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1. Introduction

In this paper, we study the following reaction-diffusion system with nonlocal nonlinear
source:

ut =�u+ a(x)
∣
∣v(t)

∣
∣
p
r , x ∈Ω, t > 0,

vt =�v+ b(x)
∣
∣u(t)

∣
∣
q
r , x ∈Ω, t > 0,

u(x, t)= v(x, t)= 0, x ∈ ∂Ω, t > 0,

u(x,0)= u0(x), v(x,0)= v0(x), x ∈Ω,

(1.1)

where Ω is an open ball of RN centered at the origin of radius R, |u(t)|r = (
∫

Ω |u(x,
t)|rdx)1/r , 1 ≤ r <∞ and p,q ≥ r. A nonnegative solution of (1.1) is a pair of nonnega-
tive functions (u(x, t),v(x, t)) such that (u(x, t),v(x, t))∈ C(Ω× [0,T])∩C2,1(Ω× (0,T))
and satisfies (1.1). For a solution (u(x, t),v(x, t)) of (1.1), we define

T∗ = T∗(u,v)= sup
{

T > 0 : (u,v) are bounded and satisfy (1.1)
}

. (1.2)
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Note that if T∗ < +∞, then (u,v) blows up in L∞ norm, in the sense that limt→T∗ |u(t)|L∞
= +∞ or limt→T∗ |v(t)|L∞ = +∞; in this case, we say that the solution blows up in finite
time. If T∗ =∞, then (u,v) is a global solution of (1.1).

In the past several decades, many physical phenomena were formulated into nonlocal
mathematical models (see [1–6]). It has also been suggested that nonlocal growth terms
present a more realistic model of population dynamics (see [7]). System (1.1) is related
to some ignition models in physics for compressible reactive gases.

A lot of effort has been devoted in the past few years to the study of blow-up rates and
profiles for local semilinear parabolic equations of the type

ut −Δu= up; (1.3)

see [8–11] and the references therein. Several interesting blow-up results which concern
the blow-up condition, blow-up set, and blow-up rate are presented; see [12–16] and
references therein.

The blow-up property of the solution to a single equation of the form

ut =�u+ a(x)
∣
∣u(t)

∣
∣
p
r , x ∈Ω, t > 0,

u(x, t)= 0, x ∈ ∂Ω, t > 0,

u(x,0)= u0(x), x ∈Ω

(1.4)

has been discussed by many authors; see [1, 4] and the references therein. In [1], Souplet
introduced a new method for investigating the rate and profile of blow-up of solutions
to problem (1.4) with a(x) = constant = 1. He proved that if p > 1, then uniformly on
compact subsets of Ω holds

lim
t→T

(T − t)1/(p−1)u(x, t)= lim
t→T

(T − t)1/(p−1)
∣
∣u(t)

∣
∣∞ =

[

(p− 1)|Ω|p/r]−1/(p−1)
. (1.5)

Very recently, Liu et al. [4] proved the global blow-up and determined the blow-up rate
for problem (1.4) with a(x) 
= constant.

Our present work is inspired by [1, 4], mentioned before, and [3, 5, 6, 12–19]. In [17],
Escobedo and Herrero studied the system

ut =�u+ vp, vt =�v+uq (1.6)

with homogeneous Dirichlet boundary conditions. They showed that if pq ≤ 1, every
solution of (1.6) is global, while for pq > 1, there are solutions that blow-up and others
that are global according to the size of initial data. The blow-up rates of solutions to (1.6)
were considered in [3, 5, 6].

In [12], Wang discussed the finite time blow-up of the positive solution to the problem

ut =�u+umvn, x ∈Ω, t > 0,

vt =�v+upvq, x ∈Ω, t > 0,

u(x, t)= v(x, t)= 0, x ∈ ∂Ω, t > 0,

u(x,0)= u0(x)≥ 0, v(x,0)= v0(x)≥ 0, x ∈Ω.

(1.7)
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Let λ1 be the first eigenvalue of −Δ in Ω with null Dirichlet boundary condition. His
results are the following.

(i) Assume that

m> 1, n > 0, p = 0, q = 1, λ1 < 1, m≤ 1 +
n
(

1− λ1
)

λ1
, (1.8)

or

q > 1, p > 0, n= 0, m= 1, λ1 < 1, q ≤ 1 +
p
(

1− λ1
)

λ1
. (1.9)

Furthermore, if m = 1 + n(1− λ1)/λ1 in (1.8) or q = 1 + p(1− λ1)/λ1 in (1.9), it is as-
sumed that λ1 < 2/3. Then, for any nontrivial initial data, that is, u0(x) 
≡ 0, v0(x) 
≡ 0, the
solution of (1.7) blows up in finite time.

(ii) If (1.8), (1.9), and the conditions that m ≤ 1, q ≤ 1, and np ≤ (1−m)(1− q) do
not hold, then the solution of (1.7) blows up in finite time for large initial data.

In [13], Wang evaluated the blow-up rate of the solution to (1.7) with Ω = BR(0).
Under some suitable conditions, he obtained that

c(T − t)−θ ≤ max
0≤|x|≤R

u(·, t)= u(0, t)≤ C(T − t)−θ , t ∈ [0,T),

c(T − t)−σ ≤ max
0≤|x|≤R

v(·, t)= v(0, t)≤ C(T − t)−σ , t ∈ [0,T),
(1.10)

for some positive constants c and C, here θ = (1 + n− q)/(np− (1−m)(1− q)) and σ =
(1 + p−m)/(np− (1−m)(1− q)), and T is the blow-up time of (u,v).

In [14, 15], Galaktionov et al. considered the system

ut =�uγ+1 + vp, vt =�vμ+1 +uq for (x, t)∈Ω× (0,T) (1.11)

with homogeneous Dirichlet boundary conditions, where p > 1, q > 1, γ > 0, μ > 0. Sev-
eral interesting results are established. Their results show that Pc = pq− (1 + γ)(1 + μ) is
the critical exponent of (1.11), namely, if Pc < 0 solutions are global for all initial data,
and if Pc > 0 solutions blow-up in finite time for sufficiently large initial data.

In this paper, we will prove that Pc = pq− 1 is also the critical exponent of system
(1.1).

The purpose of this paper is to determine the critical exponents as well as the estimates
for blow-up rates and boundary layer profiles of the reaction-diffusion system (1.1). As
for the function a(x), b(x), u0(x), v0(x), we assume that

(A1) a(x),b(x)∈ C2(Ω), u0(x),v0(x)∈ C2+α(Ω), α∈ (0,1); a(x),b(x),u0(x),v0(x) > 0
in Ω, and a(x)= b(x)= u0(x)= v0(x)= 0 on ∂Ω.

(A2) a(x), b(x), u0(x), and v0(x) are radially symmetric, that is, a(x) = a(r), b(x) =
b(r), u0(x) = u0(r), and v0(x) = v0(r) with r = |x|. a(r), b(r), u0(r), and v0(r)
are nonincreasing for r ∈ [0,R].

This paper is organized as follows. In Section 2, we investigate the global existence and
finite time blow-up of system (1.1). Section 3 is devoted to the blow-up set and blow-up
rate of solutions to (1.1). In Section 4, we give the boundary layer estimates.
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2. Global existence and finite time blow-up

In this section, we start with the definition of super- and sub-solution of system (1.1).

Definition 2.1. A pair of nonnegative functions (u(x, t),v(x, t)) is called a supersolution
of (1.1) if (u(x, t),v(x, t))∈ C(Ω× [0,T])∩C2,1(Ω× (0,T)) and satisfy

ut ≥�u+ a(x)
∣
∣v(t)

∣
∣
p
r , (x, t)∈Ω× (0,T),

vt ≥�v+ b(x)
∣
∣u(t)

∣
∣
q
r , (x, t)∈Ω× (0,T),

u(x, t)≥ v(x, t)≥ 0, x ∈ ∂Ω, t > 0,

u(x,0)≥ u0(x), v(x,0)≥ v0(x), x ∈Ω.

(2.1)

A pair of nonnegative functions (u(x, t),v(x, t)) is called a subsolution of (1.1) if (u(x, t),
v(x, t))∈ C(Ω× [0,T])∩C2,1(Ω× (0,T)) and satisfy

ut ≤�u+ a(x)
∣
∣v(t)

∣
∣
p
r , (x, t)∈Ω× (0,T),

vt ≤�v+ b(x)
∣
∣u(t)

∣
∣
q
r , (x, t)∈Ω× (0,T),

u(x, t)= v(x, t)= 0, x ∈ ∂Ω, t > 0,

u(x,0)≤ u0(x), v(x,0)≤ v0(x), x ∈Ω,

(2.2)

where 1≤ r < +∞, p,q ≥ r.
We setQT =Ω× (0,T] and ST = ∂Ω× (0,T]. A weak solution of (1.1) is a vector func-

tion which is both a subsolution and a supersolution of (1.1). The following comparison
lemma plays a crucial role in our proof which can be obtained by similar arguments as in
[16].

Lemma 2.2. Assume (A1)-(A2) hold, w(x, t),z(x, t)∈ C(QT)∩C2,1(QT) and satisfy

wt −�w ≥ a(x)d1(t)
∫

Ω
c1(x, t)z(x, t)dx, (x, t)∈QT ,

zt −�z ≥ b(x)d2(t)
∫

Ω
c2(x, t)w(x, t)dx, (x, t)∈QT ,

w(x, t),z(x, t)≥ 0, (x, t)∈ ST ,

w(x,0),z(x,0)≥ 0, x ∈Ω,

(2.3)

where di(t),ci(x, t)≥ 0 (i= 1,2) inQT , and are bounded continuous functions. Thenw(x, t),
z(x, t)≥ 0 on QT .

Proof. Let K =max{K1,K2}+ 1, where

K1 = sup
t∈(0,T]

a(0)d1(t)
∫

Ω
c1(x, t)dx,

K2 = sup
t∈(0,T]

b(0)d2(t)
∫

Ω
c2(x, t)dx.

(2.4)
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Since ci(x, t), di(t) are bounded and continuous in QT , we know that K < +∞. Let w1 =
e−Ktw, z1 = e−Ktz, then we can deduce that w1(x, t),z1(x, t) ≥ 0 on QT . In fact, since
w1(x, t),z1(x, t) ≥ 0 for (x, t) ∈ ST or x ∈Ω, t = 0, if min{w1(x, t),z1(x, t)} < 0 for some
(x, t) ∈ QT , then (w1,z1) has a negative minimum in QT . Without loss of generality, we
can assume that min{w1(x, t),z1(x, t)} is taken at (x1, t1) ∈ QT and w1(x1, t1) ≤ w1(x, t),
w1(x1, t1)≤ z1(x, t) for all (x, t)∈QT . Using the first inequality in (2.3), we find that

w1t −�w1 ≥−Kw1(x, t) + a(x)d1(t)
∫

Ω
c1(x, t)z1(x, t)dx, (x, t)∈QT , (2.5)

and then it follows from c1(x, t)≥ 0 in QT and (A2) that

w1t
(

x1, t1
)−�w1

(

x1, t1
)≥

(

−K + a
(

x1
)

d1
(

t1
)
∫

Ω
c1
(

x, t1
)

dx
)

w1
(

x1, t1
)≥−w1

(

x1, t1
)

> 0.

(2.6)

On the contrary, if w1(x, t) attains negative minimum at (x1, t1), then,

w1(x, t)≤ 0, �w1
(

x1, t1
)≥ 0, w1t

(

x1, t1
)≤ 0, (2.7)

and hence

w1t
(

x1, t1
)−�w1

(

x1, t1
)≥ 0, (2.8)

which leads to a contradiction to inequality (2.6). Thus min{w1(x, t),z1(x, t)} ≥ 0 on QT ,
and therefore w(x, t),z(x, t)≥ 0 on QT . �

In order to get global existence and blow-up results, we need the following comparison
principle which is a direct consequence of Lemma 2.2.

Corollary 2.3. Let (u,v) be the unique nonnegative solution of (1.1). Assume that a pair
of nonnegative functions (w,z)∈ C(QT)∩C2,1(QT) and satisfy

ωt ≥ (≤)�ω+ a(x)
∣
∣z(t)

∣
∣
p
r , (x, t)∈Ω× (0,T),

zt ≥ (≤)�z+ b(x)
∣
∣ω(t)

∣
∣
q
r , (x, t)∈Ω× (0,T),

ω(x, t)≥ (=)z(x, t)≥ (=)0, x ∈ ∂Ω, t > 0,

ω(x,0)≥ (≤)u0(x), z(x,0)≥ (≤)v0(x), x ∈Ω.

(2.9)

Then (w(x, t),z(x, t))≥ (≤)(u(x, t),v(x, t)) on QT .

Proof. We only prove (w(x, t),z(x, t)) ≥ (u(x, t),v(x, t)) ≥ (0,0). A similar argument can
be proved in other case. Let ϕ1(x, t) = w(x, t)− u(x, t), ϕ2(x, t) = z(x, t)− v(x, t). By the
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mean value theorem,

∣
∣z(t)

∣
∣
p
r −

∣
∣v(t)

∣
∣
p
r =

(∫

Ω

∣
∣z(x, t)

∣
∣
r
dx
)p/r

−
(∫

Ω

∣
∣v(x, t)

∣
∣
r
dx
)p/r

= p

r

(

η1(t)
)(p−r)/r

[∫

Ω

(

zr(x, t)− vr(x, t)
)

dx
]

= p
(

η1(t)
)(p−r)/r

[∫

Ω

(

η2(x, t)
)r−1(

z(x, t)− v(x, t)
)

dx
]

= p
(

η1(t)
)(p−r)/r

[∫

Ω

(

η2(x, t)
)r−1

ϕ2(x, t)dx
]

,

∣
∣w(t)

∣
∣
q
r −
∣
∣u(t)

∣
∣
q
r =

q

r

(

η3(t)
)(q−r)/r

[∫

Ω

(

wr(x, t)−ur(x, t)
)

dx
]

= q(η3(t)
)(q−r)/r

[∫

Ω

(

η4(x, t)
)r−1(

w(x, t)−u(x, t)
)

dx
]

= q(η3(t)
)(q−r)/r

[∫

Ω

(

η4(x, t)
)r−1

ϕ1(x, t)dx
]

,

(2.10)

where η1,η3 ≥ 0 are some intermediate values between |z(t)|rr =
∫

Ω |z|rdx and |v(t)|rr =∫

Ω |v|rdx, |w(t)|rr =
∫

Ω |w|rdx, and |u(t)|rr =
∫

Ω |v|rdx, respectively, η2,η4 ≥ 0 are some
intermediate values between z(x, t) and v(x, t), w(x, t) and u(x, t), respectively. Then by
(2.9)-(2.10), the functions ϕ1, ϕ2 satisfies the relation

ϕ1t ≥�ϕ1 + a(x)p
(

η1(t)
)(p−r)/r

[∫

Ω

(

η2(x, t)
)r−1

ϕ2(x, t)dx
]

, (x, t)∈Ω× (0,T),

ϕ2t ≥�ϕ2 + b(x)q
(

η3(t)
)(q−r)/r

[∫

Ω

(

η4(x, t)
)r−1

ϕ1(x, t)dx
]

, (x, t)∈Ω× (0,T),

ϕ1(x, t),ϕ2(x, t)≥ 0, x ∈ ∂Ω, t > 0,

ϕ1(x,0),ϕ2(x,0)≥ 0, x ∈Ω.
(2.11)

Lemma 2.2 implies that ϕ1,ϕ2 ≥ 0, that is, (w(x, t),z(x, t))≥ (u(x, t),v(x, t)). �

From Corollary 2.3, we have the following lemma.

Lemma 2.4. Let (u,v) be the unique nonnegative solution of (1.1), and suppose that (u,v)
and (u,v) are supersolution and subsolution of problem (1.1), respectively, then (u,v) ≥
(u,v)≥ (u,v) on QT .

Theorem 2.5. Assume (A1)-(A2) hold, and pq < 1, then every nonnegative solution of sys-
tem (1.1) exists globally.

Proof. Let ϕ(x) be the unique positive solution of the linear elliptic problem

−Δϕ(x)= 1, x ∈Ω; ϕ(x)= 0, x ∈ ∂Ω. (2.12)
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Denote C =maxx∈Ωϕ(x). Then, 0≤ ϕ(x)≤ C. We define the functions u(x, t) and v(x, t)
as

u= (K(ϕ+ 1)
)l1 , v = (K(ϕ+ 1)

)l2 , (2.13)

where l1, l2 < 1 and K > 0 will be fixed later. Clearly, (u,v) is bounded for any T > 0 and
u≥ Kl1 , v ≥ Kl2 .

Then we have

ut −Δu=−Kl1
(

l1
(

l1− 1
)

(ϕ+ 1)l1−2|∇ϕ|2 + l1(ϕ+ 1)l1−1Δϕ
)≥ l1(C+ 1)l1−1Kl1 ,

a(x)|v|pr = a(x)Kpl2
∣
∣(ϕ+ 1)l2

∣
∣
p
r ≤ a(0)|Ω|p/r(C+ 1)pl2Kpl2 ,

vt −Δv ≥ l2(C+ 1)l2−1Kl2 , b(x)|u|qr ≤ b(0)|Ω|q/r(C+ 1)ql1Kql1 .

(2.14)

Denote

K1 =
(
a(0)|Ω|p/r

l1
(C+ 1)pl2−l1+1

)1/(l1−pl2)

, K2 =
(
b(0)|Ω|q/r

l2
(C+ 1)ql1−l2+1

)1/(l2−ql1)

.

(2.15)

Now, since pq < 1, we can choose two positive constants l1, l2 < 1 such that

p <
l1
l2
<

1
q

, (2.16)

hence pl2 < l1, ql1 < l2. We can choose K sufficiently large such that

K >max
{

K1,K2
}

, (2.17)
(

K(ϕ+ 1)
)l1 ≥ u0(x),

(

K(ϕ+ 1)
)l2 ≥ v0(x). (2.18)

Now, it follows from (2.14)–(2.18) that (u,v) is a positive supersolution of (1.1). Hence
by Lemma 2.4, (u,v)≤ (u,v), which implies that (u,v) exists globally. This completes the
proof. �

Theorem 2.6. Assume (A1)-(A2) hold, and pq > 1, then the nonnegative solution of system
(1.1) exists globally for “small” initial data.

Proof. Clearly, there exist positive constants l1, l2 < 1 such that

p >
l1
l2
>

1
q

, (2.19)

hence pl2 > l1, ql1 > l2. We can choose K sufficiently small such that

K <min
{

K1,K2
}

. (2.20)

Furthermore, assume that u0, v0 are small enough to satisfy (2.18). Then it follows from
(2.14), (2.18)–(2.20) that (u,v) is a positive supersolution of (1.1). We can also see that
the solution is bounded from below. This completes the proof. �
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Remark 2.7. Furthermore, denote by ψ(x) the unique positive solution of the linear el-
liptic problem

−Δψ(x)= 1, x ∈Ω1; ψ(x)= 0, x ∈ ∂Ω1, (2.21)

here Ω1 ⊂⊂Ω. It is obvious that ψ(x) depends on Ω1 continuously. By the comparison
principle for elliptic equation, we have ψ < ϕ on Ω1.

Theorem 2.8. Assume (A1)-(A2) hold, if pq = 1, then the nonnegative solution of (1.1) is
global if the domain (|Ω|) is sufficiently small.

Proof. If pq = 1, there exist positive constants l1, l2 < 1 such that

p = l1
l2
= 1
q

, (2.22)

hence pl2 = l1, ql1 = l2. Without loss of generality, we may assume that every domain
under consideration is in a sufficiently large ball B. Denote by ϕB(x) the unique positive
solution of the following linear elliptic problem:

−Δϕ(x)= 1, x ∈ B; ϕ(x)= 0, x ∈ ∂B. (2.23)

Let C0 =maxx∈B ϕB(x). From Remark 2.7, we have C ≤ C0. Then we may assume that |Ω|
is sufficiently small such that

|Ω| <min
{(

l1
a(0)

(

C0 + 1
)

)r/p

,
(

l2
b(0)

(

C0 + 1
)

)r/q}

. (2.24)

Furthermore, chooseK large enough to satisfy (2.18). Then, it follows from (2.14), (2.18),
and (2.24) that (u,v) is a positive supersolution of (1.1). By Lemma 2.4, we achieve the
desired result. �

Theorem 2.9. Assume (A1)-(A2) hold, and pq > 1, then the nonnegative solution of system
(1.1) blows up if initial data is sufficiently large.

Proof. Let ϕ(x) be the first eigenfunction of−Δ inH1
0 (Ω) and let λ1 be the corresponding

eigenvalue. We choose ϕ(x) such that ϕ(x) > 0 in Ω and maxx∈Ωϕ(x)= 1.
Since pq > 1, there exist two positive constantsm, n such that p > m/n, q > n/m. Set γ=

min{np−m+ 1,mq−n+ 1}, L=min{a(x)m−1(
∫

Ω |ϕ|nrdy)p/r ,b(x)n−1(
∫

Ω |ϕ|mrdy)q/r}. Let
s(t) be the solution of the Cauchy problem: s′ = −λ1s+Lsγ, s(0)= s0 > 0. Since γ > 1, then
s(t) blows up in finite time for sufficiently large datum s0.
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Set u(x, t)= sm(t)ϕm(x), v(x, t)= sn(t)ϕn(x). We can assert that (u,v) is a subsolution
of system (1.1). A direct computation yields

Δu+a(x)
(∫

Ω
|v|rdy

)p/r

=sm(mϕm−1Δϕ+m(m−1)ϕm−2|∇ϕ|2)+ a(x)snp
(∫

Ω
|ϕ|nrdy

)p/r

≥msmϕm
(

− λ1 + a(x)snp−mm−1
(∫

Ω
|ϕ|nrdy

)p/r)

≥msm−1ϕms′ = ut,

Δv+ b(x)
(∫

Ω
|u|rdy

)q/r

=sn(nϕn−1Δϕ+n(n−1)ϕn−2|∇ϕ|2)+ b(x)smq
(∫

Ω
|ϕ|mrdy

)q/r

≥ nsnϕn
(

− λ1 + b(x)smq−nn−1
(∫

Ω
|ϕ|mrdy

)q/r)

≥ nsn−1ϕns′ = vt.
(2.25)

Therefore, (u,v) is a subsolution of problem (1.1) provided that the initial data are
sufficiently large such that u0 ≥ u(x,0), v0 ≥ v(x,0). By Lemma 2.4, we get that (u,v) ≤
(u,v) and (u,v) blows up in finite time. �

From Theorems 2.5-2.6 and Theorems 2.8-2.9, we see that the critical exponent of the
system is pq = 1.

Remark 2.10. If a(x)= constant, b(x)= constant, then the conclusions of Theorems 2.5-
2.6 and Theorems 2.8-2.9 still hold for Ω ⊂ RN being a bounded domain with smooth
boundary.

3. Uniform blow-up profiles

In this section, we assume that the nonnegative solution (u,v) of (1.1) blows up in finite
time, we denote the blow-up time of the solution (u,v) by T∗. Throughout this section,
we investigate the blow-up profile of the system (1.1). At first, we cite an important result
which belongs to Liu et al. for uncouple diffusion equations with nonlocal nonlinear
source (see [4]) as the basic lemma of our discussion. In the proof, the authors make use
of the maximum principle (see [20, 21]) and sub-supersolution method (see [16]).

From [4, Theorem 3.1], we give the following lemma.

Lemma 3.1. Let u∈ C2,1(Ω× (0,T)) be the solution of the problem

ut =�u+ a(x)g(t), x ∈Ω, t > 0,

u(x, t)= 0, x ∈ ∂Ω, t > 0,

u(x,0)= u0(x), x ∈Ω,

(3.1)

where the function g(t) ≥ 0 will depend on the solution u, and G(t) = ∫ t0 g(s)ds. Assume
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that (A1), (A2) hold, and g(t) is nonnegative, continuous, and nondecreasing on (0,T∗),
limt→T∗G(t)= +∞, then

lim
t→T∗

u(x, t)
G(t)

= a(x), (3.2)

uniformly in all compact subsets of Ω.

In this section, we sometimes use the notation u∼ v for limt→T∗ u(t)/v(t)= 1. Denote

g1(t)= ∣∣v(t)
∣
∣
p
r , g2(t)= ∣∣u(t)

∣
∣
q
r ,

G1(t)=
∫ t

0
g1(s)ds, G2(t)=

∫ t

0
g2(s)ds,

t ∈ (0,T∗
)

, (3.3)

and set

U(t)=max
x∈Ω

u(x, t), V(t)=max
x∈Ω

v(x, t), t ∈ [0,T∗
)

,

a0 =max
x∈Ω

a(x), b0 =max
x∈Ω

b(x),
(3.4)

then we have the following lemma.

Lemma 3.2. Let (u,v) be a nonnegative solution of (1.1). Assume that the initial data u0

and v0 satisfy (A1)-(A2), and
(i) (u,v) has blow-up time T∗ <∞,

(ii) ut,vt ≥ 0 for (x, t)∈Ω× (0,T∗).

Then, we have

lim
t→T∗

G1(t)= lim
t→T∗

G2(t)= +∞, (3.5)

and there exist two positive constants C1 and C2 such that

u(x, t)≤ a0G1(t) +C1, v(x, t)≤ b0G2(t) +C2, (x, t)∈Ω× [0,T∗
)

. (3.6)

Proof. Rewrite system (1.1) as follows:

ut = Δu(x, t) + a(x)g1(t), (x, t)∈Ω× (0,T∗
)

,

vt = Δv(x, t) + b(x)g2(t), (x, t)∈Ω× (0,T∗
)

.
(3.7)

Using similar arguments as in [22], we give the proof of this lemma. Let

U(t)=max
x∈Ω

u(x, t)= u(x0, t
)

, V(t)=max
x∈Ω

v(x, t)= v(x1, t
)

. (3.8)

Then functions U(t), V(t) satisfy

U ′(t)= ut
(

x0, t
)=�u(x0, t

)

+ a
(

x0
)

g1(t), V ′(t)= vt
(

x1, t
)=�v(x1, t

)

+ b
(

x1
)

g2(t)
(3.9)
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since�u(x0, t)≤ 0,�v(x1, t)≤ 0, we get

0≤U ′(t)≤ a0g1(t), 0≤V ′(t)≤ b0g2(t), a.e.
(

0,T∗
)

. (3.10)

Integrating the above inequalities over (0, t) for t ∈ (0,T∗), we get

0≤U(t)≤U(0) + a0G1(t), 0≤V(t)≤V(0) + b0G2(t). (3.11)

Since the nonnegative solution (u,v) of (1.1) blows up in finite time T∗, we know that

lim
t→T∗

U(t)= lim
t→T∗

max
x∈Ω

u(x, t)= +∞, lim
t→T∗

V(t)= lim
t→T∗

max
x∈Ω

v(x, t)= +∞. (3.12)

Then (3.5) follows from (3.11), (3.12), and the facts that U(0) =maxx∈Ωu0 < +∞ and
V(0) = maxx∈Ω v0 < +∞. Moreover, inequality (3.6) follows from (3.11), (3.12), and
nonnegativity of U(t) and V(t), where C1 = U(0) = maxx∈Ωu0(x) and C2 = V(0)
=maxx∈Ω v0(x). �

Remark 3.3. Lemma 3.2 implies that if u and v have a finite blow-up time T∗, then G1(t)
and G2(t) blow-up in the same time T∗ also.

From Lemmas 3.1 and 3.2, we get the following theorem immediately.

Theorem 3.4. Let (u,v) be a classical solution of (1.1) with blow-up time T∗, then

lim
t→T∗

u(x, t)
G1(t)

= a(x), lim
t→T∗

v(x, t)
G2(t)

= b(x), (3.13)

uniformly in all compact subsets of Ω.

As a straightforward result of Theorem 3.4, we have the following theorem on the
blow-up set.

Theorem 3.5. Let (u,v) be blow-up solution of (1.1), then the blow-up set of (1.1) is the
whole domain Ω, that is to say, the blow-up solution (u,v) has a global blow-up.

Theorem 3.6. Assume pq > 1, let (u,v) be a solution of (1.1) with blow-up time T∗, then

lim
t→T∗

(

T∗ − t)αu(x, t)= a(x)C1

(∫

Ω
ar(x)dx

)pq/r(1−pq)(∫

Ω
br(x)dx

)p/r(1−pq)

, (3.14)

lim
t→T∗

(

T∗ − t)βv(x, t)= b(x)C2

(∫

Ω
ar(x)dx

)q/r(1−pq)(∫

Ω
br(x)dx

)pq/r(1−pq)

, (3.15)

in which α= (p+ 1)/(pq− 1), β = (q+ 1)/(pq− 1), C1 = ((p+ 1)/(pq− 1))α((q+ 1)/(p+
1))αp/(p+1), C2 = ((p+ 1)/(q+ 1))βq/(q+1)((q+ 1)/(pq− 1))β.

Proof. By (3.13) in Theorem 3.4, it follows that

∀x ∈Ω, lim
t→T∗

∣
∣u(x, t)r

∣
∣

Gr
1(t)

= ar(x), lim
t→T∗

∣
∣v(x, t)r

∣
∣

Gr
2(t)

= br(x). (3.16)
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Moreover, (3.6) in Lemma 3.2 implies that for all ε > 0, 0 ≤ |u(x, t)r|/Gr
1(t) ≤ ar(x) + ε,

0 ≤ |v(x, t)r|/Gr
2(t) ≤ br(x) + ε in Ω for t close enough to T∗. By the Lebesgue’s domi-

nated convergence theorem, we infer that
∫

Ω |u(y, t)|rdy∼

∫

Ω a
r(x)dxGr

1(t),
∫

Ω |v(y, t)|rdy
∼

∫

Ω b
r(x)dxGr

2(t) as t→ T∗, then we have

G′1(t)= g1(t)= ∣∣v(t)
∣
∣
p
r =

(∫

Ω

∣
∣v(y, t)

∣
∣
r
dy
)p/r

∼

(∫

Ω
br(x)dx

)p/r

G
p
2 (t),

G′2(t)= g2(t)= ∣∣u(t)
∣
∣
q
r =

(∫

Ω

∣
∣u(y, t)

∣
∣
r
dy
)q/r

∼

(∫

Ω
ar(x)dx

)q/r

G
q
1(t),

(3.17)

which implies that

(∫

Ω
ar(x)dx

)q/r

G
q
1G

′
1 ∼

(∫

Ω
br(x)dx

)p/r

G
p
2G

′
2 as t −→ T∗. (3.18)

Because G1(t),G2(t)→∞ as t→ T∗, it follows from (3.18) that

(∫

Ω
ar(x)dx

)q/r G
q+1
1 (t)
q+ 1

∼

(∫

Ω
br(x)dx

)p/r G
p+1
2 (t)
p+ 1

. (3.19)

From (3.17) and (3.19), we have

G′1(t) ∼

(∫

Ω
br(x)dx

)p/r

G
p
2 (t) ∼

(
p+ 1
q+ 1

)p/(p+1)(∫

Ω
ar(x)dx

)pq/r(p+1)

×
(∫

Ω
br(x)dx

)p/r(p+1)

G
p(q+1)/(p+1)
1 ,

(3.20)

it follows that

p+ 1
1− pq

(

G
(1−pq)/(p+1)
1

)′
∼

(
p+ 1
q+ 1

)p/(p+1)(∫

Ω
ar(x)dx

)pq/r(p+1)(∫

Ω
br(x)dx

)p/r(p+1)

,

(3.21)

that is,

p+ 1
1− pq

(

G
(1−pq)/(p+1)
1

)′ =
(
p+ 1
q+ 1

)p/(p+1)(∫

Ω
ar(x)dx

)pq/r(p+1)(∫

Ω
br(x)dx

)p/r(p+1)

+α(t),

(3.22)

where α(t)→ 0 as t→ T∗. Integrating over (t,T∗), we have

G1
(

T∗ − t)α ∼ C1

(∫

Ω
ar(x)dx

)pq/r(1−pq)(∫

Ω
br(x)dx

)p/r(1−pq)

. (3.23)

From (3.23) and Theorem 3.4, we have
(

T∗ − t)αu(x, t) ∼G1(t)a(x)
(

T∗ − t)α

∼ a(x)C1

(∫

Ω
ar(x)dx

)pq/r(1−pq)(∫

Ω
br(x)dx

)p/r(1−pq)

.
(3.24)
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Then we get (3.14). The second equality (3.15) can be proved analogously. This completes
the proof. �

Remark 3.7. From Theorem 3.6, we have

G1(t) ∼ C1

(∫

Ω
ar(x)dx

)pq/r(1−pq)(∫

Ω
br(x)dx

)p/r(1−pq)
(

T∗ − t)−α,

G2(t) ∼ C2

(∫

Ω
ar(x)dx

)q/r(1−pq)(∫

Ω
br(x)dx

)pq/r(1−pq)
(

T∗ − t)−β
(3.25)

as t→ T∗, C1, C2 defined as in Theorem 3.6.

Remark 3.8. If a(x) = constant, b(x) = constant, then the conclusions of Theorem 3.6
and Remark 3.7 still hold for Ω⊂RN being a bounded domain with smooth boundary.

4. Boundary layer estimates

Throughout this section, we deal with boundary layer estimate of (1.1) with a(x) = a,
b(x)= b in which a, b are constants. At first we cite some conclusions belonging to Sou-
plet (see [1]) for the uncoupled equation (3.1) with a(x)= 1.

Definition 4.1. Say that g is standard if it satisfies the following power-like conditions

k1(T − t)−1 ≤ g(t)
G(t)

≤ k2(T − t)−1 as t −→ T (4.1)

for some constant k2 ≥ k1 ≥ 0.

Remark 4.2. According to the note after [1, Definition 4.1], we note that if g is stan-
dard, then C1(T − t)−(k1+1) ≤ g(t) ≤ C2(T − t)−(k1+1) as t → T . Conversely, g is standard
whenever c1(T − t)−γ ≤ g(t) ≤ c2(T − t)−γ. Therefore, g(t) is standard, if and only if
c′1(T − t)−γ+1 ≤G(t)≤ c′2(T − t)−γ+1 as t→ T for some γ > 1 and c2 ≥ c1 > 0, c′2 ≥ c′1 > 0.

Lemma 4.3 [1, Theorem 4.5]. Let g(t) be standard and let ω(x, t) be a solution of (3.1)
in which a(x) = 1 with blow-up time T . Denote by d(x) = dist(x,∂Ω). Then for all K > 0,
there exist constants mk,m′

k > 0, and some t0 ∈ (0,T) such that

mk
d(x)√
T − t G(t)≤ ω(x, t)≤m′

k

d(x)√
T − tG(t) (4.2)

for (x, t)∈ {(x, t)∈Ω× [t0,T) : d(x)≤ K√T − t}.
Lemma 4.4 [1, Theorem 4.6]. Let g(t) and G(t) be standard, and let ω(x, t) be a solution
of (3.1) in which a(x) = 1 with blow-up time T . Then |ω(x, t)|∞(1−C(T − t)/d2(x)) ≤
ω(x, t) in Ω× [t0,T) for some C > 0 and some t0 ∈ (0,T).

The above lemmas will be used to determine the boundary layer estimates of solutions
to problem (1.1). By using the conclusions of blow-up rates for problem (1.1) in Section 3
together with Lemmas 4.3 and 4.4, we have the following results.
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Lemma 4.5. For system (1.1) with a(x)= a, b(x)= b, the same conclusions of Lemmas 4.3
and 4.4 still hold.

Theorem 4.6. Under the assumptions of Theorem 3.6, let (u,v) be a solution of (1.1) with
blow-up time T . Then for all K > 0, there exist some constants C2 ≥ C1 > 0, C4 ≥ C3 > 0 and
some t0 ∈ (0,T), such that (u,v) satisfies

C1
d(x)√
T − t

∣
∣u(t)

∣
∣∞ ≤ u(x, t)≤ C2

d(x)√
T − t

∣
∣u(t)

∣
∣∞,

C3
d(x)√
T − t

∣
∣v(t)

∣
∣∞ ≤ v(x, t)≤ C4

d(x)√
T − t

∣
∣v(t)

∣
∣∞

(4.3)

for (x, t)∈ {(x, t)∈Ω× [t0,T) : d(x)≤ K√T − t}.
Proof. From (3.25), we have G1(t) ∼ d1(T − t)−α, G2(t) ∼ d2(T − t)−β as t→ T , in which
d1,d2 > 0, α,β > 0. For some t0 ∈ [0,T), there exist four positive constants mi (1≤ i≤ 4)
such that

m1(T − t)−α ≤G1(t)≤m2(T − t)−α,

m3(T − t)−β ≤G2(t)≤m4(T − t)−β for t ∈ [t0,T
)

.
(4.4)

It follows that

m1(T − t)−δ1+1 ≤G1(t)≤m2(T − t)−δ1+1,

m3(T − t)−δ2+1 ≤G2(t)≤m4(T − t)−δ2+1 for t ∈ [t0,T
)

,
(4.5)

where δ1 = α+ 1 > 1, δ2 = β+ 1 > 1. Hence by Remark 4.2, it follows that g1(t), g2(t) are
standard. By using Lemma 4.3 and (3.13), we get the results immediately. �

Theorem 4.7. Under the assumptions of Theorem 3.6, let (u,v) be a solution of (1.1) with
blow-up time T . Then for all K > 0, there exist some constants C5,C6 > 0 and some t0 ∈
(0,T), such that (u,v)

∣
∣u(t)

∣
∣∞

(

1− C5(T − t)
d2(x)

)

≤ u(x, t),

∣
∣v(t)

∣
∣∞

(

1− C6(T − t)
d2(x)

)

≤ v(x, t)
(4.6)

for all (x, t)∈Ω× [t0,T).

Proof of this theorem is similar to the above theorem, so we omit it here.

Remark 4.8. Theorem 4.6 implies some boundary layer estimates that

lim
t→T

u(x, t)
∣
∣u(t)

∣
∣∞

= 0, lim
t→T

v(x, t)
∣
∣v(t)

∣
∣∞

= 0 (4.7)
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for x ∈ {x ∈Ω : d(x) ≤ K
√
T − t} satisfying d(x)/

√
T − t → 0 as t → T . Similarly, it fol-

lows from Theorem 4.7 that

lim
t→T

u(x, t)
∣
∣u(t)

∣
∣∞

= 1, lim
t→T

v(x, t)
∣
∣v(t)

∣
∣∞

= 1 (4.8)

for x ∈Ω satisfying d(x)/
√
T − t→∞ as t→ T .

Due to the above discussion, we know that the size of boundary layer of (1.1) decays
like

√
T − t.
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