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The theory of hypernumbers and extrafunctions is a novel approach in functional analysis aimed at
problems of mathematical and computational physics. The new technique allows operations with
divergent integrals and series and makes it possible to distinct different kinds of convergence and
divergence. Although, it resembles nonstandard analysis, there are several distinctions between these
theories. For example, while nonstandard analysis changes spaces of real and complex numbers by
injecting into them infinitely small numbers and other nonstandard entities, the theory of extrafunctions
does not change the inner structure of spaces of real and complex numbers, but adds to them infinitely
big and oscillating numbers as external objects. In this paper, we consider a simplified version of
hypernumbers, but a more general version of extrafunctions and their extraderivatives in comparison
with previous works.
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INTRODUCTION

The theory of hypernumbers and extrafunctions emanated
from physically directed thinking and was derived by a
natural extension of the classical approach to the real
number universe construction. Namely, an important class
of problems that appear in contemporary physics and
involve infinite values inspired this theory. As it is known,
many mathematical models, which are used in modern
theories of elementary particles (such as gauge theories)
and some other physical theories, imply divergence of
analytically calculated properties of physical systems. The
simplest example is the case of a free electron when its
interaction with photons changes the energy of the
electron so that the energy becomes infinite (in a model).
Mathematical investigation of many physical problems
gives rise to divergent integrals and series that are such
mathematical constructions that have, in some sense,
infinite values. However, physical measurements give, as
the result, only finite values. That is why, many methods
of divergence elimination (regularization), i.e. of elimin-
ation of infinity, have been elaborated (cf., for example,
Edzawa and Zuneto 1977 or Collins, 1984). Nevertheless,
the majority of them were not well grounded mathemat-
ically because they utilized operations with formal
expressions that had neither mathematical nor physical
meaning. Moreover, there are such models in physics that

contain infinities that cannot be eliminated by these
methods based on existing mathematical theories. Only in
the theory of hyperintegration (Burgin, 1990; 1995a),
based on the theory of hypernumbers, all divergent
integrals and series that appear in the calculations with
physical quantities become correctly grounded as strict
mathematical objects.

In addition to this, theory of hyperintegration suggests a
new approach to functional (path) integrals (Burgin,
2000b). An important peculiarity of this approach is that
functional integrals are treated as ordinary integrals in
which hypermeasures are used instead of ordinary
measures. Moreover, it is possible to apply this approach
to develop an integral calculus for arbitrary functional
spaces.
The new theory provides also new facilities for

mathematics and numerical computations. For example,
there was time when mathematicians (such as Leonard
Euler, who was the greatest mathematician of his time)
manipulated with divergent series (that have infinite
values) in the same way as they treated convergent series
(that have finite values). But it was demonstrated (in the
context of real and complex numbers) that such
manipulations were not mathematically correct and led
to contradictions. Utilization of asymptotic series, which
are divergent, for function approximation (cf., for
example, Collins, 1984) is another example of a similar
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situation. Transition to hypernumbers provides correct
mathematical means to deal with such constructions in a
proper way.

This approach correlates with problems of modern
physical theories in which physical systems are described
by chaotic processes. Taking into account the fact that
chaotic solutions are obtained by computations, physicists
ask (Cartwrite and Piro 1992; Gontar, 1997) whether
chaotic solutions of the differential equations that model
physical systems reflect the dynamic laws of nature
represented by these equations or whether they are solely
the result of an extreme sensitivity of these solutions to
numerical procedures and computational errors. Theory of
hypernumbers and extrafunctions provide a new math-
ematical technique for dealing with these and other
problems of the theory of chaos considered by Gontar and
Ilin (1991) and Gontar (1993; 1997). For example, the
definition of chaos, as Gontar emphasizes, makes it
problematic to use the apparatus of the conventional
differential calculus to describe chaotic motion math-
ematically. Calculus with extrafunctions offers much more
powerful and sophisticated means for treating such
problems.

In addition, the theory of hypernumbers bestow
possibilities for solution of another important scientific
problem. Mathematical modeling of many phenomena in
physics (as well as in chemistry and biology) often
requires a physicist to operate with such functions that are
not differentiable or even not continuous (or are
discontinuous) at any point. For example, it may be
important to find a derivative of such a function. This
causes certain difficulties because methods of the classical
mathematical analysis do not provide appropriate means
for dealing with such situations. Consequently, new
branches of mathematics appeared: the distribution theory
and nonstandard analysis. For example, to make possible
to utilize classical methods of analysis, in the distribution
theory there are means of applying the operation of
differentiation to arbitrary continuous functions. The
nonstandard analysis does not have similar means but can
deal with infinite numbers. In spite of all these new
abilities, these theories do not give complete solutions to
many problems that arise in physics. While in the
distribution theory any continuous function has the
derivative, this generalized derivative may be undefined
at many points. Moreover, the problems of the divergence
that appear in theoretical physics remain unsolved in the
distribution theory as well as in nonstandard analysis.

In recent years in the works by Fisher (1971; 1980),
Rosinger (1980), Colombeau (1984; 1986), Li Bang-He
and Li Ya-Qing (1985), Oberguggenberger (1986; 1987),
Burgin (1987), Egorov (1990), Delcroix and Scarpalezos
(1997) and others, a new theory of generalized functions
has been developed. However, this development of
distribution theory has been aimed at elaborating algebraic
structures on the sets of distributions. Consequently, the
possibilities of these theories are either included in theory
of extrafunctions or they involve such weak topology that

does not satisfy even the weakest separation axiom To. For
example, theory of generalized function, which is
developed by Egorov (1990) and is the most general in
comparison with other extensions of distribution theory,
allows getting solutions to a very vast class of differential
equations. Theory of extrafunctions makes possible to
obtain solutions to the same classes of equations but in a
Hausdorff space, which has a much better topology. At the
same time, in topology of the generalized functions from
Egorov (1990) a sequence may have several different
limits. This entails many problems for numerical solutions
of differential equations.

In the second section of this paper, going after
introduction, basic notions of the theory of hypernumbers
are introduced. In this theory, spaces of real and complex
numbers are extended to spaces of real and complex
hypernumbers. The latter include the space of real and
complex numbers, respectively, without any change. In
contrast to this, nonstandard analysis (Robinson 1974) or
theories of generalized functions from Egorov (1990) and
Li Bang-He and Li Ya-Qing (1985), where generalized
number domains are constructed, transfigure the initial
number domain because between any pair of conventional
numbers a universe of nonstandard, in particular, infinitely
small, numbers is injected. At the same time, the space of
hypernumbers does not contain infinitely small numbers,
but contains only infinitely big numbers. This correlates
with the opinion of physicists that there are no infinitely
small numbers in physics. In addition, spaces of real and
complex hypernumbers have a good (Hausdorff) topology,
which implies such important property as uniqueness of
the limit of a sequence. This provides a relevant base for
elaboration of a differential calculus in the hypernumber
universe.

In the third section of this paper, three classes of
extrafunctions are considered: pointwise, compactwise,
and measure-wise extrafunctions. All kinds of extrafunc-
tions are constructed basing on topological principles.
However, for each kind of extrafunctions a corresponding
topology is used: the topology of pointwise convergence
for pointwise extrafunctions, the topology of compact
convergence for compactwise extrafunctions, and the
topology of convergence with respect to some measure for
measure-wise extrafunctions. This is a further develop-
ment of the theory from Burgin (1990; 1995a; 2001a). For
simplicity, we work here only with one argument real
functions. However, it is possible to develop a similar
theory for multidimensional real and complex functions.
To be able to solve physical problems by means of

differential equations, the differential calculus for
extrafunctions is constructed in the fourth part of this
paper. It makes it possible to differentiate any function and
to determine values of the generalized derivatives (which
are called extraderivatives) at any point of its domain. If
we take an ordinary function f that has the classical
derivative f, then the, so-called, extraderivative also
coincides withf. In this partial case, it coincides with the
generalized derivative either in the sense of the



THEORY OF HYPERNUMBERS AND EXTRAFUNCTIONS 203

distribution theory (as a functional) or in the sense of the
non-smooth analysis (as a function). It demonstrates that
the calculus of extrafunctions is a natural extension of the
classical calculus (as well as the theory of distributions). If
the classical derivativef of an ordinary functionfat some
point x does not exist, then the complete generalized
derivative at the same point is not a single number, but
some set of such numbers. It means that a generalized
derivative is a relation on the set of real or complex
numbers (or, more generally, hypernumbers).

limit coincides with this hypernumber, which is, in this
case, a real number.

Relations on R induce corresponding relations on R %

DEFINITION 2.3 If a, b Ro,, then

(a) a <-- b :In Vi >-- n(ai <-- bi);

(b) a < b ::in Vi >-- n(ai < bi).

Denotations
LEMMA 2.2 Relations --< and < on R are a partial order
and a strict partial order, respectively.

These relations induce similar relations on Ro:
(1) N is the set of all natural numbers
(2) w is the sequence of all natural numbers
(3) is the empty set;
(4) R is the set of all real numbers
(5) R + is the set of all non-negative real numbers
(6) R ++ is the set of all positive real numbers
(7) R is the set of all sequences of real numbers
(8) If a is a real number, then lal or Ilall denotes its

absolute value or modulus
(9) If a (ai)io, is a sequence of real numbers, then

a Hn(ai)io, is the real hypernumber determined
by a

(10) R,o is the set of all real hypernumbers;
(11) R is an n-dimensional real space.

HYPERNUMBERS

Let Ro, {(ai)io,; ai R} be the set of all sequences of
real numbers.

DEFINITION 2.1 For arbitrary sequences a (ai)io,,
b (bi)io, Co,:

a b .limlai bil O.

LEMMA 2.1 The relation is an equivalence.

DEFINITION 2.2 Classes of the equivalence are called
real hypernumbers and their set is denoted by Ro,.
Any sequence a (ai)io, determines a hypernumber

oz Hn(ai)io,. Real hypernumbers are sets of equivalent
sequences of real numbers like rational numbers are sets
of equivalent fractions or real numbers are sets of
equivalent fundamental sequences of rational numbers.
Real numbers are identified with such hypernumbers that
are determined by sequences in which all elements are
equal.

Remark 2.1 In the universe Ro, of hypernumbers, the
necessity in limits for sequences of real numbers is
eliminated because any such sequence defines a
hypernumber and if the sequence has a limit, then this

DEFINITION 2.4 If a,/3 Co,, then

a --</3 ::la aBb /3(a --< b);

a < (=la a=ib (a < b))&a .
LEMMA 2.3 Relations --< and < on R,o are a partial order
and a strict partial order, respectively.

Proof We begin with the relation <. By the definition, a
strict partial order is a transitive antisymmetric relation.
Thus, we have to test these properties for < on Ro,. Before
doing this, it is useful to remark that the condition (=ta
(ai)io, a::tb (bi)io) /3(a < b)) from the definition
of <, is equivalent to the condition (=la (ai)io,
a:qb (bi)io, ::lnVi > n(ai < hi) because the equiv-
alence of the sequences defining one hypernumber does
not depend on any finite beginning of these sequences.

1. The relation < is transitive on R,o.
Let a </3 and/3 < y for some a,/3, y Ro,. Then by

the definition of <, there are such sequences a

(ai)io, a, b (bi)io,, l= (li)io, , and c

(ci)io, y, for which the following conditions are
valid: for some natural number n if > n, then ai < bi
and for some natural number m if j > m, then
Besides, a /3 and/3 3’. Then there are such positive
numbers k,h U_ R ++ that bi- ai > k for all > n and

cj lj > h for all j > m.
Let g min{ k, h }. Then there is such a natural number

p that [bj l)[ < g for all > p because the sequences
b--(bi)io, and 1--(li)io, define the same hypernumber
/3.

Let q max m, n,p }. Then assuming > q, we have:
Ci ai ci bi + bi ai ci li nt- li bi + bi-
ai (ci li) "if- (li bi) -}- (bi ai) > g g + g g
because bi ai > g, ci li > g and lj bj > -g. It
implies by the definition of the relation < that a < 3/. As
a,/3, 3’ are arbitrary elements from Ro,, the relation < is
transitive.

2. The relation < is antisymmetric on
Let us suppose that this is not true, in other words, that

for some a,/3 Ro,, we have a </3 and/3 < a. By the
definition of the relation <, a a/3 and there are such
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a (ai)io, d (di)io a and b (bi)ioo,
(li)iw fl, for which ai < bi and li < li for all i.
As ai < bi, we have bi ai > 0 for all i. Consequently,

limi-oo(bi ai) >-- O. At the same time,

.lim(bi ai) .lim(bi li + li ai)

for any sequence (ai)io such that a Hn(ai)ioo there
is a real number b such that Jail < b for almost all
ico;
for any sequence (ai)io such that ot Hn(ai)i there
is a real number b such that [ai[< b for all co.

.lim((bi li) -t- (li di) -}- (di ai))

lim(bi li) -k- im(li di) q- lim(di ai)

.lim(/i- di)

as limi-oo(bi- li)= 0 and limioo(di- ai)= O. How-
ever, limioo(li- di)<-0 because li < di for all i.
Consequently, limi.-,(bi ai) limi--,oo(li di) O. It
means, by the definition of a hypernumber, that ce =/3.
This contradicts our assumptions and proves that the
relation < is antisymmetric on Ro, by the principle of
excluded middle. V]

What concerns the relation --<, the above proof shows
that it is transitive. In addition to this, it is asymmetric
because by the definition of a hypernumber, we have that
ce -< a and a -</3 and/3 -< c imply c =/3. Thus, --< is a
partial order.
We can elaborate a classification of real hepernumbers.

There are hypernumbers of three types: stable; infinite
increasing and decreasing; and oscillating hypernumbers.

DEFINITION 2.6 A real hypernumber a Hn(ai)ioo is
called stable if there is a sequence (ai)ioo such that o--

Hn(ai)io and for some real number b, ai b for almost
all co.

For such a hypernumber, we will assume a--b (cf.
Lemma 2.6).

LEMMA 2.5
finite.

Any stable hypernumber a Hn(ai)io is

LEMMA 2.6 The following conditions are equivalent:

c is a stable real hypernumber;
there is a sequence (ai)io such that c Hn(ai)iw and
for some real number b, ai b for all co;
for any sequence (ai)io such that c Hn(ai)io, there
is a real number b such that ai b for almost all co;
for any sequence (ai)io such that ot Hn(ai)io, there
is a real number b such that ai b for all co.

Example 2.1 An infinite growing hypernumber: ce

Hn(ai)io, where ai i, i= 1,2,

Example 2.2 An infinite growing hypernumber: /3--
Hn(bi)io, where bi 2 1 2,

Example 2.3 A finite oscillating hypernumber: 3’--
Hn(ai)io, where ai (- 1)i, 1,2,

Example 2.4 An infinite oscillating hypernumber: 6--
Hn(ai)io, where ai (- 1)i. i, 1,2,

Example 2.5 An infinite decreasing hypernumber: ,-----
Hn(ai)io, where ai -5i, i-- 1,2,

Example 2.6 An infinite oscillating hypernumber: 0--
Hn(ai)ioo, where ai 2 -[- (-- 1)ii, 1,2,

Here we give exact definitions for classes of
hypernumbers.

As stable real hypernumbers that correspond to
different real numbers b cannot be equal, we have the
following result.

LEMMA 2.7 There is a one-to-one correspondence fR
between R and the subset StR,o of all stable hypernumbers
from Ro,, which is defined by the formula fR(a)
Hn(ai)io with all ai a.

In what follows, we will identify stable real
hypernumbers and corresponding real numbers. For
example, (8, 8, 8,..., 8,...) 8 in Ro.

DEFINITION 2.7 A real hypernumber a Hn(ai)ioo is
called oscillating if

:lk R ++li co ::]j co ::lm co ::in co( < j&j

< m&m < n&aj am > k&an am > k).

DEFINITION 2.5 A real hypernumber c is called finite or
bounded if there is a sequence (ai)io, such that a

Hn(ai)ioo and for some positive real number b, Ibil b
for almost all co.

LEMMA 2.4 The following conditions are equivalent:

DEFINITION 2.8 A real hypernumber a Hn(ai)i,o is
called strictly oscillating if

:qk R++li co(ai ai+l > ktai+2 ai+l > k)

ce is a finite real hypernumber;
there is a sequence (ai)io such that a Hn(ai)iw and
for some real number b, lail < b for all co;

Remark 2.2 Oscillating hypernumbers may be bounded
or finite (cf. Example 2.3) and unbounded or infinite (cf.
Example 2.4 and 2.6).
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DEFINITION 2.9 A real hypernumber c Hn(ai)io is
called infinite increasing if

::lj toVi > j(ai+l ai > 0))&(Cp R::li to(ai

> p)),

and infinite decreasing if

]j toVi > j(ai+l ai > 0))&(Cp R::li to(ai

> p)).

PROPOSITION 2.1 Any finite real hypernumber is either a
real number or an oscillating real hypernumber.

PROPOSITION 2.2 Any infinite real hypernumber is either
an infinite increasing number or an infinite decreasing
number or an oscillating real hypernumber.

Remark 2.3 For complex hypernumbers, Propositions
2.1 and 2.2 are not true in general.

Remark 2.4 For an arbitrary partially ordered set H and
H-real hypernumbers, Propositions 2.1 and 2.2 are not true
in general.

PROPOSITION 2.3 If cz Hn(ai)io is a real number (an
infinite increasing or infinite decreasing hypernumber),

Hn(bi)io, and for almost all w, bi is between

ai+l and ai, then/3 is a real number (an infinite increasing
or infinite decreasing hypernumber).

Remark 2.5 For oscillating hypernumbers, this is not
always true as it is demonstrated in the following example.

Example 2.7 The condition of the Proposition 2.3 is
satisfied for the pair that consists of the finite oscillating
hypernumber c Hn(ai)ioo, ai (-1)i, 1,2,... and
for the real number /3 Hn(bi)io, bi--O, i= 1,2,...
However,/3 is not an oscillating hypernumber.

PROPOSITION 2.4 If ce--Hn(ai)io) is an oscillating
hypernumber,/3 Hn(bi)io), and the following condition
is satisfied

Vi,j to:qm, n to(aj < ai bm< aj < ai < bn)

then/3 is an oscillating hypernumber.
The set of all rational numbers is dense in the space of

all real numbers. This property gives us the following
result.

LEMMA 2.8 Any class of equivalent H-sequences
contains a sequence, all members of which are rational
numbers.

In a similar way to spaces R and R,,, it is possible to
define spaces Q and Q,, for the space Q of all rational
numbers. Then Lemma 2.8 implies the following result.

THEOREM 2.1
have Q/-/= RH.

For an arbitrary partially ordered set H, we

Theorem 2.1 means that if we take the set Q and
construct the set Q,o of all rational hypernumbers, then we
get the same set R,, as when we construct H-real
hypernumbers with the set of all real numbers R. In
particular, when we consider ordinary sequences, we build
by this process rational hypernumbers. The set Q,, of all
rational hypernumbers contains R. Thus, generating
rational hypernumbers, we automatically obtain real
numbers.

Nevertheless, we construct real hypernumbers from real
numbers because it makes the construction more
transparent and helps to understand properties and
behavior of hypernumbers.

DEFINITION 2.10 The spectrum Spec a of a sequence
a (ai)io is the set {r R; r limcai and C is an
infinite subset of to}.

Example 2.8 If a (ai)ioo, where ai--i, 1,2,...,
then Spec a .
(12) If a (ai)io), where ai (--1)i, 1,2,..., then

Speca-- {1,-1}.
(13) If a (ai)ioo, where ai (--1)i, 1,2,..., then

Spec a .
(14) If a--(ai)iw, where ai--I/i, i= 1,2,..., then

Speca- {0}.
(15) If a (ai)io), where ai sin (i/2)-rr, 1,2,...,

then Spec a 1, O, 1 }.

LEMMA 2.9 The set Spec a does not depend on the choice
of an H-sequence (ai)iH from or.

DEFINITION 2.11 The spectrum Speca of a real
hypernumber a Hn(ai)io is equal to the set {r R;
r limcai and C is an infinite subset of to}.

Remark 2.6 By definitions, if a (ai)iw and a--

Hn(ai)ioo, then Spec a Spec

LEMMA 2.10 The set Spec does not depend on the
choice of the H-sequence (ai)iH from o.
The spectrum of a hypernumber is a characteristic

property, which allows one to discern different types of
hypernumbers.

PROPOSITION 2.5 cz--Hn(ai)io) is a bounded oscillat-
ing real hypernumber if and only if Spec is bounded and
contains more than one element.

COROLLARY 2.7 a--Hn(ai)io is a stable real hyper-
number if and only if Spec a contains one element.

PROPOSITION 2.6 Two stable real hypernumbers
are equal if and only if Spec Spec ft.
Remark 2.7 For other kinds of real hypernumbers, this is
not true. For example, the real hypernumbers c

Hn(ai)io with ai--(--1)i --1, 2, and /3=
Hn(bi)ioo with bi (-1)i+1, 1,2,..., have the same
spectrum Spec a Spec 1, 1 }.
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EXTRAFUNCTIONS

Here we give an advanced construction of real extrafunc-
tions, which are built from the sequences of ordinary
functions. In a more general case, extrafunctions or, more
exactly, H-real extrafunctions are built from H-sequences
where H is some partially ordered set of finite
extrafunctions, which are mappings from sets of real
hypernumbers into real numbers (Burgin, 2001a).

Let us assume that we have a collection E {X C_ R}
of subsets of R and a system Q Qx; X E} of linear
functionals Qx, in which the functional Qx is defined for
some functions on the set X from E. A model example for
a linear functional is an integral, e.g. E consists of all
compact subsets of R and Qx)= fxf dtzx where/Zx is
the restriction on X of the Lebesque measure/z on R. Other
examples of linear funcfionals are such operations as sup
and inf. For continuous functions and compact spaces, we
can take operations max and min.
To define real extrafuncfions, we consider the space

FR of all infinite sequences of real functions on R.

DEFINITION 3.1 Two sequences {fn(X);n w} and
{gn(x); n co} of real functions are equivalent if for any
set X E, we have limn-ooQx(lfn gn[) 0.

Remark 3.1 Actually, we need such functionals Qx that
are defined only on positive functions on the set X from E.

LEMMA 3.1 Two sequences {fn(x);n w} and
{g(x);n w} of real functions are equivalent if and
only if the hypernumber a Hn(Qx([fi- gi[))i is
equal to zero.

DEFINITION 3.2 An E, Q-extrafunction f on R is a class
of equivalent sequences of real functions on R.

ExE,o (R) denotes the set of all E, Q-extrafunctions on
R. If {f(x);n w} is a sequence of real functions, then

f EQ{f(x); n oo} is an E, Q-extrafunction generated
by this sequence, and the sequence {f(x);n o} is
called an approximation of f. ExE,o(R) is a topological
space, but its topology is considered elsewhere (for
particular cases cf., Burgin, 2001b).

There is a natural mapping m:F(R,R) EXE,Q(R) of
the set F(R,R) of all real functions on R into the set

EXe,Q(R). Namely, if f is a real function, then m(f)--
EQ{fn(x); n oo} with. f(x) f(x) for all n o). We
denote the set of all approximations of a real functionfby
Apprf The sequence AU {f f; n o} is called the
standard approximation off.
Remark 3.2 It is possible to consider functionals Qx that
are defined for some class F of functions on the set X from
E (cf. Example 3.3). It gives us relative extrafunctions or
E,F,Q-extrafunctions.

Let us consider some examples of extrafunctions.

Example 3.1 Restricted (or pointwise, Burgin, 2001a)
extrafunctions, which were introduced by Burgin (1995a)
are considered below.

DEFINITION 3.3 A partial mappingf R R,o is called a
real pointwise extrafunction.
We denote by REPF the set of all real pointwise

extrafunctions.

PROPOSITION 3.1 If E consists of all points from R and
Qx(f) f(x) for any point x from R, then EX,Q(R is the
set REPF of all restricted pointwise extrafunctions on R.

Example 3.2 Compactwise extrafunctions, which were
introduced by Burgin (2001b) are considered below.

For any compact subset K from R" and any two
bounded on compact subsets functions f and g, we can
define the distance betweenf and g on K:

dist/(f, g)= sup{lbffx) g(x)ll;x K}.

Here ]lull denotes the conventional norm of an element
u, which the absolute value in the space R.

DEFINITION 3.4 Two sequences {f(x);n w} and
{g(x);n oo} are called compactwise equivalent if
limi__.oodistc(f, gn) 0 for any compact subset K from R.

DEFINITION 3.5 The classes of compactwise equivalent
sequences are called compactwise extrafunctions.
We denote by REKF the set of all real compactwise

extrafunctions.

PROPOSITION 3.2 If E consists of all compact subsets of
R and QB) sup{llf(x)ll;x B} for any compact
subset B from R, then EX,Q(R is the set REKF of all real
compactwise extrafunctions on R.

Example 3.3 Measure dependable extrafunctions, which
were introduced by Burgin (200 lb), contain an important
suclass of measure-wise extrafunctions. It is considered
below.

Let us assume that we have a collection B of all
compact subsets of R and a system M {/Ix; X B of
measures/Ix is defined on each set B from B. For example,
/Ix is the restriction on X of the Lebesque measure/x on R.

DEFINITION 3.6 Two sequences {f,(x);n w} and
{g(x);n w} of real functions that are integrable on
each compact subset B from R, are called measure
equivalent if for any compact subset B from R, we have
limi_-.oo fB If,(x) gn(x)[dtzx O.

DEFINITION 3.7 A measure-wise extrafunctionfon R is a
class of measure equivalent sequences of elements from R.

In this case, we consider only sequences of functions
that are integrable on each compact subset B from R
because our functional QB is defined only for such
functions.
We denote by REMF the set of all real measure-wise

extrafunctions on R.

PROPOSITION 3.3 If E consists of all compact subsets of
R and QB)--B If(x)- g(x)[dtzx for any compact
subset B from R, then EX,Q(R is the set REMF of all real
measure-wise extrafunctions on R.
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Remark 3.3 Measure-wise extrafunctions are closely
related to distributions as the following statement
demonstrates.

Let D be an open subset of R and D be the linear space
of all distributions on R (Schwartz, 1950).

PROPOSITION 3.4 There is the linear subspace REMD of
the space REMF of all real measure-wise extrafunctions
on D, which is isomorphic to the space D.

Operations in the set FR of all real functions induce
corresponding operations in the space FR of all infinite
sequences of real functions on R.

Let f={fn(x);nco} and g={gn(x);nco} be
elements from FR

DEFINITION 3.8

DEFINITION 3.9 A sequence {f(x); n co} from FR is
called bounded if for any X G E, there is a positive real
number q such that If(x)l < q for all n co and all x
X.

Bounded sequences from FR define bounded extra-
functions from EXe,Q(R). Let us consider the set BoFR
of all bounded sequences from FR and the set

BoEXe,Q(R) of the real E,Q-extrafunctions that are
defined by sequences from BoFR o.

LEMMA 3.2 BoFR and BOEXE,Q(R are linear spaces.
In what follows, all Qx are positive functionals, i.e. if

f(x) > 0 for all x X, then Qx(f) > O.

LEMMA 3.3
Q) > Q(g).

Iff > g and Q is a positive functional, then

Operation of addition in FR

f + g hn(x); n co}

where hn(x) f,(x) + g,(x) for all n co;

Operation of subtraction in FR

f- g- {h,,(x);n co}

where h,(x) f,,(x) g,(x) for all n co;

Operation of multiplication in FR o:

f"g hn(x); n co}

where h,(x) f,(x).g,(x) for all n co.

PROPOSITION 3.5 Operations of addition and subtraction
in FR induce similar operations in EXe.Q(R ).

Proof Let take some E,Q-extrafunctions f=
EQ{fn(x); n co} and g EQ{gn(x); n co}. We define

f + g h from EXe,Q(R), where h EQ{hn(x);n co}
and hn(x) f,(x) + g(x) for all n co. To show that this
is an operation in EXE,Q(R ), it is necessary to prove that h
does not depend on the choice of sequences {f,(x); n
co} and {g(x);n co}. To do this, let us take another
sequence {l(x);n ’co} in f and show that if the E,Q-
extrafunctions p is equal to EQ{l(x) + g,(x); n co},
then f p.
By Definitions 3.1 and 3.2, limnooQx(If,- gl)--0

for all X E. Consequently, lim-+ooQx(Ifn + gn) (ln +
g,)l) lim,-.ooQx(If -/1) 0 for all X E. Then by
Definition 3.1, f p.

If we take another sequence that represents the E,Q-
extrafunction g, a similar proof shows that the result of
additionf + g will be the same.
The proof for a difference of two E,Q-extrafunctions is

similar to the proof for a sum of two E,Q-extrafunctions.
Proposition 3.5 is proved. U]

PROPOSITION 3.6 The operation of multiplication by
elements from BoEXe,Q(R is defined in EXe,Q(R ).

Proof Let us take an arbitrary E,Q-extrafunction f
EQ(x); n co} Exe,o(R) and an arbitrary bounded
E,Q-extrafunction g EQ{g,(x); n co} Exe,o(R).
Then f.g EQ{hn(x); n co} where h(x) f(x)’gn(X)
for all n co. To show that this is an operation in
EXE,Q(R), it is necessary to prove that f.g--h does not
depend on the choice of the sequences {f(x); n co} and
{g,(x); n co}. To do this, let us take another sequence
{1,,(x);n co} infand show that ifk EQ{k,,(x);n co}
where k,,(x) 1,,(x).g,,(x) for all n co, then h k.
By Definition 3.1, for any set X E, we have

lim,,-Qx(If,,-/hi) 0. Besides, there is a positive
real number q such that [g,,(x)[ < q for all n co and all
xX.

Consequently, limooQx(lfg lng])
limn--.oQx(Ifq- lql) as Qx is a positive functional.
The number q is positive. Consequently, ]f,q- l,q]
q’lf,- ll. As Qx is a linear functional, we have
limn-.ooQx(lfq lnq]) q.lim-.ooQx(lf 11) 0.
Consequently, lim-.ooQx(Ifg-/gl)=0. Then by
Definition 3.1, f.g EQ{ l(x).g(x); n co}. It means
that the definition of the product f.g does not depend on
the choice of a sequence from f. In a similar way, we can
also prove that the product f.g does not depend on the
choice of a sequence from g. Consequently, multiplication
by elements from the set BoEx,o(R) is defined in
EXu,Q(R ).

Proposition 3.6. is proved.

Remark 3.4 By the definition of addition and multipli-
cation in the set EXE,Q(R ), all laws of operations with real
functions (commutativity of addition, associativity of
addition, commutativity of multiplication, associativity of
multiplication, and distributivity) are valid for corre-
sponding operations with real extrafunctions.

COROLLARY 3.1 The operation of multiplication by
elements of R in FR induces operation of multiplication
by elements of R in Exe,o(R ).
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COROLLARY 3.2 The set BoExE,o(R) of all bounded
E,Q-extrafunctions is a linear algebra over the field R of
real numbers.

Propositions 3.5 and 3.6 imply the following result.

THEOREM 3.1 The set ExE,Q(R) of all real E,Q-
extrafunctions is a module over the algebra BOEXE,Q(R ).

COROLLARY 3.3 The set EXe,Q(R) of all real E,Q-
extrafunctions is a linear infinite dimensional space over
the field R of real numbers.

PROPOSITION 3.7 The natural mapping m:F(R,R)---,
EXE,Q(R) is a monomorphism of the algebra F(R,R) into
the linear space EXe,Q(R).
As the equivalence relation defining compactwise

extrafunctions identifies less function than both or the
equivalence relation defining pointwise and measure-wise
extrafunctions, we have the following result.

THEOREM 3.2

There is a homomorphic projection Pcp:RECF---,
REPF of the linear space of all real compactwise
extrafunctions RECF on the linear space REPF of all
real pointwise extrafunctions.
There is a homomorphic projection Pcp:RECF--*
REMF of the linear space of all real compactwise
extrafunctions RECF on the linear space REMF of all
real measure-wise extrafunctions.

In what follows, we also need extrafunctions with to
2 as

the set of indices.
As above, E {X C_ R is a collection E {X C_ R of

subsets of R, Q Qx; x E} is a system of linear
functionals Qx, in which the functional Qx is defined for
all functions on the set X from E and FR ,o2 is the space of
all infinite bisequences {fmn(X); m,n to} of real func-
tions finn(x) on R.

DEFINITION 3.10 TWO bisequences {finn(X)’, m, n to}
and {gm(X); m, n to} of real functions are equivalent if
for any set X E, we have limn--.oQx(lfmn gmn[) 0
with an arbitrary fixed m to and limm--.oQx([fm-
gmn[) 0 with an arbitrary fixed n to.

DEFINITION 3.11 An E, Q2-extrafunction or an to 2-real
E,Q-extrafunction f on R is a class of equivalent
bisequences of real functions on R.

EXe,Q2(R denotes the set of all E,Q2-extrafunctions on
R. If {fn(X); n to} is a sequence of real functions, then

f EQ(x); n to} is an E,Q2-extrafunction generated
by this sequence, and the sequence {f(x);n to} is
called an approximation off. Iffis a real function, then we
denote the set of its approximations by Apprf.

There is a natural mapping m2 EXE,Q(R) EXE,Q2(R).
Namely, iff EQn(x); n to} is a real E,Q-extrafunc-
tion, then m(f) EQnm(X); m, n to} withfm(x) f(x)
for all m to. We denote the set of all approximations in
of a real E,Q-extrafunctionfin EXe,Q2 (R) by Apprf. The

sequence Af {f,m fn; m, n to} is called the stan-
dard approximation off.

THEOREM 3.3 The set EXE,Q2 (R) of all real E,Q2-
extrafunctions is a module over the algebra BOEXE,Q2(R
of bounded real E,Q2-extrafunctions.

COROLLARY 3.4 The set EXE,Q2 (R) of all real E,Q2-
extrafunctions is a linear infinite dimensional space over
the field R of real numbers.
As in the case of extrafunctions defined by sequences,

we can consider pointwise, compactwise and measure-
wise extrafunctions defined by bisequences. We call them
to 2-real pointwise, compactwise and measure-wise extra-
functions and denote their spaces by RECF2, RECF2, and
RECF2, correspondingly. In this context, to2-real
compactwise extrafunctions are H-real compactwise
extrafunctions and toe-real pointwise extrafunctions are
H-real pointwise extrafunctions in the sense of Burgin
(2001a).

THEOREM 3.4

There is a homomorphic projection pcp:RECF2--
REPF2 of the linear space of all real compactwise
bisequential extrafunctions RECF2 on the linear space
REPF2 of all real pointwise bisequential
extrafunctions.
There is a homomorphic projection Pcp:RECF2
REMF2 of the linear space of all real compactwise
bisequential extrafunctions RECF2 on the linear space
REMF2 of all real measure-wise bisequential
extrafunctions.

EXTRADERIVATIVES

Letx R.

DEFINITION 4.1 A sequence I= {(ai, bi);i to} of
pairs of real numbers (real vectors) is called an
approximation of the real number (real vector) x if x
limiooai limi-.oobi.

DEFINITION 4.2
of X is called:

An approximation I {(ai, bi); to}

two-sided if ai < x < bi for all to;

left if ai < bi <-- x for all to;
strict left if ai < bi x for all to;

right if x <- ai < bi for all to;

strict right if x ai < bi for all to;

centered if either x ai < bi or ai < bi x for all
i to.

The sets of all (all two-sided, left, strict left, right, strict
right, centered) approximations of x is denoted by appr x
(bappr x, lappr x, slappr x, rappr x, srappr x, cappr x,
respectively).
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LEMMA 4.1 apprx bapprx tO lapprx tO rapprx.
Let J, I apprx.

DEFINITION 4.3 An approximation J {(ai, bi);
H C_ to} is called a subapproximation of I (ai, bi);i
to}. It is denoted by J C_ I.

LEMMA 4.2 If J C_ I and I bapprx (I lappr x,
I rappr x), then J bapprx (J lapprx, I
rapprx, respectively).

Let (R x R) denotes the set of all sequences of pairs of
real numbers.

DEFINITION 4.4 A mapping I R (R R)" is called an
R-approximation on R if I(x) is an approximation of x for
all x R.
To define extraderivatives for an E,Q-extrafunctionf

EQn(x); n to}, we consider an R-approximation I, the
sequence F= {fn(x);n to} of real functions, the
bisequence (mmfn/mmX)(m,n)o)2 of real functions, where
mmX-- bm am =/= O, Amfn --fn(bm) -fn(am), and
(am, bm) I(x) for all x R and for all m to.

DEFINITION 4.5 The partial extraderivative 0/OF,If(X) of
fwith respect to F and to I is the E,Q2-extrafunctions that
is defined by the bisequence (Amfn/AmX)(m,)2 for the
same E and Q.
We can define values of extraderivatives at separate

points of R. However, it is necessary to have in mind that
while some types of extrafunctions are determined by their
values at points (for example, pointwise extrafunctions,
Burgin, 1995a), other types of extrafunctions are not
determined by their values at points (for example,
compactwise extrafunctions, Burgin, 2001a).

DEFINITION 4.6 The value at a of the partial extra-
derivative O/OF,If(a of f at a with respect to F and to
I appr a is equal to the hypernumber
Hn(Amfn/Amx)(m,n)ooz where Amx bm am, Amf
fn(bm) -fn(am), and (am, bm) I for all m.

Remark 4.1 Taking some of the classes of approxi-
mations, which are defined above, we obtain correspond-
ing types of partial extraderivatives, for example, strict
right or centered partial extraderivative.

Let us build an extraderivative for an arbitrary real
function f. To do this, we utilize the standard
approximation Af {fn f n to} off.

DEFINITION 4.7 The partial extraderivative 0/0 if(x) off
with respect to I is the E,Q-extrafunctions that is defined
by the sequence (Amf/Amx)m for the same E and Q.

In the same way as for extrafunctions, we can define
extraderivatives of a real functionfat separate points of R.

DEFINITION 4.8 The value at a of the partial extra-
derivative O/olf(a) at a point a with respect to an
approximation I is equal to the hypernumber
Hn(Amf/Amx)mo where AmX bm- am, Amf --f(bm)
f(am), and (am, bin) U_. I for all m.

Remark 4.2 O/oifx O/OA, Ifx where A {f;n to}
and all fn f.

For example, let us take the function f(x)= Ix[. Its
extraderivative 0/ozf(O) at 0 may be equal to any number
from the interval [-1,1]. Besides, the value of O/ozf(O
may be equal to some hypernumbers (such as Hn(ai)io
with a2k 1, ai2k-1 1, and k 1,2,...).

DEFINITION 4.9 An extraderivative O/olf(a is called
one-sided (two-sided) if I rapprx tO lapprx (I
bappr x).
The construction of the partial extraderivative 0/olf(a)

at a point a with respect to an approximation I represents
procedure of computation for derivatives of real functions.
Really (Burden and Faires, 2001), there are different kinds
of formulas for such computations. If we compare these
formulas to extraderivatives, we can see that the forward-
difference formula for computation corresponds to strict
right approximations and strict right extraderivatives, the
backward-difference formula for computation corre-
sponds to strict left approximations and strict left
extraderivatives, and the three-point formula for compu-
tation corresponds to two-sided approximations and two-
sided extraderivatives. Other computational formulas for
derivatives induce new constructions of extraderivatives.
The difference between classical approach and the

construction introduced here is that in the classical
derivative computation, it is assumed that the result does
not depend on the choice of points and procedures because
there is only one (if any) value for the classical derivative.
At the same time, an extraderivative essentially depends
on initial data and computational procedures. Taking
points closer and closer to some point a, we approach the
value of the classical derivative offthe point a if it exists.
When the classical derivative off at a does not exist, we
obtain a new generalized concept of the derivative offat a
point a, which is applicable to a much larger universe of
functions.

Being closer to computational procedures, than the
classical derivative extraderivative may be even more
enhanced if it will take into account imprecision of
computation. A technique to do this is based on
neoclassical analysis, and namely on such concepts as
fuzzy continuous functions (Burgin, 1995b) and fuzzy
limits (Burgin, 2000a). In this more general context,
difference operators become particular cases of differen-
tial operators and difference equations become particular
cases of differential equations.

Let a, b R, F Apprf G Appr g, and H aF +
bG. Then Theorem 3.3 and Propositions 3.5 and 3.6 imply
the following result.

THEOREM 4.1 0/OH,I (af nt- bg)(x) a(O/OF,If(X))+
b(O/,I g(x)) for an arbitrary R-approximation I.

Let a,b R and f, g be some real functions. Then
Theorem 4.1 implies the following result.

COROLLARY 4.1 0/01 (af + bg) a.O/oif -t- b’O/o g.
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Extraderivatives are natural extensions of conventional
derivatives of functions. For simplicity, we show this only
for pointwise extrafunctions.

Letfbe an arbitrary extrafunction, F {fn, n o)}
f, and r {Io apprx; 0 A}.

DEFINITION 4.10 An extrafunctionf is called:

T-differentiable at a point x with respect to F if for any
l,J T, we have O/oe,if(x)= O/OF,jf(x), or equiva-
lently, 0/F,rf(x) consists of a single element;
a-differentiable at a point x with respect to F if for any
I, J apprx, we have 0/0F,If(X) O/OF,jf(X), or
equivalently, O/OF, apprxf(x) consists of a single
element;
W-differentiable at a point x with respect to I if for any
F, G W Q_ apprf we have O/0F,If(X) O loG,If(X);
completely W-differentiable at a point x if for any
I, J apprx and for any F, G W C_ Apprf we have

O/OF,If(X) O/oa,jf(x);
R-differentiable at x with respect to an approximation
I U_ apprx and to an approximation F

_
Apprf if all

hypernumbers O/OF, If(x) Hn(Amfn/AmX)(m,n)o2
are real numbers.

THEOREM 4.2 The following conditions are equivalent:

f is a-differentiable at x with respect to F;
f is R-differentiable and a-differentiable at x with
respect to F and to any I appr x;
all functions fn F have classical derivatives at x.

Proof b implies a because conditions from b include
conditions from a.

c implies b: Really, if all functions fn are differentiable
(condition c), then by the definition of the classical
derivative at a point, for any I,J apprx, we have

O/OF,If(x O/OF,If(X (condition b).
a implies c: Let us suppose that condition c is not true. It

means that for some fn does not have the classical
derivative at x. Then either two sequences Oen(bi)-
fn(ai))/(bi ai) and n(Ci) fn(di))/(ci di) have
different limits, or there is such a sequence n(bi)-
fn(ai))/(bi ai), which diverges.

In the first case, we take the two sequences of pairs
I (bi, ai); o9} and J (ci, di); U_ oo}. They are
approximations of x. Then by Definition 6.5, for these
approximations I and J from the set apprx, we have
O If(x) : O/OF, Jr(x). Consequently, condition a is
also invalid.

In the second case, we take the sequence of pairs I
(bi, ai);i o}. Each pair (bi, ai) corresponds to the ratio

(f(bi)-fn(ai))/(bi- ai). Because, by our assumption,
the sequence ((f(bi)-f(ai))/(bi- ai))i diverges, it
defines the infinite hypernumber Hn((f(bi)
fn(ai))/(bi ai))io.

If we have some diverging sequence (li)io, then we can
find such its subsequence (ri)io) that it diverges

essentially faster then the initial sequence, i.e. the ratio

ri/li tends to infinity. Consequently, by the definition of a
hypernumber, the hypernumbers Hn(li)io)and Hn(ri)io
are different.

Let us consider the sequence (Oen(bi)
f,(ai))/(biai))i as the diverging sequence (li)io. Then
it contains a faster diverging subsequence (ri)i. Taking
those pairs from the sequence I, which correspond to this
subsequence (ri)i, we get another approximation J of the
point x. For this approximation, we have O/OF,If(X 7&

O/OF,If(X) because Hn(li)io Hn(ri)io). This invalidates
the condition a.

It means that if c is false, then a is false. The principle of
excluded middle implies that a implies c.

Thus, we have: a implies c, c implies b, and b implies a.
Consequently, they are all equivalent.
Theorem 4.2 is proved. V1

LetX CR.

COROLLARY 4.2 The following conditions are equival-
ent:

f is a-differentiable at all points x from X with respect
to F;
f is R-differentiable and a-differentiable at all points x
from X with respect to F and to any I appr x;
all functionsf F are differentiable on X.

Remark 4.3 There are no completely (Apprf)-differenti-
able extrafunctions.

Letfbe a real function and Af {f =f} be its stable
approximation.

DEFINITION 4.11 A function f is called:

T-differential at a point x if for any I, J T we have
O/olf(x) O/jf(x), or equivalently, 0/0rf(x) con-
sists of a single element;
a-differentiable at a point x if for any approximations
I, J U_ appr x, we have 0/olf(x) O/ojf(x), or equiva-
lently, O/Oapprxf(x) consists of a single element;
R-differentiable at a point x with respect to an
approximation I apprx if all hypernumbers
Hn(Amf/Amx)mo are real numbers.

If we take a real function f, its stable approximation

Af {f, f} and apply Theorem 4.2, then we obtain the
following result, which connects classical differentiation
with the introduced here generalized differentiation.

THEOREM 4.3 The following conditions are equivalent:

f has the classical derivative g at a point x of R;
f is a-differentiable at x with respect to Af;
f is R-differentiable at x with respect to Af and
O/OA, If(x) O/OIf(x) g;(x) for all I appr x.

Theorem 4.3 implies that if a function has a derivative at
a point x of R in the classical sense, then its partial
extraderivative at x is unique and coincides with the
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classical derivative of f at x. Moreover, if the partial
extraderivative at the point x is unique, then it coincides
with the classical one and, as a consequence, the function
that has extraderivative is differentiable at x in a
conventional sense.
LetX CR.

COROLLARY 4.3
ent:

The following conditions are equival-

f is a-differentiable at all points x from X with respect
to Af;
f is R-differentiable at all points x from X with respect
to Af and to any I appr x;
the function f F is differentiable on X.

Corollary 4.3 implies that if a function is differentiable
on X in the classical sense, then all its partial
extraderivatives on X are unique and coincide with the
.classical derivatives of f on X. Moreover, if all partial
extraderivatives of a functionfon X are unique, then they
coincide with the classical derivatives off on X and, as a
consequences, the function f is differentiable on X in a
conventional sense.

CONCLUSION

One can think of the further development of the theory
of extrafunctions in different directions. First, similar
technique allows one to construct complex extrafunctions
and to develop analysis in this context for mappings of
multidimensional linear spaces.

Second, it looks beneficial to apply this theory to the
problems of differential and difference equations. Specific
properties of the theory of extrafunctions make it possible
to achieve much more in this direction than by means of
the theory of distributions or classical analysis. For
example, it is possible to consider differential equations
with discrete functions. In addition, this new approach
correlates with computational methods of differential and
difference equations solution.

Third, it would be advantageous to use the theory of
extrafunctions for the development of the theory of
operators and operator algebras in infinite dimensional
spaces. Operator algebras are frequently used in theories
of quantum fields, theory of chaos, and synergetics (cf., for
example, Haag and Kastler, 1964; Horuzhy, 1986;
Prigogine, 1980). Hypernumbers allow one to define
hypernorms on topological spaces and algebras. With
respect to operators, this makes possible to consider
unbounded operators to a full extent and to study
hypernormed algebras of such operators. The crucial
point in this direction is the definition of multiplication of
hypernumbers.

In the present work, a new approach to analysis is
presented. It is based on an extension of real numbers to a
much broader universe of real hypernumbers. In addition
to real numbers, this universe contains different infinite
and oscillating numbers. The theory of hypernumbers is
the base of the theory of extrafunctions. The results of this
paper contribute to the further development of this theory,
unifying results from Burgin (1990; 1995a; 2001a) and
directing them to the problems of mathematical and
computational physics with an emphasis on the theory of
chaos.

In addition to this, the theory of extrafunctions provides
new possibilities in different areas. For example, divergent
processes are at the core of the classical and modern
mathematical analysis. Careful control and management
of these processes are essential (Bray and Stanojevic,
1998). In the universe of hypernumbers, all sequences and
series of real and complex numbers as well as definite
integrals of continuous functions have values. For
convergent sequences, series and integrals, these values
are ordinary numbers, while for divergent sequences,
series and integrals, these values are infinite and
oscillating hypernumbers. As a consequence, control and
management of divergent processes becomes much
simpler.

Problems of divergence frequently emerge in different
computational problems (cf., for example, Steffen and
Ingolfsdottir, 1994). Consequently, the theory of extra-
functions opens new perspectives in this direction.
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