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An extremely fast growth-rate controlling mechanism has been developed to stabilize a discrete system.
Theoretical analysis and computer simulations have been provided to show the effectiveness and
efficiency of this new mechanism in practice.
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INTRODUCTION

Stabilizing unstable dynamical systems through feedback
adjustment applied either to an available system parameter
or to the system variable(s) directly have dominated the
recent researches in the field of chaos control (see Socolar
et al., 1994; Vieira and Lichtenberg, 1996; McGuire et al.,
1997; Parmananda et al., 1999, Huang, 2000, 2001 and
references therein). The feedback adjustment methods
possess many unique advantages over other approaches
such as (i) demanding neither a priori information about
the system itself nor any external generated control
signal(s), (ii) always forcing the original system to
converge to its generic periodic points and (iii) easy to
implement in practice. In this article, a nonlinear feedback
mechanism through controlling the growth rate is
developed, which has been shown in theory and by
numerical simulations to be effective in stabilizing
unstable periodic points of chaotic discrete systems.
Comparing to the other feedback methods, this mechan-
ism stabilize a chaotic system at a extremely high speed.
The paper is organized as follows. The second section

proposes a growth-rate controlling mechanism for an one-
dimensional discrete system and proves theoretically a
necessary and sufficient condition for the success of this
mechanism. The third section then further discusses the
possible application of this new mechanism in stabilizing
unstable periodic points. The fourth section generalizes
the growth-rate controlling mechanism to general high-
order discrete systems and provides a set of necessary
conditions. Finally, in the fifth section, we further
discuss some sufficient conditions for the application of
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growth-rate controlling mechanism in stabilization of
general second-order discrete systems.

GROWTH-RATE CONTROLLING MECHANISM

Consider an one-dimensional discrete system defined by a
first order difference equation:

xt 0(x,-1), (1)

where O(xt) is a nonlinear function well defined in a
domain I--[Xmin,Xmax] where Xmin and Xmax are lower
bound and upper bound of the domain that satisfy the
condition either 0 < Xmin < Xmax or Xmin < Xmax < 0. The
function 0, however, can be either "single humped" or
"multiple humped", either continuous or discontinuous,
either smooth or non-smooth (in the sense of C 1), but
must intersect smoothly the diagonal axis Xt+l xt at least
once. That is, there exists at least one 2 such that 0(2) 2
with 0(2) existing.
By growth-rate controlling mechanism, we mean the

following modification to the original system (1):

xt O(xt-1) = Xt-l[1 + y(O(xt-1) xt-1)], (2)

where y is a control parameter that can take any real
values.

Remarks

(1) In social science, the concept of growth rate has been
used extensively in almost every field that involves
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discrete dynamics. Generally, for an one-dimensional
discrete dynamics given by Eq. (1), the growth rate is
defined as

Xt Xt- O(xt- 1)
gt _/x 1. (3)

Xt- Xt-
Apparently, if 0 is chaotic, or more generally,

unstable in the sense that it cannot converge to a fixed
point, the growth rates derived from the process will
also fluctuate chaotically and permanently. The
growth-rate controlling mechanism defined by Eq.
(2) is mathematically equivalent to

Xt Xt-

Xt-
y(O(xt-1) xt-), (4)

which in fact controls the growth rates of the original
system Eq. (1) adaptively.

(2) It is due to the fact that the growth rate defined by Eq.
(3) is invalid for xt 0 that the origin is excluded
from the domain I in our definition by letting 0 <
Xmin < Xmax or Xmin < Xmax < 0. We can see later (in
Example 2) that this restriction can be released in
practice.

(3) When the control parameter takes the null value (a/--
0), the controlled system degenerates into xt+ x,
which is "stable" for all x, therefore, this mechanism
can be implemented safely in the sense that we can
always start with a tiny a/ and then increase
gradually to speed up the stabilization process.

The following theorem briefly summarizes two desired
properties of the growth-rate controlling mechanism.

THEOREM The controlled system defined by Eq. (2)
possesses the following mathematical characteristics:

i) (Generic property) The processes 0 and share
exactly the same set offixed points, that is, for any
2 I [Xmin, Xmax], if 0(2) 2, then 0(2) 2, and
vice versa.

ii) (Necessary and sufficient condition): For an unstable
fixed point 2, as long as t7(2) # 1, regardless of the
sign of tT(yc), there always exists an effective regime
for the control parameter:/-" (a/min, a/max) such that
Ig(x)l < for Y F= (a/min, a/max).

The derivative of 0 is given by (2) 1 + a/2(0(2)
1), and the stabilization means to enforce
I()1 < 1. The following four possibilities should
be distinguished:

Case I: 2 > 0 and 0(2) > 1
The inequality (2) < 1 requires that 1 + 3,2(0(2)

1) < 1, or, equivalently,

a/max O.

But the inequality relation (2) > -1 demands that
3’2(0(2) 1) > 2, that is,

a/ > a/min
2(1 0’(2))

Case II: 2 > 0 and 0(2) < -1
The inequality 6(2) < 1 implies that 3/> a/min --0

and the inequality (2) > -1 suggests that

2
a/max 2(1 0(2))

Case III: 2 < 0 and (2) > 1
By similar argument, the stabilization condition

(2) < 1 means

2
0 --a/min < a/< a/max

Case IV: 2 < 0 and 0(2) < -1
I()1 < 1 holds true if and only if

2(1 0’(2)) Tmin < 3 < a/max-" O,

which conclude the proof.

The conclusion in Theorem 1 can be verified by
numerical simulations.

Proof

If 2 I [Xmin, Xmax] is a fixed point such that 0(2)
2, then,

0(2) 2[ 1 + 3/(0(2) 2)1 2,

that is, 2 is also a fixed point of the adjusted system.
Conversely, if (2) 2, and 2 # 0, we also have
0() .*

Example 1 Consider a cubic process defined by

Xt g(X,-l) _A_ 1 -4-(Xt-1 1)(4Xt-1 7)2, (5)

which has three fixed points 21 1, 22 3/2 and23 2,
with g(21) 9, g(22) -3 and gt(23) 9.

While Fig. l(a) shows the functional graph of Eq. (5),
Fig. l(b) shows a typical trajectory starting at an initial
value of 2o 0.3333.
The implementation of the growth-rate controlling

mechanism to Eq. (5) amounts to modify the original

*Since the origin 0 is always a trivial fixed point for the controlled system (2), if we do not exclude it from the domain L the converse can not be
true.
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system into:

xt (xt-,) & xt-, 1 + y(g(xt-,) xt-,)]

Xt-l[1 + 8)’(xt-1 1)(xt-1 2)(2xt-1 3)]. (6)

For the fixed point 22 3/2 (with g’(22)=-3), it
follows from the proof of Theorem 1 that 7min ---0 and
"/max 2/(2(1-g/(2))) 1/3. Therefore, a positive
range for the control parameter can stabilize the system
to the unstable fixed point 22. While Fig. 2(a) shows the
graph of Eq. (6) for 3/= 1/6, Fig. 2(b) shows a trajectory
starting with the same initial point as in Fig. 1 (b). We see
that, the convergence is achieved in less than five iterations.
Now consider the fixed point 23 2 (with gt(23) 9),

we have

2 -1
)’min

2(1 gt(2)) 8
)’max 0.

On the other hand, for the fixed point 21 1 (with
g(21) 9), we also have

)’min
2( 1 gt(2))

2 1
4’ )’max O.

It can be noticed that, there exists a overlapping section
for the effective regimes of the control parameter 3’ for 21

and 23. When 3’ E/-’1 (- 1/8, 0), the controlled system
may converge either to 21 or 23 depending on the initial
condition. This phenomenon is shown in Fig. 3(b) for

3’ -1/16. As shown in Fig. 3(a), almost all trajectories
starting around 21 will finally converge to 21, and almost
all trajectories staring around 23 will and finally converge
to 23 due to the fact that 0 < ,(2i) < 1, for 1,3.

But when 3/ F2 (- 1/4, 1/8], the controlled
system will converge to the fixed point 23 only. This is
shown in Fig. 4(b), from which we can see that, there
exists a trapping set J [22,x") in the domain such that
the trajectory starting with almost all initial point in J stays
inside it and fluctuates asymptotically, where x" is
determined from inverse iterate x" ,-1(22). However,
almost all the trajectories will converge to 21 if x0 > x"
(not illustrated).

STABILIZATION OF UNSTABLE PERIODIC
POINTS

It deserves to mention that the generic property held by
controlled system does not hold for periodic orbits (i.e.
fixed points of higher order). Even though a one-to-one
correspondence exists between the periodic points of 0
and those of , the exact locations of these periodic points
are actually different. This results from the fact that the
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FIGURE 2 Illustration of xt (xt-), "y 1/6.
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solutions to .(k) ok(yc(k)) and to 2 (k) k(yc(k)) are no
longer the same if k is greater than one. Although this is
acceptable in most applications, there are situations where
the original periodic orbits are preferred. In this regard, we
need to modify the growth-rate controlling mechanism
accordingly so to ensure all trajectories converge to a
desired periodic orbit.

Redefine the growth-rate controlling mechanism as

Xt O(m)(Xt-1) xt-l[1 -k "y(Om(xt-) xt-1)], (7)

where 0 00...0 denotes mth recurrent process of 0.
times

By similar arguments as provided in Theorem 1, the set of
fixed points of (m) are identical to the ones of 0 ’, which
implies that, with a suitable choice of 7, the growth-rate
controlling mechanism defined by Eq. (7) will lead to a
stable periods-m orbit inherited from 0. This can be
illustrated with the following example.

Example 2 Consider the Logistic equation defined by

Xt f(xt-1) A= 4xt-(1 -xt-1), (8)

which has two fixed points" 2 0 and -2 3/4, with
f1() 4 and ft($:2) -2, respectively.

For the controlled system:

Xt--3(Xt-1) A= Xt-l[1 + ’)/Oe(Xt-1)

Xt-[1 + 7Xt-(3 4xt-1)].

The effective regime for the control parameter y can be
obtained directly from

I]"(.2)l

which requires that 0 < y < 8/9. This can be verified
through the bifurcation diagram of y shown in Fig. 5(a)
(while the controlled system corresponding to y 0.5, 1
and 1.5 are shown in Fig. 5(b)). When y increases above
8/9, there is a range of y values with which the trajectory
of the controlled system starting with almost any initial
point will be stabilized to a periods-2 orbits. However,
these periods-2 orbits are not generic, i.e. they are not
inherited from the original system. Actually, solving
equation f2(x) x will reveal two trivial periods-2 fixed
points: 0 and 3/4, and a pair of non-trivial periods-2 fixed

-(2) (1/8)(5 x/-) and .(22) (5/8) + (1/8)-.points" x
With f2’(x)-- 16(1 2x)(8x2 8x + 1), we have

f2’(.2)) __f2’(.(22) -4.
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Now consider a growth-rate controlling mechanism
defined by Eq. (7):

xt -(2)(xt-) xt-[1 + "y(f2(xt-) xt-)]

=Xt-l(1 "yxt-l(4Xt-1 3) (9)

X (16x_ 20xt-1 + 5)).

For the fixed point 22) (5/8) (1/8)x/, we have

/(m ,(1)_ 2 16
in 0, Tmax 2(22)(1 --f2’(22))) 5(5 /-)

But for the fixed point 22) (5/8) + (1/8)/, we have

,(2) ,(2)_Ymin O, Tmax
2 16

2(2)(1 f2’(2(22))) 5(5 + x/)"

Therefore, when y is in the range of
the controlled system (9) will converge to either 2 or
2(22) depending on where the initial point starts at. This is
shown in Fig. 6 for y 2/5. On the other hand, when 3’ is

2) 1)in the range of/-’2--[3max, 3max), the controlled system
_(2) only, as shown in Fig. 7 However,(9) will converge to x

-(1) and f(2(21)) 2(22)if we notice that f(2(22))--x2

the controlled system is actually stabilized to a
stable periods-2 orbit (2(2), 2(22)) for 3’ (0, ")-)’r/nax We
notice that, all convergencies are achieved in a few
iterations.

GENERALIZATION TO HIGH-ORDER DISCRETE
SYSTEMS

From numerical simulations given in Example 1 and 2, we
see that, the growth-rate controlling mechanism is able to
stabilize a chaotic system to converge to its generic fixed
point or periodic orbits in extremely high speed.
A possible generalization of growth-rate controlling

mechanism is to stabilize a high-order discrete system
given by

Xt O(xt-1, Xt-2,’" .Xt-n), (10)

where n > 1 and xt I [Xmin,Xmax], where Xmi and
Xma are lower bound and upper bound of the domain that
satisfy the condition either 0 < Xmin < Xmax or Xmin <
Xmax < 0.
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The implementation of the growth-rate controlling
mechanism to Eq. (10) amounts to modify it into

Xt Oh(X,- 1, Xt-2,...Xt-n)

Xt-h(1 -t- a/h(f(Xt-l,Xt-2,...,Xt-n) Xt-h)), (11)

where 7h is the controlling parameter and 1 -< h -< n.
The controlled system (11) is equivalent to the

following growth-rate control:

Xt Xt-h A .)/h(O(Xt_l,Xt_2,...Xt-n) Xt-h).
Xt-h

Let /denote the partial derivative of 0 with respect to
xt_ evaluated at an unstable fixed point 2, that is,

Xt- --Xt-2... --Xt- -- for/= 1,2,...,n. (12)

We have following conclusions.

THEOREM 2 The controlled system h possesses the
following mathematical characteristics:

i) (Generic property): The processes 0 defined by Eq.
(10) and Oh defined by Eq. (11) share exactly the
same set of fixed points, that is, for any 2 I--
[Xmin,Xmax], if 0(2) 2, then h(2) 2, and vice
versa.

ii) (Necessary conditions): For the process h to

converge to an unstable fixed point 2, the original
process must satisfy the condition:

/ 1. (13)
i=1

Moreover, ifh is even, it must also satisfy the condition:

Oil 0/2 +... + (-- 1)n-lff 7 (-- 1)"-l. (14)
Proof

i) It follows the same discussions in Theorem 1.
ii) The studies of high-order discrete system such as

systems (10) and (11) are usually conducted in a

multi-dimensional space through variable transform-
ations:

Yl,t Xt-n+l

Y2,t Xt-n+2

(15)

Yn- l,t Xt-1

Yn,t Xt

with which the controlled system (11) is converted
into a multi-dimensional discrete dynamical system
as follows:

Y ,t Y2,t-1

Y2,t Y3,t-

Yn- 1,t Yn,t-

Y,,t Y,-h+l,t-(1 + yh(O(Y,t-l,Y,-,t-,...,Yl,t-)

--Yn-h+l,t-1))

(16)

The Jacobian of Eq. (16) at an unstable fixed point
Y] Y2 Y, 2 is then

/0 1 0 0 O

0 0 1 0 0

0 0 0 1

\an an-1 a2 al

where

(17)

7h20i, ifi h,
ai 7h20h + (1 7h2), if/ h.

The characteristic equation of (2) can thus be
expressed as

g(A) =A" alAn-1 a2An-2
(18)

an-lA an O.
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The convergency of adjusted system (16) to the unstable
fixed point 2 requires that the maximum modulus of
characteristic roots for Eq. (18) must be strictly less than
unity. However, by noticing that

ai--l+/=l 3’h2(/-/=1
we may conclude that, regardless the value of 3’h and h, as
long as

i=1

the unity is always one of the characteristic roots of the Eq.
(18), which implies the impossibility of convergence.

Similarly, substituting I--- 1 into the characteristic
polynomial g(A) gives us

(1) YhX( 1-i

Therefore, when h is even and

the identity g(-1) 0 holds true regardless of the value
of 3’h, which implies the failure of convergence as well.

In conclusion, Eq. (13) and (14) are two necessary
conditions. V]

given by

0
(20)

Denote

’- 1 + 3’12(0’ 1) trace of J,

9 3’120’2 determinant of,
then the associated eigenvalues for J(x) can be simply
expressed as (see Huang, 2001 for the detail
discussion):

(21)

The local convergency of the system to a particular
fixed point 2 (that is, the local stability of 2) is
guaranteed if and only if the following three inequalities
hold simultaneously

9<1

--9<1

-+9> -1

(22)

that is,

(23)

STABILIZING SECOND-ORDER DISCRETE
SYSTEMS

Due to the extra complexity arising from multi-
dimensional dynamics, Theorem 2 reveals only some
necessary conditions instead of sufficient condition for the
success of growth-rate controlling mechanism under high-
order discrete systems. It is difficult to provide certain
sufficient conditions in general due to the presence of
complex roots in characteristic equation defined by Eq.
(18). However, for a relative simple second-order discrete
system, we are able to give a set of sufficient conditions.

For a general second-order discrete system xt--
O(xt- 1, Xt-2), the growth-rate controlling mechanism is
achieved through

Xt O(Xt-l,Xt-2)

Xt-h(1 + 3"h(O(Xt-l,Xt-2) Xt-h)), h 1,2. (19)

Therefore, three inequalities given in Eq. (23) form
an effective region in the adaptive parameters (3’1, 3"2)
space, inside which, all 3’1, 3’2} combinations ensure
the success of stabilization of 2.

Case II: h-- 2
By similar argument, the Jacobian of Eq. (19) at any

fixed point 2 is now

( 0 1)(x) 1 -t- 3’22(0’2 1) 3’220’

with -- 3’2201 and 9 1 3’22(02 1). There-
fore, the conditions (22) become

3’22(1 0’2) < 2

,,/2x(o’, + o’: ) < o
,,,,x(o’, o’ + ) > o

(24)

Case I: h-- 1
The Jacobian of Eq. (19) at any fixed point 2 is thus

The second inequality in Eq. (24) implies that 01 +
02 =/= 1 is necessary while the third inequality that 0’
02 # 1 is indispensable.
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FIGURE 8 Bifurcation of Ot O(Xt-l,Xt-2).

Remark A fixed point 2 for the original system xt--
O(xt-], xt-2) is stable if the following inequalities hold:

(25)

The importance of the sufficient conditions (23) and
(24) can be illustrated in the following numerical example.

Example 3 Delayed logistic system
Consider a second-order discrete system given by:

Xt O(Xt- 1, Xt-2)

4axt_(1 xt-1) .ql_ 4(1 a)xt-2(1 xt-2), (26)

where 1 > a > 0. This system is a higher-order version of
famous logistic equation and hence gives a unique non-
trivial fixed point : 3/4.

Since 0’1( -2a and 0t2(.) -2(1 a), we have

(27)

The fixed point 2 3/4 is itself stable when the
conditions in Eq. (25) are satisfied, which leads to 1/2 <
a < 3/4. Therefore, when 0 --< a --< 1/2 or 3/4 --< a <--
1, the non-trivial fixed point : 3/4 becomes unstable,
which is verified by the bifurcation diagram on a
shown in Fig. 8.
We now study the effective regime for 7h under a

growth-rate controlling mechanism given by

Xt Oh(Xt-1, Xt-2)

Xt-h(1 -’ "yh(O(Xt-l,Xt-2) Xt-h)), h 1,2. (28)

Since 0 + 02 1, the controlled system 1 is able to

converge to the unstable fixed point 2 under suitable
choice of control parameter y. The conditions in Eq. (23)
reduce to

1 (1 a) < 1

7]-] > 0

Yl (1 4a) > -2

(29)

Therefore, the effective regime for T1 is given by

{
2

}
if0<a< 1/4,0 < Yl < 3(l-a)

ifl/4 < a < 10 < y < min (2-_a 3(4a-1)

which is illustrated in Fig. 9(a).
Since #l 02 2 4a -1 only occurs at a 3/4,

it follows from Theorem 2 that 02 might be utilized to
stabilize the unstable fixed point 2 for the case of a # 3/4.
However, the conditions in Eq. (24) simplify to:

8 >3(3-2a) 3/2

T2(-2- 1) < 0

7 43-(3 -4a) > 0

(30)

which, as shown in Fig. 9(b), can only be held

2 t 71 (a) Effective Regime for 0z

1.5

0.5

0 0.2 0.4 0.6 0.8

2 3’2 (a) Effective Regime for 0

0.5

0 0;2" ’014 "016 0:8
FIGURE 9 Illustration of effective regimes.
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FIGURE 10 Trajectories ofxt-’- 2(Xt-l,Xt-2), ")/-- 1/4.

simultaneously for the case of a < 3/4. Therefore, when
a >--3/4, it is impossible to utilize 2 to stabilize the
original system. This point is demonstrated by the related
numerical simulations shown in Fig. 10.
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