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The purpose of this paper is to propose a modified hybrid projection algorithm and prove
strong convergence theorems for a family of quasi-φ-asymptotically nonexpansive mappings.
The method of the proof is different from the original one. Our results improve and extend the
corresponding results announced by Zhou et al. (2010), Kimura and Takahashi (2009), and some
others.

1. Introduction

LetE be a real Banach space andC a nonempty closed convex subset ofE. Amapping T : C →
C is said to be asymptotically nonexpansive [1] if there exists a sequence {kn} of positive real
numbers with kn → 1 such that

‖Tnx − Tny‖ ≤ kn‖x − y‖, (1.1)

for all x, y ∈ C and all n ≥ 1.
The class of asymptotically nonexpansive mappings was introduced by Goebel and

Kirk [1] in 1972. They proved that if C is a nonempty bounded closed convex subset of a
uniformly convex Banach space E, then every asymptotically nonexpansive self-mapping
T of C has a fixed point. Further, the set F(T) of fixed points of T is closed and convex.
Since 1972, a host of authors have studied the weak and strong convergence problems of the
iterative algorithms for such a class of mappings (see, e.g., [1–3] and the references therein).

It is well known that in an infinite-dimensional Hilbert space, the normal Mann’s
iterative algorithm has only weak convergence, in general, even for nonexpansive mappings.
Consequently, in order to obtain strong convergence, one has to modify the normal Mann’s
iteration algorithm; the so-called hybrid projection iteration method is such a modification.
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The hybrid projection iteration algorithm (HPIA) was introduced initially by Hau-
gazeau [4] in 1968. For 40 years, (HPIA) has received rapid developments. For details, the
readers are referred to papers in [5–11] and the references therein.

In 2003, Nakajo and Takahashi [6] proposed the following modification of the Mann
iteration method for a nonexpansive mapping T in a Hilbert space H:

x0 ∈ C chosen arbitrarily,

yn = αnxn + (1 − αn)Txn,

Cn =
{
z ∈ C : ‖yn − z‖ ≤ ‖xn − z‖},

Qn = {z ∈ C : 〈xn − z, x0 − xn〉 ≥ 0},

xn+1 = PCn∩Qn(x0),

(1.2)

where C is a closed convex subset of H, PK denotes the metric projection from H onto a
closed convex subset K of H. They proved that if the sequence {αn} is bounded above from
one then the sequence {xn} generated by (1.2) converges strongly to PF(T)(x0), where F(T)
denote the fixed points set of T .

In 2006, Kim and Xu [12] proposed the following modification of the Mann iteration
method for asymptotically nonexpansive mapping T in a Hilbert space H:

x0 ∈ C chosen arbitrarily,

yn = αnxn + (1 − αn)Tnxn,

Cn =
{
z ∈ C : ‖yn − z‖2 ≤ ‖xn − z‖2 + θn

}
,

Qn = {z ∈ C : 〈xn − z, x0 − xn〉 ≥ 0},

xn+1 = PCn∩Qn(x0),

(1.3)

where C is bounded closed convex subset and

θn = (1 − αn)
(
k2
n − 1

)
(diam C)2 −→ 0 as n −→ ∞. (1.4)

They proved that if the sequence {αn} is bounded above from one, then the sequence {xn}
generated by (1.3) converges strongly to PF(T)(x0).
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They also proposed the following modification of the Mann iteration method for
asymptotically nonexpansive semigroup I in a Hilbert space H:

x0 ∈ C chosen arbitrarily,

yn = αnxn + (1 − αn)
1
tn

∫ tn

0
T(s)xnds,

Cn =
{
z ∈ C : ‖yn − z‖2 ≤ ‖xn − z‖2 + θn

}
,

Qn = {z ∈ C : 〈xn − z, x0 − xn〉 ≥ 0},
xn+1 = PCn∩Qn(x0),

(1.5)

where C is bounded closed convex subset and

θn = (1 − αn)

⎡

⎣

(
1
tn

∫ tn

0
L(s)ds

)2

− 1

⎤

⎦(diam C)2 −→ 0 as n −→ ∞, (1.6)

and L : (0,∞) → [0,∞) is nonincreasing in s and bounded measurable function such that,
L(s) ≥ 1 for all s > 0, L(s) → 1 as s → ∞, and for each s > 0,

∥∥T(s)x − T(s)y
∥∥ ≤ L(s)

∥∥x − y
∥∥, x, y ∈ C. (1.7)

They proved that if the sequence {αn} is bounded above from one, then the sequence {xn}
generated by (1.5) converges strongly to PF(I)(x0), where F(I) denote the common fixed
points set of I.

In 2006, Martinez-Yanes and Xu [7] proposed the following modification of the
Ishikawa iteration method for nonexpansive mapping T in a Hilbert space H:

x0 ∈ C chosen arbitrarily,

yn = αnxn + (1 − αn)Tzn,

zn = βnxn +
(
1 − βn

)
Txn,

Cn =
{
z ∈ C :

∥∥yn − z
∥∥2 ≤ ‖xn − z‖2 + (1 − αn)

(
‖zn‖2 − ‖xn‖2 + 2〈xn − zn, z〉

)}
,

Qn = {z ∈ C : 〈xn − z, x0 − xn〉 ≥ 0},
xn+1 = PCn∩Qn(x0),

(1.8)

where C is a closed convex subset of H. They proved that if the sequence {αn} is bounded
above from one and βn → 0, then the sequence {xn} generated by (1.8) converges strongly
to PF(T)(x0).
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Martinez-Yanes and Xu [7] proposed also the following modification of the Halpern
iteration method for nonexpansive mapping T in a Hilbert space H:

x0 ∈ C chosen arbitrarily,

yn = αnx0 + (1 − αn)Txn,

Cn =
{
z ∈ C :

∥
∥yn − z

∥
∥2 ≤ ‖xn − z‖2 + αn

(
‖x0‖2 + 2〈xn − x0, z〉

)}
,

Qn = {z ∈ C : 〈xn − z, x0 − xn〉 ≥ 0},

xn+1 = PCn∩Qn(x0),

(1.9)

where C is a closed convex subset of H. They proved that if the sequence αn → 0, then the
sequence {xn} generated by (1.9) converges strongly to PF(T)(x0).

In 2005, Matsushita and Takahashi [8] proposed the following hybrid iterationmethod
with generalized projection for relatively nonexpansive mapping T in a Banach space E:

x0 ∈ C chosen arbitrarily,

yn = J−1(αnJx0 + (1 − αn)JTxn),

Cn =
{
z ∈ C : φ

(
z, yn

) ≤ φ(z, xn)
}

Qn = {z ∈ C : 〈xn − z, Jx0 − Jxn〉 ≥ 0},

xn+1 = ΠCn∩Qn(x0).

(1.10)

They proved the following convergence theorem.

TheoremMT. Let E be a uniformly convex and uniformly smooth Banach space, letC be a nonempty
closed convex subset of E, let T be a relatively nonexpansive mapping from C into itself, and let {αn}
be a sequence of real numbers such that 0 ≤ αn < 1 and lim supn→∞ αn < 1. Suppose that {xn}
is given by (1.10), where J is the duality mapping on E. If F(T) is nonempty, then {xn} converges
strongly to ΠF(T)x0, whereΠF(T)(·) is the generalized projection from C onto F(T).

In 2009, Zhou et al. [11] proposed the following modification of the hybrid iteration
method with generalized projection for a family of closed and quasi-φ-asymptotically
nonexpansive mappings {Ti}i∈I in a Banach space E:

x0 ∈ C chosen arbitrarily,

yn,i = J−1
(
αnJxn + (1 − αn)JTn

i xn

)
,

Cn,i =
{
z ∈ C : φ

(
z, yn,i

) ≤ φ(z, xn) + ζn,i
}
,

Cn =
⋂

i∈I
Cn,i,
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Q0 = C,

Qn = {z ∈ Qn−1 : 〈xn − z, Jx0 − Jxn〉 ≥ 0},
xn+1 = ΠCn∩Qn(x0).

(1.11)

They proved the following convergence theorem.

Theorem ZGT.

Let C be a nonempty bounded closed convex subset of a uniformly convex and uniformly smooth
Banach space E, and let {Ti}i∈I : C → C be a family of quasi-φ-asymptotically nonexpansive
mappings such that F =

⋂
i∈I F(Ti)/= ∅. Assume that every Ti, (i ∈ I) is asymptotically regular

on C. Let {αn} be a real sequence in [0, 1) such that lim supn→∞αn < 1. Define a sequence {xn} as
given by (1), then {xn} converges strongly toΠFx0, where ζn,i = (1 − αn)(kn,i − 1)M,M ≥ φ(z, xn)
for all z ∈ F, xn ∈ C, and ΠF is the generalized projection from C onto F.

Very recently, Kimura and Takahashi [13] established strong convergence theorems by
the hybrid method for a family of relatively nonexpansive mappings as follows.

Theorem KT.

Let E be a strictly convex reflexive Banach space having the Kadec-Klee property and a Fréchet
differentiable norm, and let C be a nonempty and closed convex subset of E and {Sλ : λ ∈ Λ} a
family of relatively nonexpensive mappings of C into itself having a common fixed point. Let {αn} be
a sequence in [0, 1] such that lim infn→∞αn < 1. For an arbitrarily chosen point x ∈ E, generate a
sequence {xn} by the following iterative scheme: x1 ∈ C,C1 = C, and

yn(λ) = J∗(αnJxn + (1 − αn)JSλxn), ∀ λ ∈ Λ,

Cn+1 =

{

z ∈ Cn : sup
λ∈Λ

φ
(
z, yn(λ)

) ≤ φ(z, xn)

}

,

xn+1 = PCn+1(x),

(1.12)

for every n ∈ N, then {xn} converges strongly to PFx ∈ C, where F =
⋂

λ∈Λ F(Sλ) is the set
of common fixed points of {Sλ} and PK is the metric projection of E onto a nonempty closed
convex subset K of E.

Motivated by these results above, the purpose of this paper is to propose a Modified
hybrid projection algorithm and prove strong convergence theorems for a family of quasi-
φ-asymptotically nonexpansive mappings which are asymptotically regular on C. In order
to get the strong convergence theorems for such a family of mappings, the classical hybrid
projection iteration algorithm is modified and then is used to approximate the common fixed
points of such a family of mappings. In the meantime, the method of the proof is different
from the original one. Our results improve and extend the corresponding results announced
by Zhou et al. [11], and Kimura and Takahashi [13], and some others.
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2. Preliminaries

Let E be a Banach space with dual E∗. Denote by 〈·, ·〉 the duality product. The normalize
duality mapping J from E to E∗ is defined by

Jx =
{
x∗ ∈ E∗ : 〈x, x∗〉 = ‖x‖2 = ‖x∗‖2

}
, (2.1)

for all x ∈ E, where E∗ denotes the dual space of E and 〈·, ·〉 the generalized duality pairing
between E and E∗. It is well known that if E∗ is uniformly convex, then J is uniformly
continuous on bounded subsets of E.

It is also very well known that if C is a nonempty closed convex subset of a Hilbert
space H and PC : H → C is the metric projection of H onto C, then PC is nonexpansive.
This fact actually characterizes Hilbert spaces C, and consequently, it is not available in
more general Banach spaces. In this connection, Alber [14] recently introduced a generalized
projection operator ΠC in a Banach space E which is an analogue of the metric projection in
Hilbert spaces.

Next, we assume that E is a real smooth Banach space. Let us consider the functional
defined by [7, 8] as

φ
(
y, x
)
=
∥∥y
∥∥2 − 2

〈
y, Jx

〉
+ ‖x‖2 (2.2)

for all x, y ∈ E. Observe that, in a Hilbert space H, (2.2) reduces to φ(y, x) = ‖x − y‖2, x,y ∈
H.

The generalized projection ΠC : E → C is a map that assigns to an arbitrary point
x ∈ E, the minimum point of the functional φ(x, y), that is, ΠCx = x, where x is the solution
to the minimization problem

φ(x, x) = min
y∈C

φ
(
y, x
)
. (2.3)

Existence and uniqueness of the operator ΠC follow from the properties of the C functional
φ(x, y) and strict monotonicity of the mapping J (see, e.g., [14–18]). In Hilbert spaces, ΠC =
PC. It is obvious from the definition of function φ that

(∥∥y
∥∥ − ‖x‖)2 ≤ φ

(
y, x
) ≤ (∥∥y∥∥ + ‖x‖)2 (2.4)

for all x, y ∈ E.

Remark 2.1. If E is a reflexive strictly convex and smooth Banach space, then for x, y ∈ E,
φ(x, y) = 0 if and only if x = y. It is sufficient to show that if φ(x, y) = 0, then x = y. From
(2.4), we have ‖x‖ = ‖y‖. This implies that 〈x, Jy〉 = ‖x‖2 = ‖Jy‖2. From the definitions of J ,
we have Jx = Jy. That is, x = y; see [17, 18] for more details.

Let C be a closed convex subset of E and T a mapping from C into itself. T is said to
be φ-asymptotically nonexpansive if there exists some real sequence {kn} with kn ≥ 1 and
kn → 1 such that φ(Tnx, Tny) ≤ knφ(x, y) for all n ≥ 1 and x, y ∈ C. T is said to be quasi-φ-
asymptotically nonexpansive [9] if there exists some real sequence {kn} with kn ≥ 1 and
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kn → 1 and F(T)/= ∅ such that φ(p, Tnx) ≤ knφ(p, x) for all n ≥ 1, x ∈ C, and p ∈ F(T).
T : C → C is said to be asymptotically regular on C if, for any bounded subset C̃ of C, there
holds the following equality:

lim
n→∞

sup
{∥∥
∥Tn+1x − Tnx

∥
∥
∥ : x ∈ C̃

}
= 0. (2.5)

We remark that a φ-asymptotically nonexpansive mapping with a nonempty fixed
point set F(T) is a quasi-φ-asymptotically nonexpansive mapping, but the converse may be
not true.

We present some examples which are closed and quasi-φ-asymptotically nonexpan-
sive.

Example 2.2. Let E be a real line. We define a mapping T : E → E by

T(x) =

⎧
⎪⎨

⎪⎩

x

2
sin

1
x

if x /= 0,

0 if x = 0.
(2.6)

Then T is continuous quasi-nonexpansive, and hence it is closed and quasi-asymptotically
nonexpansive with the constant sequence {1} but not asymptotically nonexpansive.

Example 2.3. Let E be a uniformly smooth and strictly convex Banach space, andA ⊂ E×E∗ is
a maximal monotone mapping such thatA−10 is nonempty. Then, Jr = (J + rA)−1J is a closed
and quasi-φ-asymptotically nonexpansive mapping from E onto D(A), and F(Jr) = A−10.

Example 2.4. Let ΠC be the generalized projection from a smooth, strictly convex, and
reflexive Banach space E onto a nonempty closed convex subset C of E. Then, ΠC is a closed
and quasi-φ-asymptotically nonexpansive mapping from E onto C with F(ΠC) = C.

Let Cn be a sequence of nonempty closed convex subsets of a reflexive Banach space
E. We denote two subsets s − LinCn and w − LsnCn as follows: x ∈ s − LinCn if and only if
there exists {xn} ⊂ E such that {xn} converges strongly to x and that xn ∈ Cn for all n ∈ N.
Similarly, y ∈ w−LsnCn if and only if there exists a subsequence {Cni} of {Cn} and a sequence
{yi ⊂ E} such that {yi} converges weakly to y and that yi ∈ Cni for all i ∈ N. We define the
Mosco convergence [19] of {Cn} as follows. If C0 satisfies that C0 = s − LinCn = w − LsnCn, it
is said that {Cn} converges to C0 in the sense of Mosco, and we write C0 = M − limn→∞Cn.
For more details, see [20].

The following theorem plays an important role in our results.

Theorem 2.5 (see Ibaraki et al. [21]). Let E be a smooth, reflexive, and strictly convex Banach space
having the Kadec-Klee property. Let {Kn} be a sequence of nonempty closed convex subsets of E. If
K0 = M − limn→∞Kn exists and is nonempty, then {ΠKnx} converges strongly to ΠK0x for each
x ∈ C.

We also need the following lemmas for the proof of our main results.
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Lemma 2.6 (Kamimura and Takahashi [16]). Let E be a uniformly convex and smooth Banach
space, and let {yn}, {zn} be two sequences of E if φ(yn, zn) → 0 and either {yn} or {zn} is bounded,
then yn − zn → 0.

Lemma 2.7 (Alber [14]). Let E be a reflexive, strictly convex and smooth Banach space, let C be a
nonempty closed convex subset of E, and let x ∈ E. Then

φ
(
y,ΠCx

)
+ φ(ΠCx, x) ≤ φ

(
y, x
)

(2.7)

for all y ∈ C.

Lemma 2.8. Let E be a uniformly convex and smooth Banach space, let C be a closed convex subset
of E, and let T be a closed and quasi-φ-asympotically nonexpansive mapping from C into itself. Then
F(T) is a closed convex subset of C.

3. A Modified Algorithm and Strong Convergence Theorems

Now we are in a proposition to prove the main results of this paper. In the sequel, we use the
letter I to denote an index set.

Theorem 3.1. Let C be a nonempty closed convex subset of a uniformly convex and uniformly
smooth Banach space E, and let {Ti}i∈I : C → C be a family of closed and quasi-φ-asymptotically
nonexpansive mappings such that F =

⋂
i∈I F(Ti)/= ∅. Assume that every Ti, (i ∈ I) is asymptotically

regular on C. Let {αn}, {βn}, {γn} be real sequences in [0, 1] such that limn→∞αn = 0,
lim infn→∞γn > 0. Define a sequence {xn} in C in the following manner:

x0 ∈ C chosen arbitrarily,

yn,i = J−1
(
αnJx0 + βnJxn + γnJT

n
i xn

)
,

C0 = C,

Cn,i =
{
z ∈ Cn−1 : φ

(
z, yn,i

) ≤ αnφ(z, x0) +
(
βn + γnkn,i

)
φ(z, xn)

}
,

Cn =
⋂

i∈I
Cn,i,

xn+1 = ΠCn(x0).

(3.1)

Then {xn} converges strongly toΠFx0, where ΠF is the generalized projection from C onto F.

Proof. Firstly, we show that Cn is closed and convex for each n ≥ 0.
From the definition of Cn, it is obvious that Cn is closed for each n ≥ 0. We show that

Cn is convex for each n ≥ 0. Observe that the set

Cn,i =
{
z ∈ Cn−1 : φ

(
z, yn,i

) ≤ αnφ(z, x0) +
(
βn + γnkn,i

)
φ(z, xn)

}
(3.2)
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can be written as

Cn,i =
{
z ∈ Cn−1 : γn(1 − kn,i)‖z‖2 +

∥
∥yn,i

∥
∥2 − αn‖x0‖2 −

(
βn + γnkn,i

)‖xn‖2

≤ 2
〈
z, Jyn,i − αnJx0 −

(
βn + γnkn,i

)
Jxn

〉}
.

(3.3)

For z1, z2 ∈ Cn,i and t ∈ (0, 1), denote z = tz1+(1−t)z2,A = ‖yn,i‖2−αn‖x0‖2−(βn+γnkn,i)‖xn‖2,
and B = Jyn,i − αnJx0 − (βn + γnkn,i)Jxn; by noting that ‖ · ‖2 is convex, we have

‖z‖2 = ‖tz1 + (1 − t)z2‖2 ≤ t‖z1‖2 + (1 − t)‖z2‖2. (3.4)

So we obtain

γn(1 − kn,i)‖z‖2 +A ≤ γn(1 − kn,i)t‖z1‖2 + γn(1 − kn,i)(1 − t)‖z2‖2 +A

= t
(
γn(1 − kn,i)‖z1‖2 +A

)
+ (1 − t)

(
γn(1 − kn,i)‖z2‖ +A

)

≤ 2t〈z1, B〉 + 2(1 − t)〈z2, B〉
= 2〈tz1 + (1 − t)z2, B〉
= 2〈z, B〉,

(3.5)

which infers that z ∈ Cn,i, so we get that Cn is convex for each n ≥ 0. Thus Cn is closed and
convex for every n ≥ 0.

Secondly, we prove that F ⊂ Cn, for all n ≥ 0.
Indeed, by noting that ‖ · ‖2 is convex and using (2.2), we have, for any z ∈ F and all

i ∈ I, that

φ
(
z, yn,i

)
= φ
(
z, J−1

(
αnJx0 + βnJxn + γnJT

n
i xn

))

= ‖z‖2 − 2
〈
z,
(
αnJx0 + βnJxn + γnJT

n
i xn

)〉
+
∥∥αnJx0 + βnJxn + γnJT

n
i xn

∥∥2

≤ ‖z‖ − 2
〈
z,
(
αnJx0 + βnJxn + γnJT

n
i xn

)〉
+ αn‖Jx0‖2 + βn‖Jxn‖2 + γn

∥∥JTn
i xn

∥∥2

≤ αnφ(z, x0) + βnφ(z, xn) + γnkn,iφ(z, xn)

= αnφ(z, x0) +
(
βn + γnkn,i

)
φ(z, xn),

(3.6)

which infers that z ∈ Cn,i, for all n ≥ 0 and i ∈ I, and hence z ∈ Cn =
⋂

i∈I Cn,i. This proves
that F ⊂ Cn, for all n ≥ 0 and i ∈ I.

Thirdly, we will show that limn→∞ xn = x = ΠCx0.
Since {Cn} is a decreasing sequence of closed convex subsets ofE such thatC =

⋂∞
n=0 Cn

is nonempty, it follows that

M − lim
n→∞

Cn = C =
∞⋂

n=0

Cn /= ∅. (3.7)

By Theorem 2.5, {xn} = {ΠCn−1x0} converges strongly to {x} = {ΠCx0}.
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Fourthly, we prove that x ∈ F.
Since xn+1 = ΠCn(x0) ∈ Cn, from the definition of Cn, we get

φ
(
xn+1, yn,i

) ≤ αnφ(xn+1, x0) +
(
βn + γnkn,i

)
φ(xn+1, xn). (3.8)

From limn→∞xn = x, one obtains φ(xn+1, xn) → 0 as n → ∞, and it follows from limn→∞αn =
0, for every i ∈ I that we have

lim
n→∞

φ
(
xn+1, yn,i

) ≤ lim
n→∞

(
αnφ(xn+1, x0) +

(
βn + γnkn,i

)
φ(xn+1, xn)

)
= 0, (3.9)

and hence xn+1 −yn,i → 0 as n → ∞ by Lemma 2.6. It follows that ‖yn,i −xn‖ ≤ ‖yn,i −xn+1‖+
‖xn+1 − xn‖ → 0 as n → ∞. Since J is uniformly norm-to-norm continuous on any bounded
sets of E, we conclude that

lim
n→∞

∥∥Jxn − Jyn,i

∥∥ = 0, (3.10)

for every i ∈ I. By the definition of {yn,i} and the assumption on {αn}, we deduce that

∥∥Jxn − Jyn,i

∥∥ =
∥∥Jxn −

(
αnJx0 + βnJxn + γnJT

n
i xn

)∥∥

=
∥∥αn(Jxn − Jx0) + γn

(
Jxn − JTn

i xn

)∥∥

≥ ∥∥γn
(
Jxn − JTn

i xn

)∥∥ − ‖αn(Jxn − Jx0)‖
(3.11)

for every n ∈ N and i ∈ I. So we get

γn
∥∥Jxn − JTn

i xn

∥∥ ≤ ∥∥Jxn − Jyn,i

∥∥ + αn‖Jxn − Jx0‖. (3.12)

Since lim infn→∞γn > 0, we have Jxn − JTn
i xn → 0 as n → ∞.

Since J−1 is also uniformly norm-to-norm continuous on any bounded sets of E∗, we
conclude that

lim
n→∞

∥∥xn − Tn
i xn

∥∥ = 0. (3.13)

Noting that xn → x as n → ∞, we have

Tn
i xn −→ x, (3.14)

as n → ∞. Observe that

∥∥∥Tn+1
i xn − x

∥∥∥ ≤
∥∥∥Tn+1

i xn − Tn
i xn

∥∥∥ +
∥∥Tn

i xn − x
∥∥. (3.15)
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By using (3.14), (3.15), and the asymptotic regularity of Ti, we have

Tn+1
i xn −→ x (3.16)

as n → ∞, that is, TiTn
i xn → x. Now the closedness property of Ti gives that x is a common

fixed point of the family {Ti}i∈I , thus x ∈ F.
Finally, since x = ΠCx0 ∈ F and F is a nonempty closed convex subset of C =

⋂∞
n=0 Cn,

we conclude that x = ΠFx0. This completes the proof.

Remark 3.2. The boundedness assumption on C in Theorem ZGT can be dropped.

Remark 3.3. The asymptotic regularity assumption on Ti in Theorem 3.1 can be weakened to
the assumption that Tn+1

i xn − Tn
i xn → 0 as n → ∞.

Recall that T : C → C is called uniformly Lipschitzian continuous if there exists some
L > 0 such that

∥∥Tnx − Tny
∥∥ ≤ L

∥∥x − y
∥∥, (3.17)

for all n ≥ 1 and x, y ∈ C.

Remark 3.4. The assumption that Tn+1
i xn−Tn

i xn → 0 as n → ∞ can be replaced by the uniform
Lipschitz continuity of Ti.

With above observations, we have the following convergence result.

Corollary 3.5. LetC be a nonempty closed convex subset of a uniformly convex and uniformly smooth
Banach space E, and let {Ti}i∈I : C → C be a family of uniformly Lipschitzian continuous and quasi-
φ-asymptotically nonexpansive mappings such that F =

⋂
i∈I F(Ti)/= ∅. Let {αn}, {βn}, {γn} be real

sequences in [0, 1] such that limn→∞ αn = 0, lim infn→∞ γn > 0. Define a sequence {xn} in C in the
following manner:

x0 ∈ C chosen arbitrarily,

yn,i = J−1
(
αnJx0 + βnJxn + γnJT

n
i xn

)
,

C0 = C,

Cn,i =
{
z ∈ Cn−1 : φ

(
z, yn,i

) ≤ αnφ(z, x0) +
(
βn + γnkn,i

)
φ(z, xn)

}
,

Cn =
⋂

i∈I
Cn,i,

xn+1 = ΠCn(x0).

(3.18)

Then {xn} converges strongly toΠFx0, where ΠF is the generalized projection from C onto F.

Proof. Following the proof lines of Theorem 3.1, we can prove that F is nonempty closed
convex, Cn is closed convex, F ⊂ Cn for all n ≥ 0 and limn→∞ xn = x. At this point, it
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is sufficient to show that Tn+1
i xn − Tn

i xn → 0 as n → ∞. Again, from the proof lines of
Theorem 3.1, we have the following conclusions:

lim
n→∞

∥
∥xn − Tn

i xn

∥
∥ = 0. (3.19)

Observe that

∥
∥
∥Tn+1

i xn − Tn
i xn

∥
∥
∥ ≤
∥
∥
∥Tn+1

i xn − Tn+1
i xn+1

∥
∥
∥ +
∥
∥
∥Tn+1

i xn+1 − xn+1

∥
∥
∥ + ‖xn+1 − xn‖ +

∥
∥xn − Tn

i xn

∥
∥

≤ (Li + 1)‖xn+1 − xn‖ +
∥
∥
∥Tn+1

i xn+1 − xn+1

∥
∥
∥ +
∥
∥xn − Tn

i xn

∥
∥,

(3.20)

so that Tn+1
i xn − Tn

i xn → 0 as n → ∞. By Theorem 3.1, we have the desired conclusion. This
completes the proof.

When αn ≡ 0 in Theorem 3.1, we obtain the following result.

Corollary 3.6. Let C be a nonempty closed convex subset of a uniformly convex and uniformly
smooth Banach space E, and let {Ti}i∈I : C → C be a family of closed and quasi-φ-asymptotically
nonexpansive mappings such that F =

⋂
i∈I F(Ti)/= ∅. Assume that every Ti, (i ∈ I) is asymptotically

regular on C. Let {αn} be a real sequence in [0, 1) such that lim supn→∞ αn < 1. Define a sequence
{xn} in C in the following manner:

x0 ∈ C chosen arbitrarily,

yn,i = J−1
(
αnJxn + (1 − αn)JTn

i xn

)
,

C0 = C,

Cn,i =
{
z ∈ Cn−1 : φ

(
z, yn,i

) ≤ [kn,i + (1 − kn,i)αn]φ(z, xn)
}
,

Cn =
⋂

i∈I
Cn,i,

xn+1 = ΠCn(x0).

(3.21)

Then {xn} converges strongly toΠFx0, where ΠF is the generalized projection from C onto F.

When βn ≡ 0 in Theorem 3.1, we obtain the following result.

Corollary 3.7. Let C be a nonempty closed convex subset of a uniformly convex and uniformly
smooth Banach space E, and let {Ti}i∈I : C → C be a family of closed and quasi-φ-asymptotically
nonexpansive mappings such that F =

⋂
i∈I F(Ti)/= ∅. Assume that every Ti, (i ∈ I) is asymptotically

regular on C. Let {αn} be a real sequence in [0, 1] such that limn→∞ αn = 0. Define a sequence {xn}
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in C in the following manner:

x0 ∈ C chosen arbitrarily,

yn,i = J−1
(
αnJx0 + (1 − αn)JTn

i xn

)
,

C0 = C,

Cn,i =
{
z ∈ Cn−1 : φ

(
z, yn,i

) ≤ αnφ(z, x0) + kn,i(1 − αn)φ(z, xn)
}
,

Cn =
⋂

i∈I
Cn,i,

xn+1 = ΠCn(x0).

(3.22)

Then {xn} converges strongly toΠFx0, where ΠF is the generalized projection from C onto F.

In the spirit of Theorem 3.1, we can prove the following strong convergence theorem.

Theorem 3.8. LetC be a nonempty closed convex subset of a uniformly convex and uniformly smooth
Banach space E, and let {Ti}i∈I : C → C be a family of closed and quasi-φ-nonexpansive mappings
such that F =

⋂
i∈I F(Ti)/= ∅. Let {αn}, {βn}, {γn} be real sequences in [0, 1] such that limn→∞αn = 0,

lim infn→∞γn > 0. Define a sequence {xn} in C in the following manner:

x0 ∈ C chosen arbitrarily,

yn,i = J−1
(
αnJx0 + βnJxn + γnJTixn

)
,

= C0C,

Cn,i =
{
z ∈ Cn−1 : φ

(
z, yn,i

) ≤ αnφ(z, x0) + (1 − αn)φ(z, xn)
}
,

Cn =
⋂

i∈I
Cn,i,

xn+1 = ΠCn(x0).

(3.23)

Then {xn} converges strongly toΠFx0, where ΠF is the generalized projection from C onto F.

Proof. Following the proof lines of Theorem 3.1, we have the following conclusions:
(1) F is a nonempty closed convex subset of C;
(2) Cn is closed covex for all n ≥ 0;
(3) F ⊂ Cn, for all n ≥ 0;
(4) limn→∞xn = x;
(5) limn→∞‖xn − Tixn‖ = 0, for all i ∈ I.
The closedness property of Ti together with (4) and (5) implies that {xn} converges

strongly to a common fixed point x of the family {Ti}i∈I . As shown in Theorem 3.1, x = ΠFx0.
This completes the proof.

When αn ≡ 0 in Theorem 3.8, we obtain the following result.
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Corollary 3.9. LetC be a nonempty closed convex subset of a uniformly convex and uniformly smooth
Banach space, and let {Ti}i∈I : C → C be a family of closed and quasi-φ-nonexpansive mappings such
that F =

⋂
i∈I F(Ti)/= ∅. Let {αn} be a real sequence in [0, 1) such that lim supn→∞αn < 1. Define a

sequence {xn} in C in the following manner:

x0 ∈ C chosen arbitrarily,

yn,i = J−1(αnJxn + (1 − αn)JTixn),

C0 = C,

Cn,i =
{
z ∈ Cn−1 : φ

(
z, yn,i

) ≤ φ(z, xn)
}
,

Cn =
⋂

i∈I
Cn,i,

xn+1 = ΠCn(x0).

(3.24)

Then {xn} converges strongly toΠFx0, where ΠF is the generalized projection from C onto F.

When βn ≡ 0 in Theorem 3.8, we obtain the following result.

Corollary 3.10. Let C be a nonempty closed convex subset of a uniformly convex and uniformly
smooth Banach space E, and let {Ti}i∈I : C → C be a family of closed and quasi-φ-nonexpansive
mappings such that F =

⋂
i∈I F(Ti)/= ∅. Let {αn} be a real sequence in [0, 1] such that limn→∞αn = 0.

Define a sequence {xn} in C in the following manner:

x0 ∈ C chosen arbitrarily,

yn,i = J−1(αnJx0 + (1 − αn)JTixn),

C0 = C,

Cn,i =
{
z ∈ Cn−1 : φ

(
z, yn,i

) ≤ αnφ(z, x0) + (1 − αn)φ(z, xn)
}
,

Cn =
⋂

i∈I
Cn,i,

xn+1 = ΠCn(x0).

(3.25)

Then {xn} converges strongly toΠFx0, where ΠF is the generalized projection from C onto F.
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