∩ J. So, the coefficient of s�−j tj is as stated.

2.3. Trace Formula

Another main feature is the trace formula which shows the permanent of I + tX as the
generating function for the traces of the zeon powers of X. This is the zeon analog of the
theorem of MacMahon for representations on symmetric tensors.

Theorem 2.2. One has the formula

per(sI + tX) =
∑

j

sn−j tj tr X∨j . (2.12)

Proof. The permanent of sI + tX is the UU entry of (sI + tX)∨n. Specialize I = J = U in
Theorem 2.1. So A is any (n − j)-set with I \A = J \A = A′, its complement in [n]. Thus,

per(sI + tX) =
(
(sI + tX)∨n

)
UU

=
∑

0≤j≤n
sn−j tj

∑

|A|=n−j

(
X∨j
)

A′,A′

=
∑

0≤j≤n
sn−j tj tr X∨j ,

(2.13)

as required.

2.4. Permutation Groups

Let X be an n × n permutation matrix. We can express per (I + tX) in terms of the cycle
decomposition of the associated permutation.

Proposition 2.3. For a permutation matrix X,

per(I + tX) =
∏

0≤�≤n

(
1 + t�

)nX(�)
, (2.14)

where nX(�) is the number of cycles of length � in the cycle decomposition of the corresponding
permutation.

Proof. Decomposing the permutation associated to X yields a decomposition into invariant
subspaces of the underlying vector space V. So per (I + tX) will be the product of per (I +
tXc) as c runs through the corresponding cycles with Xc the restriction of X to the invariant
subspace for each c. So we have to check that if X acts on V� as a cycle of length �, then
per (I + tX) = 1 + t� . For this, apply Theorem 2.2. Apart from level zero, there is only one set
fixed by any X∨j , namely when j = �. So the trace of X∨j is zero unless j = � and then it is
one. The result follows.



6 International Journal of Combinatorics

2.4.1. Cycle Index: Orbits on �-sets

Now, consider a group, G, of permutation matrices. We have the cycle index

ZG(z1, z2, . . . , zn) =
1
|G|

∑

X∈G
z
nX(1)
1 z

nX(2)
2 · · · znX(n)

n , (2.15)

each z� corresponding to �-cycles in the cycle decomposition associated to the Xs. From
Proposition 2.3, we have an expression in terms of permanents. Combining with the trace
formula, we get the following.

Theorem 2.4. Let G be a permutation group of matrices, then one has

1
|G|

∑

X∈G
per(I + tX) = ZG

(
1 + t, 1 + t2, . . . , 1 + tn

)

=
∑

�

t� #(orbits on l-sets).
(2.16)

Remark 2.5. This result refers to three essential theorems in group theory acting on sets.
Equality of the first and last expressions is the “permanent” analog of Molien’s theorem,
which is the case for a group acting on the symmetric tensor algebra, that the cycle index
counts orbits on subsets is an instance of Polya Counting, with two colors. The last expression
is followed by the Cauchy-Burnside lemma applied to the groups G∨� = {X∨�}X∈G.

2.4.2. Centralizer Algebra and Johnson Scheme

Given a group, G, of permutation matrices, an important question is to determine the set
(among all matrices) ofmatrices commutingwith all of thematrices inG. This is the centralizer
algebra of the group. For the symmetric group, the only matrices are I and J . For the action of
the symmetric group on �-sets, a basis for the centralizer algebra is given by the incidence
matrices for the Johnson distance. These are the same as the adjacency matrices for the
Johnson (association) scheme. Recall that the Johnson distance between two �-sets I and J
is

distJS(I, J) =
1
2
|I Δ J| = |I \ J| = |J \ I|. (2.17)

The corresponding matrices JSn�k are defined by

(
JSn�k
)

IJ
=

⎧
⎨

⎩
1 if distJS(I, J) = k,

0, otherwise.
(2.18)

As it is known, [1, page 36], that a basis for the centralizer algebra is given by the orbits of
the group G2, acting on pairs, the Johnson basis is a basis for the centralizer algebra. Since the
Johnson distance is symmetric, it suffices to look at G∨2.
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Now, we come to the question that is a starting point for this work. If I and J are
the only matrices commuting with all elements (as matrices) of the symmetric group, then
since the map G → G∨� is a homomorphism, we know that I∨� and J∨� are in the centralizer
algebra ofG∨� . The question is how to obtain the rest? The, perhaps surprising, answer is that
in fact one can obtain the complete Johnson basis from I and J alone. This will be one of the
main results, Theorem 4.1.

2.4.3. Permanent of sI + tJ

First, let us consider sI + tJ .

Proposition 2.6. One has the formula

per(sI + tJ) = n!
∑

0≤�≤n

s�tn−�

�!
. (2.19)

Proof. For X = J , we see directly, since all entries equal one in all submatrices, that

(
J∨�
)

IJ
= �! (2.20)

for all I and J. Taking traces,

tr J∨� =

(
n

�

)
�!, (2.21)

and by the trace formula, Theorem 2.2,

per(sI + tJ) =
∑

�

(
n

�

)
�! sn−�t� =

∑

�

n!
(n − �)!s

n−�t�. (2.22)

Reversing the order of summation yields the result stated.

Corollary 2.7. For varying n, one will explicitly denote pn(s, t) = per (sIn + tJn), then, with
p0(s, t) = 1,

∞∑

n=0

zn

n!
pn(s, t)=

esz

1 − tz . (2.23)

The Corollary exhibits the operational formula

pn(s, t) =
1

1 − tDs
sn, (2.24)

where Ds = d/ds. By inspection, this agrees with (2.19) as well.
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Observe that (2.19) can be rewritten as

per(sI + tJ) =
∫∞

0

(
s + ty

)n
e−ydy, (2.25)

that is, these are “moment polynomials” for the exponential distribution with an additional
scale parameter.

We proceed to examine these moment polynomials in detail.

3. Exponential Polynomials

For the exponential distribution, with density e−y on (0,∞), the moment polynomials are
defined as

hn(x) =
∫∞

0

(
x + y

)n
e−ydy. (3.1)

The exponential embeds naturally into the family of weights of the form xm e−x on (0,∞) as
for generalized Laguerre polynomials. We define correspondingly

hn,m(x, t) =
∫∞

0

(
x + ty

)n(
ty
)m

e−ydy, (3.2)

for nonnegative integers n,m, introducing a factor of ym and a scale factor of t. We refer to
these as exponential moment polynomials.

Proposition 3.1. Observe the following properties of the exponential moment polynomials.

(1) The generating function

1
tmm!

∞∑

n=0

zn

n!
hn,m(x, t) =

ezx

(1 − tz)1+m
, (3.3)

for |tz| < 1.

(2) The operational formula

1
tmm!

hn,m(x, t) = (I − tD)−(m+1)xn, (3.4)

where I is the identity operator and D = d/dx.

(3) The explicit form

hn,m(x, t) =
n∑

j=0

(
n

j

)
(
m + j

)
!xn−j tm+j . (3.5)
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Proof. For the first formula, multiply the integral by zn/n! and sum to get

∫∞

0
ymezx+zty−ydy = ezx

∫∞

0
yme−y(1−tz)dy, (3.6)

which yields the stated result.
For the second, write

tmm!(I − tD)−(m+1)xn = tm
∫∞

0
yme−(I−tD)yxndy =

∫∞

0

(
ty
)m

e−y
(
x + ty

)n
dy, (3.7)

using the shift formula eaDf(x) = f(x + a).
For the third, expand (x + ty)n by the binomial theorem and integrate.

A variation we will encounter in the following is

hn−m,m(x, t) =
n−m∑

j=0

(
n −m

j

)
(
m + j

)
!xn−m−j tm+j (3.8)

=
n∑

j=m

(
n −m
j −m

)
j!xn−j tj (3.9)

=
n∑

j=m

(
n −m
n − j

)
j!xn−j tj (3.10)

=
n−m∑

j=0

(
n −m

j

)
(
n − j)!xjtn−j , (3.11)

replacing the index j ← j −m for (3.9) and reversing the order of summation for the last line.
And for future reference, consider the integral formula

hn−m,m(x, t) =
∫∞

0

(
x + ty

)n−m(
ty
)m

e−ydy. (3.12)

3.1. Hypergeometric Form

Generalized hypergeometric functions provide expressions for the exponential moment
polynomials that are often convenient. In the present context, we will use 2F0 functions,
defined by

2F0

(
a, b
—

∣∣∣∣x
)

=
∞∑

j=0

(a)j(b)j
j!

xj , (3.13)

where (a)j = Γ(a + j)/Γ(a) is the usual Pochhammer symbol. In particular, if a, for
example, is a negative integer, the series reduces to a polynomial. Rearranging factors in the
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expressions for hn,m, via (3) in Proposition 3.1, and hn−m,m, (3.8), we can formulate these as
2F0 hypergeometric functions.

Proposition 3.2. One has the following expressions for exponential moment polynomials:

hn,m(x, t) = xntmm! 2F0

( −n, 1 +m

—

∣∣∣∣∣−
t

x

)
,

hn−m,m(x, t) = xn−mtmm! 2F0

(
m − n, 1 +m

—

∣∣∣∣∣−
t

x

)
.

(3.14)

4. Zeon Powers of sI + tJ

We want to calculate (sI + tJ)∨� , that is, the ( n
� ) × ( n

� )matrix with rows and columns labelled
by �-subsets I, J ⊂ {1, . . . , n} with the IJ entry equal to the permanent of the corresponding
submatrix of sI + tJ . This is equivalent to the induced action of the original matrix sI + tJ on
the �th zeon space V∨� .

Theorem 4.1. The �th zeon power of sI + tJ is given by

(sI + tJ)∨� =
∑

k

�∑

j=k

(
� − k
� − j

)
j!s�−j tjJSn�k =

∑

k

h�−k,k(s, t)JSn�k , (4.1)

where the h’s are exponential moment polynomials.

Proof. Choose I and J with |I| = |J| = �. By Theorem 2.1, we have, using the fact that all of the
entries of J∨j are equal to j!,

(
(sI + tJ)∨�

)

IJ
=
∑

0≤j≤�
s�−j tj

∑

A⊂I∩J
|A|=�−j

(
J∨j
)

I\A,J\A

=
∑

0≤j≤�
s�−j tj

∑

A⊂I∩J
|A|=�−j

j! .
(4.2)

Now, if distJS(I, J) = k, then |I ∩ J| = � − k, and there are
(

�−k
�−j
)
subsets A of I ∩ J satisfying the

conditions of the sum. Hence the result.

Note that the specialization � = n, k = 0, recovers (2.19).
We can write the above expansion using the hypergeometric form of the exponential

moment polynomials, Proposition 3.2,

(sI + tJ)∨� =
∑

k

s�−ktkk! 2F0

(
k − �, 1 + k

—

∣∣∣∣−
t

s

)
JSn�k . (4.3)
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4.1. Spectrum of the Johnson Matrices

Recall, for example, [2, page 220], that the spectrum of the Johnson matrices for given n and
� is the set of numbers

Λn�
k (α) =

∑

i

(
� − α
i

)(
n − � − α + i

i

)(
� − i
k − i

)
(−1)k−i, (4.4)

where the eigenvalue for given α has multiplicity ( n
α ) − ( n

α−1 ).
For �-sets, the Johnson distance takes values from 0 to min(�, n − �), with α taking

values from that same range.

4.2. The Spectrum of (sI + tJ)∨�

Recall that as the Johnson matrices are symmetric and generate a commutative algebra, they
are simultaneously diagonalizable by an orthogonal transformation of the underlying vector
space. Diagonalizing the equation in Theorem 4.1, we see that the spectrum of (sI + tJ)∨� is
given by

∑

k

h�−k,k(s, t)Λn�
k (α). (4.5)

Proposition 4.2. The spectrum of (sI + tJ)∨� is given by

sα

tn−�−α(n − � − α)!h�−α,n−�−α(s, t) =
∑

i

s�−iti
(
� − α
i

)(
n − � − α + i

i

)
i!, (4.6)

for 0 ≤ α ≤ min(�, n − �), with respective multiplicities ( n
α ) − ( n

α−1 ).

Proof. In the sum over i in (4.4), only the last two factors involve k. We have

∑

k

h�−k,k(s, t)(−1)k−i
(
� − i
k − i

)

=
∑

k

∫∞

0

(
s + ty

)�−k(
ty
)k(−1)k−i

(
� − i
k − i

)
e−ydy setting k = i +m

=
∑

m

∫∞

0

(
s + ty

)�−i−m(
ty
)i+m(−1)m

(
� − i
m

)
e−ydy

=
∫∞

0

(
s + ty − ty)�−i(ty)ie−ydy

= s�−itii!,

(4.7)
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using the binomial theorem to sum out m. Filling in the additional factors yields

∑

k

h�−k,k(s, t) Λn�
k (α) =

∑

i

s�−itii!

(
� − α
i

)(
n − � − α + i

i

)
, (4.8)

Taking out a denominator factor of (n − � − α)! and multiplying by s−αtn−�−α gives

∑

i

s�−α−itn−�−α+i
(
� − α
i

)
(n − � − α + i)!, (4.9)

which is precisely h�−α,n−�−α as in the third statement of Proposition 3.1.

As in Proposition 3.2, we can express the eigenvalues as follows.

Corollary 4.3. The spectrum of (sI + tJ)∨� consists of the eigenvalues

s� 2F0

(
α − �, 1 + n − � − α

—

∣∣∣∣−
t

s

)
, (4.10)

for 0 ≤ α ≤ min(�, n − �), with corresponding multiplicities as indicated above.

4.3. Row Sums and Trace Identity

For the row sums, we know that the all-ones vector is a common eigenvector of the Johnson
basis corresponding to α = 0. These are the valencies Λk(0). For the Johnson scheme, we have

Λn�
k (0) =

(
�

k

)(
n − �
k

)
. (4.11)

for example, see [2, page 219], which can be checked directly from the formula for Λn�
k (α),

(4.4), with α set to zero. Setting α = 0 in Proposition 4.2 gives

1
tn−� (n − �)!h�,n−�(s, t) =

∑

i

(
�

i

)(
n − � + i

i

)
i!s�−iti, (4.12)

for the row sums of (sI + tJ)∨� .

4.3.1. Trace Identity

Terms on the diagonal are the coefficient of JSn�0 , which is the identity matrix. So, the trace is

tr (sI + tJ)∨� =

(
n

�

)
h�,0(s, t) =

(
n

�

)
∑

k

(
�

k

)
k!s�−ktk. (4.13)
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Cancelling factorials and reversing the order of summation on k yields the following formula.

tr (sI + tJ)∨� =
n!

(n − �)!
∑

0≤k≤�

skt�−k

k! . (4.14)

Now, Proposition 4.2 gives the trace

tr (sI + tJ)∨� =
∑

0≤α≤min(�,n−�)

[(
n

α

)
−
(

n

α − 1

)]
∑

i

s�−iti
(
� − α
i

)(
n − � − α + i

i

)
i!. (4.15)

Proposition 4.4. Equating the above expressions for the trace yields the identity

∑

0≤α≤min(�,n−�)

[(
n

α

)
−
(

n

α − 1

)]
∑

i

s�−iti
(
� − α
i

)(
n − � − α + i

i

)
i! =

n!
(n − �)!

∑

0≤j≤�

sj t�−j

j!
.

(4.16)

Example 4.5. For n = 4, � = 2, we have

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

s2 + 2st + 2t2 st + 2t2 st + 2t2 st + 2t2 st + 2t2 2t2

st + 2t2 s2 + 2st + 2t2 st + 2t2 st + 2t2 2t2 st + 2t2

st + 2t2 st + 2t2 s2 + 2st + 2t2 2t2 st + 2t2 st + 2t2

st + 2t2 st + 2t2 2t2 s2 + 2st + 2t2 st + 2t2 st + 2t2

st + 2t2 2t2 st + 2t2 st + 2t2 s2 + 2st + 2t2 st + 2t2

2t2 st + 2t2 st + 2t2 st + 2t2 st + 2t2 s2 + 2st + 2t2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(4.17)

One can check that the entries are in agreement with Theorem 4.1. The trace is 6s2+12st+12t2.
The spectrum is

eigenvalue s2 + 6st + 12t2, with multiplicity 1,

eigenvalue s2 + 2st, with multiplicity 3,

eigenvalue s2, with multiplicity 2,

(4.18)

and the trace can be verified from these as well.

Remark 4.6. What is interesting is that these matrices have polynomial entries with all
eigenvalues polynomials as well, and furthermore, the exact same set of polynomials
produces the eigenvalues as well as the entries. Specializing s and t to integers, a similar
statement holds. All of these matrices will have integer entries with integer eigenvalues, all
of which belong to closely related families of numbers. We will examine interesting cases of
this phenomenon later on in this paper.
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5. Permanents from sI + tJ

Here, we present a proof via recursion of the subpermanents of sI + tJ , thereby recovering
Theorem 4.1 from a different perspective.

Remark 5.1. For the remainder of this paper, we will work with an n×nmatrix corresponding
to an � × � submatrix of the above discussion. Here, we have blown up the submatrix to full
size as the object of consideration.

LetMn,� denote the n × nmatrix with n − � entries equal to s + t on the main diagonal,
and t’s elsewhere. Note thatMn,0 = sI + tJ and Mn,n = tJ , where I and J are n × n. Define

Pn,� = per(Mn,�) (5.1)

to be the permanent of Mn,� .
For � = 0, define P0,0 = 1, and, recalling (2.19),

Pn,0 = per(sI + tJ) =
n∑

j=0

n!
j!
sjtn−j =

n∑

j=0

n!
(
n − j)!s

n−j tj . (5.2)

We have also Pn,n = per(tJ) = n!tn for J of order n × n. These agree at P0,0 = 1.

Theorem 5.2. For n ≥ 1, 1 ≤ � ≤ n, one has the recurrence

Pn,� = Pn,�−1 − sPn−1,�−1. (5.3)

Proof. We have 0 ≤ � ≤ n so n − (� − 1) = n − � + 1 ≥ 1, that is, the matrix Mn,�−1 contains at
least 1 entry on its main diagonal equal to s + t. Write the block form

Mn,�−1 =

[
s + t A

AT Mn−1,�−1

]
, (5.4)

with A = [t, t, . . . , t] the 1 × (n − 1) row vector of all ts, and AT is its transpose. Now, compute
the permanent of Mn,�−1 expanding along the first row. We get

Pn,�−1 = per(Mn,�−1) = (s + t)per(Mn−1,�−1) + F
(
A,AT ,Mn−1,�−1

)
, (5.5)
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where F(A,AT ,Mn−1,�−1) is the contribution to Pn,�−1 involving A. Now,

t per (Mn−1,�−1) + F
(
A,AT ,Mn−1,�−1

)
= per

([
t A

AT Mn−1,�−1

])

= per

([
AT Mn−1,�−1

t A

])

= per

([
Mn−1,�−1 AT

A t

])

= Pn,�.

(5.6)

Thus, from (5.5),

Pn,�−1 = sper (Mn−1,�−1) + tper(Mn−1,�−1) + F
(
A,AT ,Mn−1,�−1

)

= sPn−1,�−1 + Pn,�,

(5.7)

and hence the result.

We arrange the polynomials Pn,� in a triangle, with the columns labelled by � ≥ 0 and
rows by n ≥ 0, starting with P0,0 = 1 at the top vertex

P0,0

P1,0 P1,1

P2,0 P2,1 P2,2

...
. . . . . .

Pn−1,0 · · · Pn−1,n−2 Pn−1,n−1

Pn,0 Pn,1 · · · Pn,n−1 Pn,n

(5.8)

The recurrence says that to get the n, � entry, you combine elements in column � − 1 in rows
n and n − 1, forming an L-shape. Thus, given the first column {Pn,0}n≥0, the table can be
generated in full.

Now, we check that these are indeed our exponential moment polynomials.
Additionally, we derive an expression for Pn,� in terms of the initial sequence Pn,0. For clarity,
we will explicitly denote the dependence of Pn,� on (s, t).

Theorem 5.3. For � ≥ 0, one has

(1) the permanent of the n × n matrix with n − � entries on the diagonal equal to s + t and all
other entries equal to t is

Pn,�(s, t) = hn−�,�(s, t) =
n∑

j=�

(
n − �
n − j

)
j!sn−j tj , (5.9)
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(2)

Pn,�(s, t) =
�∑

j=0

(
�

j

)
(−1)jsjPn−j,0(s, t), (5.10)

(3) the complementary sum is

sn =
n∑

j=0

(
n

�

)
(−1)�Pn,�(s, t). (5.11)

Proof. The initial sequence Pn,0 = hn,0 as noted in (5.2). We check that hn−�,� satisfies recurrence
(5.3). Starting from the integral representation for hn−�+1,�−1, (3.2), we have

hn−�+1,�−1 =
∫∞

0

(
s + ty

)n−�+1(
ty
)�−1

e−ydy

=
∫∞

0

(
s + ty

)(
s + ty

)n−�(
ty
)�−1

e−ydy

= s hn−�,�−1 + hn−�,� ,

(5.12)

as required, where we now identify hn−�+1,�−1 = Pn,�−1, hn−�,�−1 = Pn−1,�−1, and hn−�,� = Pn,� .
And (3.10) gives an explicit form for Pn,� .

For (2), starting with the integral representation for Pn,0 = hn,0, we get

�∑

j=0

(
�

j

)
(−1)jsj

∫∞

0

(
s + ty

)n−j
e−ydy =

�∑

j=0

(
�

j

)
(−1)jsj

∫∞

0

(
s + ty

)n−�(
s + ty

)�−j
e−ydy

=
∫∞

0

(
s + ty

)n−�(
s + ty − s)�e−ydy

= hn−�,� ,

(5.13)

as required. The proof for (3) is similar, using (3.12),

Pn,� = hn−�,� =
∫∞

0

(
s + ty

)n−�(
ty
)�
e−ydy, (5.14)

and the binomial theorem for the sum.

5.1. (sI + tJ)∨� Revisited

Now, we have an alternative proof of Theorem 4.1.
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Lemma 5.4. Let I and J be �-subsets of [n] with distJS(I, J) = k, then

per(sI + tJ)IJ = P�,k(s, t). (5.15)

Proof. Now, |I ∩ J| = � − k, so the submatrix (sI + tJ)IJ is permutationally equivalent to the
� ×� matrix with � −k entries s+ t on its main diagonal and ts elsewhere, that is, to the matrix
M�,k. Hence, by definition of P�,k(s, t), (5.1), we have the result.

Thus, the expansion in the Johnson basis is

(sI + tJ)∨� =
∑

k

h�−k,k(s, t)JSn�k . (5.16)

Proof. Let I and J be �-subsets of [n] with Johnson distance k. By definition, the IJ entry
of the LHS of (5.16) equals the permanent of the submatrix from rows I and columns J,
per(sI + tJ)IJ = P�,k(s, t) = h�−k,k(s, t), by Lemma 5.4 and Theorem 5.3(1). Now, on the RHS of
(5.16), if distJS(I, J) = k, the only nonzero contribution comes from the JSn�k term. This yields
h�−k,k(s, t) × 1 = h�−k,k(s, t) as required.

5.2. Elementary Subgraphs and Permanents

There is an approach to permanents of sI + tJ via elementary subgraphs, based on that of
Biggs [3] for determinants.

An elementary subgraph (see [3, page 44]) of a graph G is a spanning subgraph of G
all of whose components are 0, 1, or 2 regular, that is, all of whose components are isolated
vertices, isolated edges, or cycles of length j ≥ 3.

LetK(�)
n be a copy of the complete graphKn with vertex set [n] in which the first n − �

vertices [n − �] = {1, 2, . . . , n − �} are distinguished. We may now consider the matrixMn,� as
the weighted adjacency matrix of K(�)

n in which the weights of the distinguished vertices are
s + t, with all undistinguished vertices and all edges assigned a weight of t.

Let E be an elementary subgraph of K
(�)
n , then we describe E as having d(E)

distinguished isolated vertices and c(E) cycles. The weight of E, wt(E), is defined as

wt(E) = (s + t)d(E)tn−d(E), (5.17)

a homogeneous polynomial of degree n.
This leads to an interpretation/derivation of Pn,�(s, t) as the permanent per (Mn,�).

Theorem 5.5. One has the expansion in elementary subgraphs

Pn,�(s, t) =
∑

E

2c(E)wt(E). (5.18)

Proof. Assign weights to the components of E as follows:
each distinguished isolated vertex will have weight s + t;
each undistinguished isolated vertex will have weight t;
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each isolated edge will have weight t2;
and each j-cycle, j ≥ 3, will have weight tj .
To obtain wt(E) in agreement with (5.17), we form the product of these weights over

all components in E. The proof then follows along the lines of Proposition 7.2 of [3, page
44], slightly modified to incorporate isolated vertices and with determinant, “det,” replaced
by permanent, “per,” ignoring the minus signs. Effectively, each term in the permanent
expansion thus corresponds to a weighted elementary subgraph E of the weighted K

(�)
n .

See Figure 2 for an example with n = 3.

5.3. Associated Polynomials and Some Asymptotics

Thinking of s and t as parameters, we define the associated polynomials

Qn(x) =
n∑

�=0

(
n

�

)
x�Pn,�. (5.19)

As in the proof of (3) above, using the integral formula (3.12), we have

Qn(x) =
∫∞

0

(
s + ty + xty

)n
e−ydy

=
∑

j

(
n

j

)
sj(1 + x)n−j tn−j

(
n − j)!

= n!
∑

j

sj(1 + x)n−j tn−j

j!
.

(5.20)

Comparing with (5.2), we have the following.

Proposition 5.6. Consider

Qn(x) =
n∑

�=0

(
n

�

)
x�Pn,�(s, t) = Pn,0(s, t + xt). (5.21)

And one has the following.

Proposition 5.7. As n → ∞, for x /= − 1,

Qn(x) ∼ tn(1 + x)nn!es/(t+tx), (5.22)
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Figure 2:M3,� ,K
(�)
3 , P3,� , and the 5weighted elementary subgraphs ofK(�)

3 for � = 0, 1, 2, 3. Distinguished
vertices are shown in bold.

with the special cases

Qn(−1) = sn,

Qn(0) = Pn,0 ∼ tnn!es/t,

Qn(1) =
∑

�

(
n

�

)
Pn,� ∼ (2t)nn!es/(2t).

(5.23)
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Proof. From (5.20),

Qn(x) = n!
∑

j

sj(1 + x)n−j tn−j

j!

= tn(1 + x)nn!
n∑

j=0

1
j!

(
s/t

1 + x

)j

,

(5.24)

from which the result follows.

6. Generalized Derangement Numbers

The formula (2.19) is suggestive of the derangement numbers (see, e.g., [4, page 180]),

dn = n!
n∑

j=0

(−1)j
j!

. (6.1)

This leads to the following.

Definition 6.1. A family of numbers, depending on n and �, arising as the values of Pn,�(s, t)
when s and t are assigned fixed integer values, are called generalized derangement numbers.

We have seen that the assignment s = −1, t = 1 produces the usual derangement
numbers when � = 0. In this section, we will examine in detail the cases s = −1 , t = 1,
generalized derangements, and s = t = 1, generalized arrangements.

Remark 6.2. Topics related to this material are discussed in Riordan [5]. The paper [6] is of
related interest as well.

6.1. Generalized Derangements of [n]

To start, define

Dn,� = Pn,�(−1, 1). (6.2)

Equation (5.9) and Proposition 3.2 give

Dn,� =
n∑

j=�

(−1)n−j
(
n − �
n − j

)
j! = (−1)n−� �! 2F0

(
� − n, 1 + �

—

∣∣∣∣1
)
. (6.3)

Equation (5.2) reads as

per(J − I) = Dn,0 = dn, (6.4)

the number derangements of [n]. So we have a combinatorial interpretation of Dn,0.
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6.1.1. Combinatorial Interpretation of Dn,�

We now give a combinatorial interpretation of Dn,� for � ≥ 1.
When � ≥ 1, recurrence (5.3) for Pn,�(−1, 1) gives

Dn,� = Dn,�−1 +Dn−1,�−1. (6.5)

We say that a subset I of [n] is deranged by a permutation if no point of I is fixed by the
permutation.

Proposition 6.3. Dn,0 = dn, the number of derangements of [n]. In general, for � ≥ 0, Dn,� is the
number of permutations of [n] in which the set {1, 2, . . . , n − �} is deranged, with no restrictions on
the �-set {n − � + 1, . . . , n}.

Proof. For � ≥ 0, let D∗
n,�

denote the set of permutations in the statement of the proposition.
Let En,� = |D∗n,� |. We claim that En,� = Dn,� .

The case � = 0 is immediate. We show that En,� satisfies recurrence (6.5).
Now, let � > 0. Consider a permutation in D∗

n,�
. The point n is either (1) deranged, or

(2) not deranged (i.e., fixed).

(1) If n is deranged, then the (n−� +1)-set {1, 2, . . . , n−�, n} is deranged. By switching
n ↔ n − � + 1 in all permutations of D∗n,� , we obtain a permutation in D∗n,�−1.
Conversely, given any permutation of D∗

n,�−1, we switch n ↔ n − � + 1 to obtain
a permutation in D∗

n,�
where n is deranged. Hence, the number of permutations in

D∗n,� with n deranged equals En,�−1.

(2) Here, n is fixed, so if we remove n from any permutation in D∗n,� we obtain
a permutation in D∗n−1,�−1. Conversely, given a permutation in D∗n−1,�−1, we may
include n as a fixed point to obtain a permutation in D∗

n,�
with n fixed. Hence, the

number of permutations in D∗
n,�

with n fixed equals En−1,�−1.

Combining the above two paragraphs shows that En,� satisfies recurrence (6.5).

And a quick check,

Dn,n = n!, (6.6)

there being no restrictions at all in the combinatorial interpretation, in agreement with (6.3)
for � = n.

Example 6.4. When n = 3, we have d3 = D3,0 = 2 corresponding to the 2 permutations of [1]
in which {1, 2, 3} is moved: 231, 312.

Then, D3,1 = 3 corresponding to the 3 permutations of [1] in which {1, 2} is moved:
213, 231, 312.

Then, D3,2 = 4 corresponding to the 4 permutations of [1] in which {1} is moved:
213, 231, 312, 321.

Finally, D3,3 = 3! = 6 corresponding to the 3 permutations of [1] in which ∅ is moved:
123, 132, 213, 231, 312, 321.
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Reversing the order of summation in (6.3) gives an alternative expression

Dn,� =
n−�∑

j=0
(−1)j

(
n − �
j

)
(
n − j)!. (6.7)

Remark 6.5. Formulation (6.7) may be proved directly by inclusion-exclusion on permuta-
tions fixing given points.

Example 6.6. Consider

D5,2 =
3∑

j=0
(−1)j

(
3

j

)
(
5 − j)! =

(
3

0

)
5! −

(
3

1

)
4! +

(
3

2

)
3! −

(
3

3

)
2!

= 120 − 72 + 18 − 2 = 64.

(6.8)

Now, from (2) of Theorem 5.3, s = −1, and t = 1, we have

Dn,� =
�∑

j=0

(
�

j

)
dn−j . (6.9)

Here is a combinatorial explanation. To obtain a permutation inD∗n,� , we first choose j points
from {n − � + 1, . . . , n} to be fixed. Then, every derangement of the remaining (n − j) points
will produce a permutation in D∗

n,�
, and there are dn−j of such derangements.

Example 6.7. Consider

D5,2 =
2∑

j=0

(
2

j

)
d5−j =

(
2

0

)
d5 +

(
2

1

)
d4 +

(
2

2

)
d3

= 1 × 44 + 2 × 9 + 1 × 2 = 44 + 18 + 2 = 64.

(6.10)

6.1.2. Permanents from J − I
Theorem 4.1 specializes to

(J − I)∨� =
min(�,n−�)∑

k=0

D�,k JSn�k . (6.11)

This can be written using the hypergeometric form

(J − I)∨� =
min(�,n−�)∑

k=0

(−1)�−k k! 2F0

(
k − �, 1 + k

—

∣∣∣∣1
)

JSn�k , (6.12)
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with spectrum

eigenvalue (−1)� 2F0

(
α − �,−α + n − � + 1

—

∣∣∣∣∣1
)
,

occurring with multiplicity

(
n

α

)
−
(

n

α − 1

)
,

(6.13)

by Corollary 4.3 and Proposition 4.2.
The entries of (J − I)∨� are from the set of numbers Dn,� . For the spectrum, start with

α = 0. From (6.3), we have

(−1)� 2F0

( −�, n − � + 1
—

∣∣∣∣1
)

=
1

(n − �)!Dn,n−�. (6.14)

As α increases, we see that the spectrum consists of the numbers

(−1)α
(n − � − α)!Dn−2α,n−�−α. (6.15)

Think of moving in the derangement triangle, as in the appendix, starting from position n, n−
�, rescaling the values by the factorial of the column at each step, then the eigenvalues are
found by successive knight’s moves, up 2 rows and one column to the left, with alternating
signs.

Example 6.8. For n = 5, � = 3, we have

(J − I)∨3 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2 3 3 3 3 4 3 3 4 4

3 2 3 3 4 3 3 4 3 4

3 3 2 4 3 3 4 3 3 4

3 3 4 2 3 3 3 4 4 3

3 4 3 3 2 3 4 3 4 3

4 3 3 3 3 2 4 4 3 3

3 3 4 3 4 4 2 3 3 3

3 4 3 4 3 4 3 2 3 3

4 3 3 4 4 3 3 3 2 3

4 4 4 3 3 3 3 3 3 2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (6.16)

with characteristic polynomial

λ5(λ − 32)(λ + 3)4. (6.17)
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Remark 6.9. Except for � = 2, the coefficients in the expansion of (J − I)∨� in the Johnson basis
will be distinct. Thus, the Johnson basis itself can be read off directly from (J − I)∨� . In this
sense, the centralizer algebra of the action of the symmetric group on �-sets is determined by
knowledge of the action of just J − I on �-sets.

6.2. Generalized Arrangements of [n]

Given [n], 0 ≤ j ≤ n, a j-arrangement of [n] is a permutation of a j-subset of [n]. The number
of j-arrangements of [n] is

A
(
n, j
)
=

n!
(
n − j)! . (6.18)

Note that there is a single 0-arrangement of [n], from the empty set.
Define An,� = Pn,�(1, 1). So, similar to the case for derangements, (5.9) gives

An,� =
n∑

j=�

(
n − �
n − j

)
j! = �! 2F0

(
� − n, 1 + �

—

∣∣∣∣−1
)
. (6.19)

Now, define an = An,0, so

an = per(I + J) =
n∑

j=0

n!
(
n − j)! =

n∑

j=0

A
(
n, j
)

(6.20)

is the total number of j-arrangements of [n] for j = 0, 1, . . . , n. Thus, we have a combinatorial
interpretation of An,0.

6.2.1. Combinatorial Interpretation of An,�

We now give a combinatorial interpretation of An,� for � ≥ 1.
When � ≥ 1, recurrence (5.3) for Pn,�(1, 1) gives

An,� = An,�−1 −An−1,�−1. (6.21)

Proposition 6.10. An,0 = an, the total number of arrangements of [n]. In general, for � ≥ 0, An,� is
the number of arrangements of [n] which contain {1, 2, . . . , �}.

Proof. For � ≥ 0, letA∗
n,�

denote the set of arrangements of [n]which contain [�]. With [0] = ∅,
we note that A∗n,0 is the set of all arrangements. Let Bn,� = |A∗n,� |. We claim that Bn,� = An,� .

The initial values with � = 0 are immediate. We show that Bn,� satisfies recurrence
(6.21).

Consider A∗
n,�−1. Let A ∈ A∗

n,�−1, so A is an arrangement of [n] containing [� − 1]. If
� = 1, then A ∈ A∗n,0 is any arrangement. Now, either � ∈ A or � /∈ A.

If � ∈ A, then A ∈ A∗n,� , and so the number of arrangements in A∗n,�−1 which contain �
equals Bn,� .
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If � /∈ A, then by subtracting 1 from all parts of A which are ≥ � + 1, we obtain an
arrangement of [n− 1]which contains [� − 1], that is, an arrangement inA∗

n−1,�−1. Conversely,
given an arrangement in A∗

n−1,�−1, adding 1 to all parts ≥ � yields an arrangement in A∗
n,�−1

which does not contain �. Hence, the number of arrangements inA∗n,�−1 which do not contain
� equals Bn−1,�−1.

We conclude that Bn,�−1 = Bn,� + Bn−1,�−1; hence, This is the result.

Example 6.11. When n = 3, we have a3 = A3,0 = 16 corresponding to the 16 arrangements of
[1]: [ ], 1, 2, 3, 12, 21, 13, 31, 23, 32, 123, 132, 213, 231, 312, 321.

Then, A3,1 = 11 corresponding to the 11 arrangements of [1] which contain {1}:
1, 12, 21, 13, 31, 123, 132, 213, 231, 312, 321.

Then, A3,2 = 8 corresponding to the 8 arrangements of [1] which contain {1, 2}:
12, 21, 123, 132, 213, 231, 312, 321.

Finally,A3,3 = 3! = 6 corresponding to the 6 arrangements of [1]which contain {1, 2, 3}:
123, 132, 213, 231, 312, 321.

Rearranging the factors in (5.9), we have

Pn,�(s, t) =
n∑

j=�

A
(
j, �
)
A
(
n − �, j − �)sn−j tj , (6.22)

With s = t = 1, this gives

An,� =
n∑

j=�

A
(
j, �
)
A
(
n − �, j − �). (6.23)

Here is a combinatorial explanation of (6.23).
For any j ≥ �, to obtain a j-arrangement A of [n] containing [�], we may place the

� points of {1, 2, . . . , �} into these j positions in A(j, �) ways. Then, the remaining (j − �)
positions in A can be filled in by a (j − �)-arrangement of the unused (n − �) points in A(n −
�, j − �) ways.

Example 6.12. Consider

A5,2 =
5∑

j=2

A
(
j, 2
)
A
(
3, j − 2)

= A(2, 2) A(3, 0) +A(3, 2) A(3, 1) +A(4, 2) A(3, 2) +A(5, 2) A(3, 3)

= 2 × 1 + 6 × 3 + 12 × 6 + 20 × 6
= 2 + 18 + 72 + 120 = 212.

(6.24)
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Finally, from (2) of Theorem 5.3, s = 1, and t = 1, we have

An,� =
�∑

j=0
(−1)j

(
�

j

)
an−j . (6.25)

Example 6.13. Consider

A5,2 =
2∑

j=0
(−1)j

(
2

j

)
a5−j =

(
2

0

)
a5 −

(
2

1

)
a4 +

(
2

2

)
a3

= 1 × 326 − 2 × 65 + 1 × 16 = 326 − 130 + 16 = 212.

(6.26)

6.2.2. Permanents from I + J

Theorem 4.1 specializes to

(I + J)∨� =
min(�,n−�)∑

k=0

A�,kJSn�k . (6.27)

This can be written using the hypergeometric form

(I + J)∨� =
min(�,n−�)∑

k=0

k! 2F0

(
k − �, 1 + k

—

∣∣∣∣−1
)

JSn�k , (6.28)

with spectrum

eigenvalue 2F0

(
α − �,−α + n − � + 1

—

∣∣∣∣−1
)
,

occurring with multiplicity

(
n

α

)
−
(

n

α − 1

)
,

(6.29)

by Corollary 4.3 and Proposition 4.2.
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Example 6.14. For n = 5, � = 3, we have

(I + J)∨3 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

16 11 11 11 11 8 11 11 8 8

11 16 11 11 8 11 11 8 11 8

11 11 16 8 11 11 8 11 11 8

11 11 8 16 11 11 11 8 8 11

11 8 11 11 16 11 8 11 8 11

8 11 11 11 11 16 8 8 11 11

11 11 8 11 8 8 16 11 11 11

11 8 11 8 11 8 11 16 11 11

8 11 11 8 8 11 11 11 16 11

8 8 8 11 11 11 11 11 11 16

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (6.30)

with characteristic polynomial

(λ − 106)(λ − 11)4(λ − 2)5. (6.31)

As for the case of derangements, the Johnson basis can be read off directly from the matrix
(I + J)∨� .

Appendix

Generalized Derangement Numbers and Integer Sequences

The first two columns of theDn,� triangle,Dn,0 andDn,1, give sequences A000166 andA000255
in the On-Line Encyclopedia of Integer Sequences [7]. The comments for A000255 do not
contain our combinatorial interpretation.

The first two columns of the An,� triangle, An,0 and An,1, give sequences A000522 and
A001339. The comments contain our combinatorial interpretation. The next two columns,
An,2 and An,3, give sequences A001340 and A00134; here, our combinatorial interpretation is
not mentioned in the comments.

Generalized Derangement Triangles

� = 0 is the leftmost column. The rows correspond to n from 0 to 9.
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Values of Dn,�

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0

1 1 2 0 0 0 0 0 0 0

2 3 4 6 0 0 0 0 0 0

9 11 14 18 24 0 0 0 0 0

44 53 64 78 96 120 0 0 0 0

265 309 362 426 504 600 720 0 0 0

1854 2119 2428 2790 3216 3720 4320 5040 0 0

14833 16687 18806 21234 24024 27240 30960 35280 40320 0

133496 148329 165016 183822 205056 229080 256320 287280 322560 362880

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(A.1)

Values of An,�

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0 0 0 0 0

2 1 0 0 0 0 0 0 0 0

5 3 2 0 0 0 0 0 0 0

16 11 8 6 0 0 0 0 0 0

65 49 38 30 24 0 0 0 0 0

326 261 212 174 144 120 0 0 0 0

1957 1631 1370 1158 984 840 720 0 0 0

13700 11743 10112 8742 7584 6600 5760 5040 0 0

109601 95901 84158 74046 65304 57720 51120 45360 40320 0

986410 876809 780908 696750 622704 557400 499680 448560 403200 362880

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(A.2)

Exponential polynomials hn,m(s, t)

Note that, as is common for matrix indexing, we have dropped the commas in the numerical
subscripts

n = 0

h00 = 1, h01 = t, h02 = 2t2, h03 = 6t3, h04 = 24t4, (A.3)
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n = 1

h10 = s + t, h11 = st + 2t2, h12 = 2st2 + 6t3, h13 = 6st3 + 24t4, h14 = 24st4 + 120t5,
(A.4)

n = 2

h20 = s2 + 2st + 2t2, h21 = s2t + 4st2 + 6t3, h22 = 2s2t2 + 12st3 + 24t4,

h23 = 6s2t3 + 48st4 + 120t5, h24 = 24s2t4 + 240st5 + 720t6,

(A.5)

n = 3

h30 = s3 + 3s2t + 6st2 + 6t3,

h31 = s3t + 6s2t2 + 18st3 + 24t4, h32 = 2s3t2 + 18s2t3 + 72st4 + 120t5,

h33 = 6s3t3 + 72s2t4 + 360st5 + 720t6, h34 = 24s3t4 + 360s2t5 + 2160st6 + 5040t7,

(A.6)

n = 4

h40 = s4 + 4s3t + 12s2t2 + 24st3 + 24t4, h41 = s4t + 8s3t2 + 36s2t3 + 96st4 + 120t5,

h42 = 2s4t2 + 24s3t3 + 144s2t4 + 480st5 + 720t6,

h43 = 6s4t3 + 96s3t4 + 720s2t5 + 2880st6 + 5040t7,

h44 = 24s4t4 + 480s3t5 + 4320s2t6 + 20160st7 + 40320t8.

(A.7)
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