
Hindawi Publishing Corporation
International Journal of Differential Equations
Volume 2010, Article ID 868059, 19 pages
doi:10.1155/2010/868059

Research Article
Exact Solutions for Nonclassical Stefan Problems

Adriana C. Briozzo and Domingo A. Tarzia
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We consider one-phase nonclassical unidimensional Stefan problems for a source function F which
depends on the heat flux, or the temperature on the fixed face x = 0. In the first case, we assume a
temperature boundary condition, and in the second casewe assume a heat flux boundary condition
or a convective boundary condition at the fixed face. Exact solutions of a similarity type are
obtained in all cases.

1. Introduction

The one-phase Stefan problem for a semi-infinite material is a free boundary problem for
the classical heat equation which requires the determination of the temperature distribution
u of the liquid phase (melting problem) or the solid phase (solidification problem) and
the evolution of the free boundary x = s(t). Phase change problems appear frequently in
industrial processes and other problems of technological interest [1–4].

Nonclassical heat conduction problem for a semi-infinite material was studied in [5–
11]. A problem of this type is the following:

(i) ut − uxx = −F(W(t), t), x > 0, t > 0,

(ii) u(0, t) = f(t), t > 0,

(iii) u(x, 0) = h(x), x > 0,

(1.1)

where functions f = f(t) and h = h(x) are continuous real functions, and F is a given function
of two variables. A particular and interesting case is the following:

F(W(t), t) =
λ0√
t
W(t) (λ0 > 0), (1.2)
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where W = W(t) represents the heat flux on the boundary x = 0, that is W(t) =
ux(0, t). Problems of the types (1.1) and (1.2) can be thought of by modelling of a system of
temperature regulation in isotropic mediums [10, 11], with a nonuniform source term which
provides a cooling or heating effect depending upon the properties of F related to the course
of the heat flux (or the temperature in other cases) at the boundary x = 0 [10].

In the particular case of a bounded domain, a class of problems, when the heat source
is uniform and belongs to a given multivalued function from R into itself, was studied in
[8] regarding existence, uniqueness, and asymptotic behavior. Moreover, in [5] conditions
are given on the nonlinearity of the source term F so as to accelerate the convergence of the
solution to the steady-state solution. Other references on the subject are in [7, 12, 13].

Nonclassical free boundary problems of the Stefan type were recently studied in [14–
16] from a theoretical point of view by using an equivalent formulation through a system
of second kind Volterra integral equations [17–19]. A large bibliography on free boundary
problems for the heat equation was given in [20].

In this paper, firstly we consider a free boundary problem which consists in
determining the temperature u = u(x, t) and the free boundary x = s(t) such that the
following conditions are satisfied:

ρcut − kuxx = −γF(W(t), t), 0 < x < s(t), t > 0, (1.3)

u(0, t) = f > 0, t > 0, (1.4)

u(s(t), t) = 0, t > 0, (1.5)

kux(s(t), t) = −ρlṡ(t), t > 0, (1.6)

s(0) = 0, (1.7)

where the thermal coefficients k, ρ, c, l, γ > 0, the boundary temperature f > 0, and the control
function F depend on the evolution of the heat flux at the boundary x = 0 as follows:

W(t) = ux(0, t), F(W(t), t) = F(ux(0, t), t) =
λ0√
t
ux(0, t), (1.8)

where λ0 > 0 is a given constant. The existence and the uniqueness of the solution of a general
free boundary problem of the type (1.3)–(1.8) was given recently in [14, 15]. Moreover, we
consider other two free boundary problems which consist in determining the temperature
u = u(x, t) and the free boundary x = s(t) such that (1.3), (1.5), (1.6), and (1.7) are satisfied,
and in these cases the control function F depends on the evolution of the temperature at the
boundary x = 0 as follows:

W(t) = u(0, t), F(W(t), t) = F(u(0, t), t) =
λ0
t
u(0, t), λ0 > 0. (1.9)

In this case, a heat flux boundary condition

kux(0, t) =
−q0√
t
> 0, t > 0 (1.10)
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or a convective boundary condition

kux(0, t) =
q0√
t

(
u(0, t) − f

)
> 0, t > 0 (1.11)

can be considered at the fixed face x = 0 in order to obtain the corresponding explicit
solutions.

The plan of this paper is the following. In Section 2, we show an explicit solution of a
similarity type for the nonclassical one-phase Stefan problem (1.3)–(1.7) for a control function
F given by (1.8).

In Sections 3 and 4, we obtain sufficient conditions on data in order to have a similarity
type solution to the problems (1.3), (1.5), (1.6), and (1.7), where the control function F is
given by (1.9) (instead of (1.8)) and we take into account the heat flux condition (1.10) or the
convective condition (1.11) at the fixed face x = 0, respectively.

The restrictions on data we have obtained for these two free boundary problems with
a heat flux boundary condition (1.10) or a convective boundary condition (1.11) at the fixed
face x = 0 can be interpreted in the same way as we have obtained in the classical Stefan
problem with the same boundary conditions in [21, 22] in order to have an instantaneous
phase-change problem (see, e.g., sufficient condition λ0 < ρc/2γ in Theorems 3.2 and 4.1).

2. Explicit Solution to a One-Phase Stefan Problem for
a Nonclassical Heat Equation with Control Function of
the Type F(ux(0, t), t) = (λ0/

√
t)ux(0, t) and

a Temperature Condition at the Fixed Boundary

We consider the following free boundary problem for a semi-infinite material given by the
following conditions:

ρcut − kuxx = −γF(ux(0, t), t), 0 < x < s(t), t > 0,

u(0, t) = f > 0, t > 0,

u(s(t), t) = 0, t > 0,

kux(s(t), t) = −ρlṡ(t), t > 0,

s(0) = 0,

(2.1)

where the thermal coefficients k, ρ, c, l, γ are positive and the control function F, which
depends on the evolution of the heat flux at the extremum x = 0, is given by (1.8).

In order to obtain an explicit solution of a similarity type, we define

Φ
(
η
)
= u(x, t), η =

x

2a
√
t
, (2.2)
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where a2 = k/ρc is the diffusion coefficient of the phase change material. The problem (2.1)
and (1.8) become

Φ′′(η
)
+ 2ηΦ′(η

)
= 2λΦ′(0), 0 < η < η0, (2.3)

Φ(0) = f, (2.4)

Φ
(
η0
)
= 0, (2.5)

Φ′(η0
)
= −2l

c
η0, (2.6)

where the dimensionless parameter λ is defined by

λ =
γλ0
ρca

> 0, (2.7)

and the free boundary s(t) must be of the type

s(t) = 2aη0
√
t, (2.8)

where η0 is an unknown parameter to be determined later. The general solution of the
differential equation (2.3) is given by

Φ
(
η
)
= C2 + C1

[√
π

2
erf
(
η
)
+ 2λ

∫η

0
f1(z)dz

]
, (2.9)

where C1 and C2 are arbitrary constants, and

erf(x) =
2√
π

∫x

0
exp
(
−z2
)
dz, f1(x) = exp

(
−x2
)∫x

0
exp
(
r2
)
dr (2.10)

are the error function and the Dawson’s integral (see [23, page 298] and [24, page 43]),
respectively.

After some elementary computations, from (2.3), (2.4), and (2.5) we obtain

Φ
(
η
)
= f

[

1 − E
(
η, λ
)

E
(
η0, λ

)

]

, 0 < η < η0, (2.11)

where

E(x, λ) = erf(x) +
4λ√
π

∫x

0
f1(r)dr. (2.12)
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Taking into account condition (2.6), the unknown parameter η0 = η0(λ, Ste) must be
the solution of the following equation:

Ste√
π

[
exp
(
−x2
)
+ 2λf1(x)

]
= x

[
erf(x) +

4λ√
π

∫x

0
f1(z)dz

]
, x > 0, (2.13)

where Ste = fc/l > 0 is the Stefan’s number. Equation (2.13) is equivalent to the following
one:

W1(x) = 2λW2(x), x > 0, (2.14)

where the real functions W1 andW2 are defined by

W1(x) = Ste exp
(
−x2
)
− √

πx erf(x), (2.15)

W2(x) = 2x
∫x

0
f1(r)dr − Ste f1(x). (2.16)

Remark 2.1. If λ = 0 (i.e., λ0 = 0), then the problem (2.1) and (1.8) represented the classical
Lamé-Clapeyron problem [25]. In this case, there exists a unique solution η00 of (2.17)
(equivalent to (2.13)) given by

F0(x) =
Ste√
π
, x > 0, (2.17)

where

F0(x) = x erf(x) exp
(
x2
)
, (2.18)

and the explicit solution is given by [2, 23]:

u(x, t) = f

[

1 − erf
(
η
)

erf
(
η00
)

]

, 0 < η =
x

2a
√
t
< η00,

s(t) = 2aη00
√
t.

(2.19)

In order to solve (2.14), we will study firstly the behavior of function f1. We obtain
some preliminary properties.
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Lemma 2.2. The Dawson’s integral satisfies the following properties:

(i) f1(0) = 0,

(ii) f1(+∞) = 0,

(iii)

f ′
1(x) = 1 − 2xf1(x) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

> 0 if 0 < x < x1,

= 0 if x = x1,

< 0 if x > x1,

(2.20)

where x1 � 0.924, f1(x1) � 0.541,

(iv)

f ′′
1 (x) = −2

[
1 + f1(x)

(
1 − 2x2

)]
=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

< 0 if 0 < x < x2,

= 0 if x = x2,

> 0 if x > x2,

(2.21)

where x2 � 1.502, f1(x2) � 0.428,

(v) limx→+∞2xf1(x) = 1.

Proof. The properties (i)–(iv) have been proved in [23, page 298] (see also [24, pages 42–45])
(v) By the L’Hopital Theorem, we have

lim
x→+∞

2xf1(x) = lim
x→+∞

2x
∫x
0 exp

(
r2
)
dr

exp(x2)
= lim

x→+∞

∫x
0 exp

(
r2
)
dr + x exp

(
x2)

x exp(x2)

= lim
x→+∞

(

1 +

∫x
0 exp

(
r2
)
dr

x exp(x2)

)

= lim
x→+∞

(
1 +

f1(x)
x

)
= 1,

(2.22)

then (v) holds.

Next, we define the following auxiliary functions:

ϕ1(x) =
∫x

0
f1(r)dr, ϕ2(x) = xϕ1(x) = x

∫x

0
f1(r)dr,

ϕ3(x) = xf1(x), ϕ4(x) = x
(
2xf1(x) − 1

)
= −xf ′

1(x),

ϕ5(x) = f1(x) − xf ′
1(x), ϕ6(x) = Ste − 2(1 + Ste)xf1(x).

(2.23)

We have the following results.
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Lemma 2.3.

(a) Function ϕ1 satisfies the following properties:

(i) ϕ1(0) = 0,
(ii) ϕ′

1(x) = f1(x),
(iii) ϕ′

1(0
+) = 0,

(iv) ϕ1(+∞) = +∞,

(v)

ϕ′′
1(x) = f ′

1(x) = 1 − 2xf1(x) =

⎧
⎪⎪⎨

⎪⎪⎩

> 0 if 0 < x < x1,

= 0 if x = x1,

< 0 if x > x1,

(2.24)

(vi) limx→+∞(ϕ1(x)/ log(x)) = 1/2,
(vii) limx→+∞ϕ1(x)f ′

1(x) = 0.

(b) Function ϕ4 satisfies the following properties:

(i) ϕ4(0+) = 0−,
(ii) ϕ′

4(x) = −1 + 4xf1(x) − 2x2(2xf1(x) − 1),
(iii) ϕ4(+∞) = 0+,
(iv) ϕ′

4(0
+) = −1,

(v) ϕ′
4(+∞) = 0+,

(vi) ϕ4(x) = 0 ⇔ x = x1 (the maximum point of f1),
(vii) ϕ′

4(x1) = 1.

(c) Function ϕ3 satisfies the following properties:

(i) ϕ3(0+) = 0,
(ii) ϕ3(+∞) = 1/2,
(iii) ϕ′

3(x) = f1(x) + x(1 − 2xf1(x)),
(iv) ϕ′

3(0
+) = 0,

(v) ϕ′
3(+∞) = 0,

(vi) ϕ3(x1) = x1f1(x1) � 0.4999,
(vii) ϕ3(x2) = x2f1(x2) � 0.64.

(d) Function ϕ2 satisfies the following properties:

(i) ϕ2(0+) = 0,
(ii) ϕ2(+∞) = +∞,

(iii) ϕ′
2(x) = ϕ1(x) + xf1(x) > 0, for all x > 0,

(iv) ϕ′
2(0

+) = 0,
(v) ϕ′

2(+∞) = +∞,

(vi) ϕ′′
2(x) = 2f1(x) − x(2xf1(x) − 1),

(vii) ϕ′′
2(+∞) = 0,

(viii) ϕ′′
2(0

+) = 0.
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(e) Function ϕ5 satisfies the following properties:

(i) ϕ5(0+) = 0,
(ii) ϕ5(+∞) = 0+,
(iii)

ϕ′
5(x) = −xf ′′

1 (x) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

> 0 if 0 < x < x2,

= 0 if x = x2,

< 0 if x > x2,

(2.25)

(iv) ϕ5(x) > 0, for all x > 0.

(f) Function ϕ6 satisfies the following properties:

(i) ϕ6(0+) = Ste > 0,
(ii) ϕ6(+∞) = −1,
(iii) ϕ′

6(x) = −2(1 + Ste)ϕ′
3(x),

(iv) ϕ′
6(0

+) = 0,
(v) ϕ′

6(+∞) = 0,
(vi) ϕ6(x1) = x1f1(x1) � 0.4999,
(vii) ϕ6(x2) = x2f1(x2) � 0.64.

Proof. (a) Taking into account properties of f1, we have

ϕ′
1(x) = f1(x) > 0, ∀x > 0, ϕ′

1(0) = f1(0) = 0, (2.26)

and (v) holds. If we consider Lemma 2.2(v), we get ϕ1(+∞) = +∞ and we have

lim
x→+∞

ϕ1(x)
log(x)

= lim
x→+∞

xf1(x) =
1
2
, (2.27)

then (iv) and (vi) hold.
To prove (vii), we consider

ϕ1(x)f ′
1(x) =

(∫x

0
f1(r)dr

)
f ′
1(x) = f1(c)xf ′

1(x), (2.28)

where c = c(x) ∈ (0, x). Then limx→+∞ϕ1(x)f ′
1(x) = 0 because limx→+∞xf ′

1(x) = 0 and f1 is a
bounded function.

(b) From the definition of ϕ4,we obtain (i) and (ii). To prove (iii), we have

ϕ4(+∞) = lim
x→+∞

x
(
2xf1(x) − 1

)
= lim

x→+∞
2xf1(x) − 1

1/x

= lim
x→+∞

2

[
f1(x) + x

(
1 − 2xf1(x)

)]

1/x2
= 2 lim

x→+∞

[
x2f1(x) + x2x

(
1 − 2xf1(x)

)]
,

(2.29)
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then

lim
x→+∞

x
(
2xf1(x) − 1

)
= 2 lim

x→+∞

[
x2x
(
2xf1(x) − 1

) − x2f1(x)
]
. (2.30)

If we suppose that

lim
x→+∞

x
(
2xf1(x) − 1

)
= L > 0, (2.31)

we get

L = 2 lim
x→+∞

[
x2x
(
2xf1(x) − 1

) − x2f1(x)
]
= +∞, (2.32)

which is a contradiction. If we suppose that

lim
x→+∞

x
(
2xf1(x) − 1

)
= +∞, (2.33)

then

ϕ′
4(+∞) = lim

x→+∞
− 1 + 4xf1(x) − 2x2(2xf1(x) − 1

)
= −∞, (2.34)

which is also a contradiction. Therefore, limx→+∞x(2xf1(x) − 1) = 0 and (iii) hold.
Taking into account (ii), we have ϕ′

4(x) = −1+ 4xf1(x)− 2x2(2xf1(x)− 1), then ϕ′
4(0) =

−1 and if we consider (iii) we have ϕ′
4(+∞) = 0+. From properties of f1,we have

ϕ4(x) = 0 ⇐⇒ 2xf1(x) − 1 = 0 ⇐⇒ f ′
1(x) = 0 ⇐⇒ x = x1, (2.35)

and (vi) holds. Taking into account f ′
1(x) = 1 − 2xf1(x) = 0, we get ϕ′

4(x1) = 1.
(c) From Lemmas 2.2 and 2.3(b)we get (i)–(vii).
(d)We have ϕ2(x) = xϕ1(x) = x

∫x
0 f1(r)dr, then from (a) and (b)(iii) we get (i)–(vi).

(e) As we have ϕ5(x) = f1(x) − xf
′
1(x) = f1(x) + ϕ4(x), then by using the properties of

f1 and (b)we obtain the properties of ϕ5.
(f)Wehave ϕ6(x) = Ste−2(1+Ste)xf1(x) = Ste−2(1+Ste)ϕ3(x), and from the properties

of ϕ3,we obtain (i)–(v).

Corollary 2.4. One has

(i) limx→+∞x2[2xf1(x) − 1] = 1/2,

(ii) limx→+∞x[x2(2xf1(x) − 1) − xf1(x)] = 0.

Now, we are in conditions to enunciate properties of functions W1 and W2 in order to
study after (2.14).

Lemma 2.5. The functions W1(x) and W2(x), defined by (2.15) and (2.16), respectively, satisfy the
following properties.
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(a) Properties of functionW1:

(i) W1(0) = Ste,

(ii) W1(+∞) = −∞,

(iii) limx→+∞(W1(x)/x) = −√π,

(iv) limx→+∞(W1(x) +
√
πx) = 0,

(v) W ′
1(x) < 0, for all x > 0,

(vi) W1(η00) = 0, where η00 is the unique solution of (2.17),

(vii)

W ′′
1 (x) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

< 0 if 0 < x < x0,

= 0 if x = x0,

< 0 if x > x0,

(2.36)

where

x0 =

√
3 + 2 Ste
4(1 + Ste)

, (2.37)

(viii) W ′′
1 (0

+) = −2(3 + 2 Ste) < 0.

(b) Properties of functionW2 :

(i) W2(0) = 0,

(ii) W2(+∞) = +∞,

(iii) there exists a unique x4 > 0 such thatW2(x4) = 0,

(iv) W ′
2(x) = 2

∫x
0 f1(r)dr + 2xf1(x)(1 + Ste) − Ste,

(v) there exists a unique x3 > 0 such that W ′
2(x3) = 0 and W2(x3) < 0,

(vi) W ′
2(0

+) = − Ste < 0,

(vii) W ′
2(+∞) = +∞,

(viii) W ′′
2 (x) = 2(1 + Ste)x + 2f1(x)[2 + Ste−2(1 + Ste)x2],

(ix) W ′′
2 (0

+) = 0,

(x) W2(η00) < 0.

Proof. (a) Taking into account the definition of the function W1, we get (i) and (ii).
(iii)We have

lim
x→+∞

W1(x)
x

= lim
x→+∞

[

Ste
exp
(−x2)

x
− √

π erf(x)

]

= −√π. (2.38)
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(iv)We have

lim
x→+∞

(
W1(x) +

√
πx
)
= lim

x→+∞

(
Ste exp

(
−x2
)
− √

πx erf(x) +
√
πx
)

= lim
x→+∞

(
Ste exp

(
−x2
)
+
√
πx erf c(x)

)

= lim
x→+∞

(
Ste exp

(
−x2
)
+Q(x) exp

(
−x2
))

= lim
x→+∞

exp
(
−x2
)
(Ste +Q(x)) = 0,

(2.39)

where Q is the function defined by

Q(x) =
√
πx exp

(
x2
)
erf c(x), erf c(x) = 1 − erf(x), (2.40)

which satisfies the following properties:

Q(0) = 0, Q(+∞) = 1, Q′(x) > 0, ∀x > 0. (2.41)

(v) We have

W ′
1(x) = −√π erf(x) − 2x exp

(
−x2
)
[Ste + 1] < 0, ∀x > 0. (2.42)

(vi) Taking into account (i), (iii), and (v), we get that there exists a unique zero ofW1

which is given by η00,the unique solution of (2.17).
(vii) We have

W ′′
1 (x) = −2 exp

(
−x2
)[

3 + 2Ste − 4(1 + Ste)x2
]
, (2.43)

then

W ′′
1 (x) = 0 ⇐⇒ 4(1 + Ste)x2 = 3 + 2Ste ⇐⇒ x = x0 =

√
3 + 2Ste
4(1 + Ste)

. (2.44)

Since sign(W ′′
1 (x)) =sign(4(1 + Ste)x2 − 3 − 2Ste),then we obtain (vii).

(b) Taking into account Lemmas 2.2 and 2.3, we have (i) and (ii).
We can write

W ′
2(x) = 2

∫x

0
f1(r)dr + 2xf1(x)(1 + Ste) − Ste = 2ϕ1(x) − ϕ6(x), (2.45)

then W ′
2(0

+) = −Ste, W ′
2(+∞) = +∞ and W ′′

2 (x) = 2ϕ′
1(x) − ϕ′

6(x) satisfies W
′′
2 (0

+) = 0. Then
(iv), (vi), (vii), (viii), and (ix) hold.
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We have

W2(x) = 0 ⇐⇒ 2ϕ2(x) = Ste f1(x), (2.46)

then taking into account the properties of ϕ2 and f1, we get that there exists a unique x4 >
0 such that

W2(x) = 0, x > 0. (2.47)

Moreover, we have

W2(x) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

= 0 if x = 0,

< 0 if 0 < x < x4,

= 0 if x = x4,

> 0 if x > x4.

(2.48)

In the same way, we have

W ′
2(x) = 0 ⇐⇒ 2ϕ1(x) = ϕ6(x). (2.49)

Then, if we consider the properties of the functions ϕ1 and ϕ2, we have that there exists a
unique x3 such thatW ′

2(x3) = 0.Moreover,W2(x3) = −2x2
3f1(x3)−Ste ϕ5(x3) < 0 and then (v)

holds.
To prove (x),we take into account that

W2(x) = 2x
∫x

0
f1(r)dr − Stef1(x)

=
√
πx erf(x)F(x) − √

πx

∫x

0
erf(r) exp

(
r2
)
dr − Ste exp

(
−x2
)
F(x)

=
√
π exp

(
−x2
)[

F0(x) − Ste√
π

]
F(x) − √

πx

∫x

0
erf(r) exp

(
r2
)
dr,

(2.50)

where F(x) =
∫x
0 exp(r2)dr and F0 was defined in (2.18). Then by using (2.17), we have

W2
(
η00
)
= −√πη00

∫η00

0
erf(r) exp

(
r2
)
dr < 0. (2.51)
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Lemma 2.6. For each λ > 0, there exists a unique solution η0 of (2.14). This solution η0 = η0(λ)
satisfies the following properties:

(i) η0(0+) = η00,

(ii) η0(+∞) = x4,

(iii) η0 = η0(λ) is an increasing function on λ,

(2.52)

where η00 and x4 are the unique solution of (2.17) and (2.47), respectively.

Proof. Taking into account Lemma 2.5, we get that there exists a unique solution η0 of (2.14).
Let 0 < λ1 < λ2 be given, taking into account properties of function W2, we obtain that the
real functions Z1 and Z2 defined by

Z1(x) = 2λ1W2(x), Z2(x) = 2λ2W2(x) (2.53)

satisfy the following properties:

Z2(x) < Z1(x) if 0 < x < x4,

Z2(x) = Z1(x) if x = x4,

Z2(x) > Z1(x) if x > x4.

(2.54)

Then η0(λ1) < η0(λ2), where η0(λi) is the solution of equation Zi(x) = W1(x), i =
1, 2. Therefore, η0 = η0(λ) is an increasing function on λ. Moreover, we obtain η00 < η0(λ) <
x4 because W2(η00) < 0.

Then, we have proved the following result.

Theorem 2.7. For each λ > 0, the free boundary problem (2.1), where F is defined by (1.8), has a
unique similarity solution of the type

u(x, t, λ) = f

[

1 − E(n, λ)
E
(
η0(λ), λ

)

]

, 0 < η =
x

2a
√
t
< η0(λ),

s(t, λ) = 2aη0(λ)
√
t,

(2.55)

where

E
(
η, λ
)
= erf

(
η
)
+

4λ√
π

∫η

0
f1(r)dr (2.56)

and η0 = η0(λ) is the unique solution of (2.14) with η00 < η0(λ) < x4.



14 International Journal of Differential Equations

3. Explicit Solution to a One-Phase Stefan Problem for
a Nonclassical Heat Equation with Control Function of
the Type F(u(0, t), t) = (λ0/t)u(0, t) and
a Heat Flux Condition at the Fixed Face

In this section, the free boundary problem consists in determining the temperature u = u(x, t)
and the free boundary x = s(t) with a control function F which depends on the evolution of
the temperature at the extremum x = 0 given by the following conditions:

ρcut − kuxx = −γF(u(0, t), t), 0 < x < s(t), t > 0,

kux(0, t) =
−q0√
t
> 0, t > 0,

u(s(t), t) = 0, t > 0,

kux(s(t), t) = −ρlṡ(t), t > 0,

s(0) = 0,

(3.1)

where the coefficient q0 > 0 characterizes the heat flux on the x = 0 [21] and the control
function F is given by (1.9).

In order to obtain an explicit solution of a similarity type, we define the same
transformation given by (2.2). The problem (3.1) and (1.9) are equivalent to the following
one:

Φ′′(η
)
+ 2ηΦ′(η

)
= ΛΦ(0), 0 < η < μ0, (3.2)

Φ′(0) = −q∗0, (3.3)

Φ
(
μ0
)
= 0, (3.4)

Φ′(μ0
)
= −2l

c
μ0, (3.5)

where the dimensionless parameters Λ and q∗0 are defined by

Λ =
4γλ0
ρc

> 0, q∗0 =
2aq0
k

, (3.6)

s(t) = 2aμ0
√
t (3.7)

is the free boundary, where μ0 is an unknown parameter to be determined.
From (3.2), (3.3), and (3.4), we obtain the similarity solution

Φ
(
η
)
=

q∗0
√
π

2G
(
μ0,Λ

)
[
erf
(
μ0
)
G
(
η,Λ
) − erf

(
η
)
G
(
μ0,Λ

)]
, 0 < η < μ0, (3.8)



International Journal of Differential Equations 15

where

G(x,Λ) = 1 + Λ
∫x

0
f1(r)dr = 1 + Λϕ1(x), (3.9)

and f1 is the Dawson’s integral and ϕ1 is given by (2.23).
By condition (3.5), the unknown parameter μ0 = μ0(Λ, l, c, q∗0) must be solution of the

following equation:

Λ erf(x)f1(x) =
2√
π
G(x,Λ)

[

exp
(
−x2
)
− 2l
cq∗0

x

]

, x > 0, (3.10)

which is equivalent to the following one:

H2(x) = H3(x), x > 0, (3.11)

where the real functions H2 and H3 are defined by

H2(x) = Λ erf(x)f1(x), (3.12)

H3(x) =
2√
π
G(x,Λ)H1(x), (3.13)

H1(x) =

[

exp
(
−x2
)
− 2l
cq∗0

x

]

. (3.14)

Remark 3.1. If Λ = 0 (i.e., λ0 = 0), we have the solution

Φ
(
η
)
=

q∗0
√
π

2
[
erf
(
μ00
) − erf

(
η
)]
, 0 < η < μ00, (3.15)

where μ00 is the unique solution of the following equation:

exp
(
−x2
)
=

2l
cq∗0

x. (3.16)

In order to solve (3.11), we consider properties of Dawson’s integral, error function,
and some auxiliary functions, and then we obtain the following result.
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Theorem 3.2. For each λ0 < ρc/2γ , the free boundary problem (3.1), where F is defined by (1.9), has
a unique similarity solution of the type

u(x, t, λ0) =
q0a

√
π

kG
(
μ0(λ0), 4γλ0/ρc

)
[
erf
(

x

2a
√
t

)
G

(
μ0(λ0),

4γλ0
ρc

)

− erf
(
μ0(λ0)

)
G

(
x

2a
√
t
,
4γλ0
ρc

)]
,

0 <
x

2a
√
t
< μ0(λ0), t > 0,

s(t, λ0) = 2aμ0(λ0)
√
t, t > 0,

(3.17)

where μ0 = μ0(λ0) is the unique solution of (3.11), 0 < μ0(λ0) < μ00.

Proof. We follow a similar method developed in Theorem 2.7.

4. Explicit Solution to a One-Phase Stefan Problem for
a Nonclassical Heat Equation with Control Function of
the Type F(u(0, t), t) = (λ0/t)u(0, t) and
a Convective Condition at the Fixed Face

In this section, we consider a similar problem to the one given in Section 3 for a convective
boundary condition [22, 26] on the fixed face given by

ρcut − kuxx = −γF(u(0, t), t), 0 < x < s(t), t > 0,

kux(0, t) =
h0√
t

(
u(0, t) − f

)
> 0, t > 0,

u(s(t), t) = 0, t > 0,

kux(s(t), t) = −ρlṡ(t), t > 0,

s(0) = 0,

(4.1)

where F is defined by (1.9) and h0 characterizes the heat transfer coefficients [22, 26]. To solve
this problem, we consider again a similarity type solution given by (2.2). Then, the problem
(4.1) and (1.9) are equivalent to the following one:

Φ′′(η
)
+ 2ηΦ′(η

)
= ΛΦ(0), 0 < η < μ0, (4.2)

Φ′(0) = h∗
0
(
Φ(0) − f

)
, h∗

0 =
2ah0

k
, (4.3)

Φ
(
μ0
)
= 0, (4.4)

Φ′(μ0
)
= −2l

c
μ0, (4.5)
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where the dimensionless parameter Λ is defined by (3.6) and

s(t) = 2aμ0
√
t (4.6)

is the free boundary, where μ0 is an unknown parameter to be determined. We obtain the
solution

Φ
(
η
)
=

h∗
0f

√
π

2

[
erf
(
μ0
)
G
(
η,Λ
) − erf

(
η
)
G
(
μ0,Λ

)]

G
(
μ0,Λ

)
+
(
h∗
0
√
π/2

)
erf
(
μ0
) , 0 < η < μ0, (4.7)

where G(x,Λ) is given by (3.9). Taking into account the condition (4.5), the unknown
parameter μ0 = μ0(Λ, l, c, h∗

0) must be the solution of the following equation:

Λ erf(x)f1(x) +
2
Ste

erf(x)x =
2√
π
G(x,Λ)

[

exp
(
−x2
)
− 2
h∗
0Ste

x

]

, x > 0, (4.8)

which is equivalent to

H∗
2(x) = H∗

3(x), x > 0, (4.9)

where

H∗
2(x) = H2(x) +

2
Ste

erf(x)x, x > 0,

H∗
3(x) =

2√
π
G(x,Λ)

[

exp
(
−x2
)
− 2
h∗
0Ste

x

]

, x > 0,
(4.10)

and the function H2 is defined by (3.12).
Similarly to the previous cases, we can enunciate the following result.

Theorem 4.1. (a) For each Λ < 2 (λ0 < ρc/2γ), the free boundary problem (4.1), where F is defined
by (1.9), has a unique similarity solution given by

u(x, t, λ0) =
−h0af

√
π

k

⎡

⎢
⎣

erf
(
x/2a

√
t
)
G
(
μ0(λ0), 4γλ0/ρc

)

(
h0af

√
π/k

)
erf
(
μ0(λ0)

)
+G
(
μ0(λ0), 4γλ0/ρc

)

−
erf
(
μ0(λ0)

)
G
(
x/2a

√
t, 4γλ0/ρc

)

(
h0af

√
π/k

)
erf
(
μ0(λ0)

)
+G
(
μ0(λ0), 4γλ0/ρc

)

⎤

⎥
⎦,

0 <
x

2a
√
t
< μ0(λ0), t > 0,

s(t, λ0) = 2aμ0(λ0)
√
t, t > 0,

(4.11)

where μ0 = μ0(λ0) is the unique solution of (4.9).
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(b) Let M(x) = Λf1(x) and N(x) = 2xG(x,Λ) be, there exists a unique solution x∗ > 0 of
the equationM(x) = N(x).

For eachΛ > 2(λ0 > ρc/2γ) such thatM(α(Λ))−N(α(Λ)) < 2/h∗
0Ste, where 0 < α(Λ) < x∗

satisfies M′(α(Λ)) − N ′(α(Λ)) = 0,there exists a unique similarity solution to the free boundary
problem (3.1), where F is defined by (1.9). The solution is given by (4.11).
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