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A general framework for solving identification problem for a broad class of deterministic and stochastic
models is discussed. This methodology allows for a unified approach to studying identifiability of
various stochastic models arising in biology and medicine including models of spontaneous and
induced carcinogenesis, tumor progression and detection, and randomized hit and target models of
irradiated cell survival. A variety of known results on parameter identification for stochastic models is
reviewed and several new results are presented with an emphasis on rigorous mathematical
development.
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INTRODUCTION

In a very general form, the identification problem for a
model describing behavior of a physical, chemical,
biological or other system can be formulated as follows.
Suppose a system is governed by the equation

y --f(x, 0), (1)

where x is a scalar or vector variable descriptive of the
state of the system (e.g. time, vector of spatial coordinates,
etc.), y is an observable scalar of vector quantity
characterizing the system "output," 0 is a (typically
unknown and unobservable) parameter or set of
parameters labeling a specific system within a class of
similar systems, andf is a known function that relates the
value x of the descriptive variable of the system to its
output y. Elements of the parameter set 0 are usually
represented by real numbers, functions or probability
distributions. It will be assumed that the parameter set 0 is
minimal in that none of its elements is a function of other
elements.
We assume that the state variable x takes values in a

given set which is typically independent of 0. For
deterministic models, Eq. (1) can be obtained by solving a
differential, difference, integral or other equation that
governs behavior of the system. For stochastic models, Eq.
(1) has the form Y f(X, 0), where X and Y are random
variables (RVs), random vectors, stochastic processes or

random fields. In most cases, observed is the distribution of
Y rather than its particular realization. The distribution of
RV Yis completely characterized by either the cumulative
distribution function (CDF) Fr(y)"- Pr(Y --< y) or the
corresponding survival function /r(Y):= 1 Fr(y)
Pr(Y > y). If RV Y is absolutely continuous then its
distribution is also uniquely determined by its probability
density function (PDF) fr or (in the case of non-vanishing
survival function) by the hazardfunction q,.

In stochastic models described in this paper, the
observed output Y is a non-negative RV in which case Eq.
(1) takes on the form

Fr(t) f(t, 0), >-- O, (2)

where/y can be replaced by whatever characteristic of the
distribution of RV Y (CDF, PDF, hazard function,
characteristic function, etc.) that is appropriate and for
which Eq. (2) assumes the simplest form. Observe also
that survival and hazard functions of such RV Yare related
as follows"

Fr(t) exp or(u)du
o

--> 0. (3)

DEFINITION The model (1) is said to be identifiable if

f(x, O1)-’f(x, O2) for all x implies 01 02.
(4)
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Property (4) suggests that the same output (or its
distribution if the output is random) cannot arise from two
different sets of model parameters. Identifiability of a
model leads to a possibility of determining the unique set 0
of model parameters from the observed output. However,
it does not generally guarantee stability of this procedure
with respect to perturbations of the output which may
become an important consideration when the output is
incomplete, truncated, censored, noised or measured with
inherently limited accuracy. A non-identifiable model can
still be useful for the purpose of qualitative analysis of the
system in question and making general conclusions about
its behavior, but its utility for quantitative inference about
parameters of the system from its observed output is
limited.
The output of stochastic models is typically observed in

a form of a finite sample from the distribution of RV
(random vector, etc.) Y. The empirical distribution of such
sample can be thought of as an approximation to the "true"
distribution of Y. Then identifiability of the model makes it
plausible that parameters of the model can be estimated
from the sample observations using standard statistical
methods (maximum likelihood, moment, Bayesian, etc.).
It should be emphasized that identifiability is a structural
property of the model that has analytic nature. If met, it
removes the crudest obstruction to determining or
estimating model parameters but cannot automatically
ensure any properties of statistical estimators such as
consistency or asymptotic normality. On the contrary,
non-identifiability suggests that the original model
parameters cannot even in principle be estimated from
output observations. Practically, lack of identifiability
manifests itself in the instability of statistical estimators of
model parameters, should these estimators be constructed
formally with no regard to model non-identifiability.

Let 6} be the collection of all admissible parameter sets
0 for the model (1). The choice of model parameter 0 is
certainly a matter of convenience. The same model can
also be parameterized by any collection that is a
bijective image of 6}, which leads to an equivalent model
y g(x, , . Indeed, the latter model and Eq. (1) are
identifiable or not simultaneously. However, a convenient
choice of model parameters can make a model more
tractable and its identifiability properties more
transparent.
The present paper deals with identification of several

models arising in carcinogenesis, oncology, and radiation
biology. Before going into analysis of these complex
stochastic models, it seems worthwhile to discuss a simple
deterministic physical model in which non-identifiability
can be seen quite easily.

Consider vertical oscillations of a body with mass rn
attached to a spring with spring constant k. Assuming that
the mass of the spring is small as compared to m and air
resistance is negligible, we describe the motion of the
body by means of the differential equation

my" + ky 0,

where y y(t) is the vertical position of the body at time
relative to the point of static equilibrium. The general
solution of this equation is

y(t) C1 cos wt + C2 sin ()

where

o- (6)

and constants C1, C2 are uniquely determined by the initial
position Y0--y(0) and initial velocity v0- y1(0) of the
body (specifically, C =Y0 and C2=vo/w). The
"natural" parameter set for the system in question is 0--
(m,k, yo, vo). Could this set be identified from the
observed motion (Eq. (5))? Clearly, the answer is NO,
because it is only Yo, Vo and the frequency co that can be
determined by the output y(t), where o is the combination
(Eq. (6)) of the model parameters m, k, so that each value
o corresponds to infinitely many parameter sets 0. Thus,
the model is not identifiable.
The structure of the paper is as follows. In the second

section, we discuss a general methodology for solving the
identifiability problem for finite parametric models. This
analysis leads us to formulation of main questions of
interest with reference to model identifiability and sets up
a stage for the ensuing study of identifiability properties of
various stochastic models arising in biology and medicine.
In the third and fourth sections, we introduce Moolgav-
kar-Venzon-Knudson and Yakovlev-Polig models of
carcinogenesis, respectively, and discuss at length their
identifiability. Some general observations related to
identification of stochastic models providing the distri-
bution of the total duration of two-stage processes of any
nature are presented in the fifth section. Continuing this
line of reasoning in the sixth section, we further
incorporate into our analysis, in addition to the stage of
tumor latency discussed in the third and fourth sections,
also the stage of tumor progression and stochastic models
of cancer detection. Our main attention there is focused on
identifiability of the joint distribution of age and tumor
size at spontaneous detection. Finally, the seventh section
deals with identification properties of randomized hit and
target models of irradiated cell survival.

IDENTIFICATION OF FINITE PARAMETRIC
MODELS

In this section, we make a few general observations
regarding identification properties of models (1) or (2)
depending on a finite set of parameters 0 (01,..., 0n).
Studying such properties begins with solving the equation
f(x, O)= g(x), x 9, for 0, where g is a given output
function, in an attempt to identify all possible independent
combinations of parameters 01,..., 0n that are determined
by the function g. This typically results in equations of the
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qi(O1,..., On) Li(g), 1 --< --< m, (7)

by contrast to the original parameters 0 that usually have a
readily available "mechanistic" connotation.

with some functions qgi: "-- and functionals Li, 1 <--
<-- m, defined on the set of all admissible outputs of the

model. The functionals Li may involve values or limits of
the function g or its derivatives at certain points or at
infinity, plain or weighted integrals of function g and its
derivatives as well as similar characteristics of Fourier,
Laplace or other appropriate transforms of the function g,
etc. Independence of Eq. (7) usually implies that m <-- n,
for, should m > n, then one of the Eq. (7) would normally
follow from other equations and hence could be
eliminated. Thus we will assume that m --< n. The set of
Eq. (7) should be not only minimal, but also complete so
that f(x, O) f(x, 0) for all x is equivalent to
qgi(O) qi(O), 1 <-- <-- m.

This means that parameters

r/i :’- qgi(O1,..., On), 1 <-- <-- m, (8)

are identifiable. Furthermore, the model can be expressed
in terms of the combinations r/l,..., r/m of parameters
01,..., 0n: there exists a function h such that f(x, O)=
h(x, r/) for all x 9, where r/-- (rh,..., r/m). If m n
then system of Eq. (7) typically has a unique solution 0
which entails identifiability of the model. In the case m <
n, parameters 01,..., 0n are generally not determined
uniquely by the output function g rendering the model
non-identifiable. The number m, which is usually invariant
under the choice of different ways to set up Eq. (7), can be
referred to as the parametric dimension of the model.
The following problems constitute natural milestones in

studying model identifiability.

(1) To find parametric dimension of the model.
(2) To obtain the most natural identifiable combinations

(Eq. (8)) of the model parameters, find their joint
range, and express the model in terms of these new
parameters.

(3) To study relations (8) that provide a mathematical
insight into the cause of model non-identifiability; in
particular, to express, if necessary, the original set of
parameters 0 through the new parameter vector r/and
n m free parameters.

For example, the parametric dimension of the model
given by Eqs. (5) and (6) is three, the most natural
identifiable combinations of the model parameters m, k,
Y0, Vo are to V/-/m, Yo, Vo, so that the rescaling
transformation k--, Ak, m---, Am for any > 0 does not
change the relation between the descriptive variable and
the output y(t) of the model.

It should be kept in mind that although dealing with the
identifiable form y h(x, r/) of a non-identifiable model
(1) has a distinct mathematical advantage, parameters r/
need not necessarily have a straightforward interpretation,

NON-IDENTIFIABILITY OF THE
MOOLGAVKAR-VENZON-KNUDSON TWO-
STAGE MODEL OF CARCINOGENESIS

The most widely accepted mechanistic model of
carcinogenesis is usually referred to as the Moolgavkar-
Venzon-Knudson (MVK) model (Moolgavkar and
Venzon, 1979; Moolgavkar and Knudson, 1981). This
Markovian model has had a profound impact in
carcinogenesis modeling and quantitative analysis of
various experimental data, see e.g. Heidenreich et al.
(1997) and references therein. In this and many other
mechanistic models of spontaneous and induced carcino-
genesis, formation of malignant cells is viewed as
consisting of two stages: (1) induction of primary
precancerous lesions in the population of susceptible
target normal stem cells (cells bearing primary lesions are
called initiated); and (2) promotion of initiated cells
resulting in the transformation of intermediate cells (i.e.
initiated cells and their offspring) into malignant cells in
the course of cell division. The two-stage theory was
coined by Armitage and Doll (1957). The MVK model is
based on the following commonly accepted assumptions:

(1) The number of first-generation initiated cells follows
a (generally, non-homogeneous) Poisson process
with intensity v(t).

(2) An intermediate cell divides into two intermediate
daughter cells with rate c(t) (in the sense of Markov
processes), dies or differentiates with rate/3(t), and
divides into one intermediate and one malignant cell
with rate /x(t). The usual independence hypotheses
for the birth-and-death branching Markov process are
accepted, see e.g. Karlin (1966).

(3) Tumors arise from a single malignant progenitor cell.
Once a malignant cell is generated, its subsequent
growth is irreversible and leads to appearance of a
detectable tumor.

As shown by Hanin and Yakovlev (1996) and Yakovlev
and Polig (1996), under assumption (2) and for arbitrary
promotion time distribution with CDF F, formation of
clonogenic tumor cells is governed by a Poisson process
with the integral rate

A(t) (x)F(t- x)dx.
o

Then the general form of the survival function G(t) of the
time to tumor, that is, the probability of no malignant
clonogenic cells at time t, is given by

((t) exp v(x)F(t x)dx (9)
o
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In the particular case of constant initiation rate u, this
formula takes on the form

G(t)=exp -u (x)dx (10)

compare with (3).
Observe that in the case of spontaneous carcinogenesis,

time to tumor (also referred to as time of tumor latency is
counted from the moment of birth while for induced
carcinogenesis, the time is measured from the initial
moment of exposure to a carcinogen.
Model (9) and its particular case (10) was widely used

to describe induced and spontaneous carcinogenesis
(Klebanov et al., 1993; Yakovlev et al., 1996; Hanin
et al., 1997), and hormesis (Yakovlev et al., 1993).
When the rate of initiation (u) and the rates of cell

division (ge), death or differentiation (/3), and malignant
transformation (/x) for initiated cells are all constant, and
the number of target normal cells is effectively constant,
the following explicit formula for the CDF F of the
promotion time was obtained by Kopp-Schneider et al.
(1994) and Zheng (1994):

As found by Kopp-Schneider et al. (1994) and Zheng
(1994) (or can be obtained on the basis of formulae (10) and
(11)), the survival function of the time of tumor latency in
the MVK model with constant parameters u, ge,/3,/x is

.(
2ce_(a_B_tz+c)t/2 ]

v/
(t)

ge [ tZ nt- c)e-ct -nt- ([ nt- -4- c ge)

(13)

where c is specified in Eq. (12). To show dependence of
the function on the four biologically motivated
parameters notationally, we will write (t)
((t; u, ge,/3,/z). The following result was obtained by
Hanin and Yakovlev (1996).

THEOREM The equality (t; ll, gel, ill,/Zl)
G(t; v2, ge2,/32,/z2), >-- O, holds if and only if

Pl 2

gel ge2

gel [1 I&l ge2 [2 l&2,

and

(ge tx + c)(1 + tx + c ge)(1 e-ct)
F(t)

2ge[(ge -/3 -/x + c)e-ct + ([ -t- -t- c
(11) It follows that parameters

where

(12)

p v/ ge 6 ge /3 /z and

C ?(ge q- + /./,)2 4ge/3
(14)

Observe that

c-/3- x+climF(t) < 1.
t---,oo 20/

are identifiable (note that 6 can be interpreted as the
effective birth rate). Since they are clearly independent,
the parametric dimension of the MVK model is three. The
range of the parameter vector (p, 6, c) is given by

This reflects the fact that the probability of the event
that no malignant clonogenic cells are produced is
positive. In the case when the parameters v, ge,/3 and/x
are piecewise constant on the same arbitrary time
intervals, recursive formulas for computing the hazard
function of the time of tumor latency were found by
Moolgavkar and Luebeck (1990), see also Heidenreich
et al. (1997).

It was initially pointed out by Heidenreich (1996) and
subsequently by Hanin and-Yakovlev (1996) and
Heidenreich et al. (1997) that the four parameters u, ge,

/3,/x of the MVK model (which may be constants or, more
generally, functions of time) are not jointly identifiable
from time-to-tumor data alone. This explained the failure
of attempts by several researchers over a substantial
period of time to estimate the four parameters of the MVK
model from time-to-tumor data. A rigorous treatment of
the identifiability problem for the MVK model with
constant parameters along the lines indicated in the
previous section was first implemented by Hanin and
Yakovlev (1996), and is presented below.

Conversely, given any r/ /’, we pick an arbitrary ge >
(c- 8)/2 and set

(2ge- 8)2 c 2 c 2 82

v:=gep, /3"- 4ge /x’- 4a

to find that v, ge,/3,/x > 0 and relations (14) are satisfied.
Thus, there is infinitely many parameter sets 0--
(v, ge,/3,/x) corresponding to each parameter vector
and hence to each survival function (13).

Another way to visualize the set of all model parameters
0 determined by the function ((t) given one of them,
00 (v0, ge0,/30,/xo), is as follows. Setting v Av0,
h > O, we solve the equations for the two parameter sets
given by Theorem 1 to find that

v Auo, ge =Ageo,

/3 (,k- 1)ge0 +/30 + A- 1 o
A /xo, /x=

h

(15)
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The claim/3 > 0 leads to the restriction )t > Ao, where

[(oto- to-/xo)2
nt- 4otoo] 1/2 + (co- to-/xo)Ao

2ao
(note that 0 < h0 < 1). Therefore, together with 00, the
whole curve (Eq. (15)) of parameter vectors 0 with )t > )to
pertains to the same function (t). This explains
numerical findings displayed in Table 1 of Heidenreich
(1996).

In terms of parameters p, i, c the function G(t) takes on
a simpler form

G(t)
(c + )e-ct+c-

compare with Eq. (13). To further simplify it, we
introduce a new set of identifiable parameters (a, b, 0),
where a (c )/2 and b (c + )/2. Clearly, a, b >
0, and

[ (a + b)eat p

t(t) L./ -e(ij (16)

while for the corresponding hazard function we have

e(a+b)t- 1
h(t) pab

b + ae(a+b)t"
(17)

Comparison of Eq. (17) with Eq. (15) by Heidenreich
(1996) yields the following relation between parameters
Xm, y, q introduced by Heidenreich (1996) and parameters
a,b,p Xm pab, 3/=b-a, q= a. Although it was
shown by Heidenreich (1996) that the four rates in the
MVK model are not jointly identifiable, it is not proven
rigorously there that parameters Xm, y, q are identifiable
from the time-to-tumor distribution, i.e. that the
parametric dimension of the MVK model with constant
parameters is exactly three. Finally, a clear distinction
should be drawn (which was not done by Heidenreich,
1996) between model identifiability and goodness offit it
provides to the observed data (sample of tumor latency
times in the case of MVK model). The goodness of fit
depends solely on model adequacy and statistical proper-
ties of sampling. In contrast to this, the property of model
identifiability is intrinsic by nature and bears no theoretical
relation to the model adequacy. However, from a practical
point of view, fitting data requires estimation of model
parameters, which is possible only if these parameters are
identifiable. The same model expressed through an
appropriately chosen non-identifiable set of parameters
provides, indeed, the same fit to the data.

IDENTIFIABILITY PROPERTIES OF THE
YAKOVLEV-POLIG MODEL OF
CARCINOGENESIS

Another two-stage model of carcinogenesis has been
proposed by Yakovlev and Polig (1996). It is similar to the
MVK model in that the survival function of time to tumor
has the same general form (10). However, in contrast to the
MVK model, promotion and killing of initiated cells are

incorporated in the Yakovlev-Polig (Y-P) model as
competing risks.
The Y-P model is based on the following assumptions

(Yakovlev and Polig, 1996).

(1) Let h be the time-dependent dose rate of
administration of a carcinogen. Precancerous
lesions are initiated according to a non-homo-
geneous Poisson process with the mean number
of lesions produced per unit time taken to be 01h.
Here 01 is a positive constant that records the
sensitivity of a cell to the action of the
carcinogen.

(2) Lesions responsible for cell death are formed in
cells according to a non-homogeneous Poisson
process with rate 02h, where the constant 02 > 0
refers to the sensitivity of a cell to the killing
effect of the carcinogen. Cell death is instan-
taneous compared to the duration of the
promotion stage. Once a cell is killed, it may
no longer be promoted and will not form a
tumor.

(3) Cells are promoted independently of each other at
random times with a CDF F. Once a cell is
promoted, the formation of a tumor is irreversible.

Although the Y-P model involves administration of a
carcinogen, it includes a simple model of spontaneous
carcinogenesis with constant initiation rate as well, by
substituting the unit dose-rate function, h(t)= 1, and
regarding 01 as the rate of spontaneous initiation and 02 as
the rate of spontaneous cell death.
The following classes of dose-rate functions h are of

most biological importance.

(a) h- const. This is the case when irradiation with
constant dose-rate throughout the lifespan is used in
animal experiments. Also, as pointed out above, such
dose-rate function occurs in the simplest model of
spontaneous carcinogenesis.

(b) Function h is monotone decreasing. Such dose-rate
functions are characteristic of experiments with
incorporated radionuclides, in which case monotonic
decrease of dose-rate is due to natural decay of
radionuclides and their excretion.

(c) Function h is monotone increasing. This type of dose-
rate functions takes into account effects of aging, in
particular, the drop in repair efficiency of radiation-
induced intracellular lesions. Increasing dose-rate
functions are also used in models of spontaneous
carcinogenesis, and lead to general models of aging
(Yakovlev et al., 1995).

(d) h const > 0 on an initial interval of time and
equals 0 thereafter. This is the simplest model of a

single continuous exposure with constant dose-rate.
(e) h is a piecewise constant function on a finite interval

and is equal to 0 otherwise. Such dose-rate functions
are characteristic of intermittent exposures used in
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many animal bioassays with fractionated continuous
dose delivery.

It was shown by Yakovlev and Polig (1996) that the
hazard rate q in the Y-P model is given by the following
formula:

q(t) O, exp-O2f’oh(X)[ h(x)f(t x)dx. (18t
0

Here h is a given function on [0,oo) describing variable
dose rate, f is the PDF of the time of primary lesion
promotion, and 01, 02 > 0 are constants. It will be
assumed throughout that the function h is non-negative,
measurable, and positive on a set of positive Lebesgue
measure. To emphasize that the model depends on
parameters 01, 02 and f, we will also write o(t)=
qg(t; 01, 02,f).

Identifiability properties of the Y-P model depend
critically on the functional parameter f involved in the
parameter set 0 (01, 02,f). This motivates the following
modification of the general definition (4) of model
identifiability.

DEFINITION 2 Let - be a family of absolutely
continuous probability distributions on [0,oo) with PDF f
and CDF F (we will writef or F -). We say that
the Y-P model is identifiable in the family if

q(t; 01,02,f) qg(t; 01, 02,f) for all t-->0;
(19)

implies that 01 1, 02-- 2 and f--3.
Observe that if the model is identifiable in a family

then this is also true for every subfamily of .
We begin our review of identifiability properties of the

Y-P model with the simple case when the dose rate h is
constant.

PROPOSITION Suppose that h is constant. Then Y-P
model is identifiable.

For the proof of this and other statements in this section,
which proofs are not supplied in the text, the reader is
referred to Hanin and Boucher (1999).

Since fh(t)dt represents the total dose, it is more
realistic to consider the dose-rate functions h subject to the
condition

’h(t)dt < oo. (20)
0

Then it follows from the properties of convolution that
the function q is well defined. In practice, there often
exists a number T > 0 such that h(t) 0 for > T, that is,
the function h has compact support. In what follows, it will
be assumed that dose rate function h satisfies Eq. (20) and
has compact support. As stated above, one of the simplest

and most important examples of dose-rate functions of this
type is

h(x)=a for 0--<x--<T, and h(x)=O for x>T,
(21)

where a is a positive constant. Another example of dose-
rate functions with compact support that will be discussed
below is

h(x) al for 0 <- x <- T/2, h(x) a2 for

T/2<x<--T, and h(x)--O for x>T,
(22)

with constants al, a2 > 0, al # a2. More generally, we
will consider piecewise constant dose-rate functions of the
form

h(t) aix[i_,i)(t) (23)
i=1

where ai > 0 is the dose rate administered over the time
interval [ri-l,ri), i= 1,...,n, 0 r0 < rl <’" < rn
T, and XE stands for the indicator function of a set E. It will
be assumed without loss of generality that ai ai+l for
i-- 1,...,n- 1.We now formulate a general necessary
condition for identifiability of the Y-P model. If it is
violated, the model is not identifiable.

THEOREM 2 Suppose that dose-rate function h satisfies
condition (20) and that, for some T > O, h(t)= 0 for
> T. If Y-P model is identifiable in a family then

F(T)>O for all F-. (24)

Theorem 2 states that identifiability of the Y-P model
in a family of promotion time distributions fails unless
the support of the dose-rate function and supports of all
distributions in overlap. It is quite natural from
biological standpoint to assume that there is a time delay
between the first moment of exposure to a carcinogen and
the moment of appearance of the first clonogenic tumor
cell. In these terms, condition (24) requires this time delay
to be smaller than the duration of exposure to the
carcinogen. In the case of constant dose-rate (in particular,
for spontaneous carcinogenesis with constant rate of
initiation), this condition is automatically met, in
agreement with Proposition 1 claiming that in this case
Y-P model is identifiable in any family . In the rest of
this section, we will consider families for which
condition (24) is met and identify circumstances under
which this condition is also sufficient for identifiability of
the Y-P model.

Let h be a piecewise constant dose-rate function (23). It
follows from Eq. (18) that, for -> T,

Cai[F(t- ’i-1) F(t- -/)], whereqgl (t)
i=1

C-- Olexp-OSh(x)dx.
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Suppose that Eq. (19) holds. Then

Cai[F(t- ri-1) F(t- ri)]
i=1

convergence of the corresponding hazard functions (Eq.
(18)).
The following statement pinpoints a property of E.

(29) that ensures identifiability of the Y-P model.

’ai[(t- ri-1) [(t- ri)], --> T, (25)
i=1

where 7-- lexp(-2fSh(x)dx). Setting T in Eq. (25)
and observing that in view of Eq. (24)

A 2 ai[F(T- ri-1) F(T- ri)] > 0
i=1

and similarly

fi i--lai[(T- ri-1) --/(T- ri)] > 0

we conclude that CA CA. Introduce a function

F(t) F(t)
q(t)’-

A
t-->0. (26)

Then relation (25) becomes

Z ai[qt(t- ri-)- d/(t- ri)]--0,
i--1

t>__T. (27)

To further simplify this equation, denote

a2
kl 1 --, k2

al

a2 a3

al

an- an an
kn-1 kn :=

al al

(28)

PROPOSITION 2 Suppose that every absolutely continu-
ous solution of Eq. (29) with coefficients (Eq. (28)) that
has a finite limit at infinity is constant. Then Y-P model
with dose-rate function (23) is identifiable.

Proof Suppose that Eq. (19) holds for two parameter sets
0 (01, 02,f) and (1, 2 07). Then the function q
defined in Eq. (26) satisfies Eq. (29). Clearly, q is
absolutely continuous on [0,oo) and has a finite limit/

1/A- 1/, at infinity. According to our assumption,
t) 6 for all --> 0. Differentiating Eq. (26) we find that
f(t)/a ](t)/ for almost all --> 0. In view of f(t)dt
f0)(t)dto 1, this implies that A , hence f 25.

For [rn-1, T], we have

g(t)’-j’toh(x)f(t-x)dx
n-1

Z ai[F(t ri-1) F(t ri)] + anF(t rn-).
i--1

Since the function g is continuous on [rn-l,T] and g(T)
A > 0, there exists e C (0, T- m-l) such that g(t) > 0
for (T e, T]. Then by Eqs. (18) and (19)

Olexp-02ffoh(x)dx lexp-2toh(x)dx, @ (T- e, T].

(30)

Note that kl,..., kn # 0 and kl +... + k 1. Then Eq.
(27) acquires the form

0(t) kl 0(t rl) +... + knq(t rn), >- T. (29)

Thus, identifiability problem for the Y-P model with
dose-rate function (23) leads in a natural way to the
functional Eq. (29) on the half-line. Observe that every
solution 0 of this equation is uniquely determined by its
restriction to the interval [0,T), and the latter can be an
arbitrary function. Eq. (29) on the whole real line was
studied in the literature. In his classical memoir, Schwartz
(1947) investigated the structure of complex solutions of
Eq. (29) with arbitrary coefficients. Laczkovich (1986)
determined the structure of non-negative measurable
solutions of Eq. (29) with positive coefficients. The
properties of solutions of the Eq. (29) on the half-line,
however, are quite different from those in the case of the
real line. Two reasons make studying the solution set of
Eq. (29) important: first, piecewise constant dose-rate
functions are commonly used in experimental studies;
second, any dose-rate function that meets condition (20)
can be approximated in L norm by piecewise constant
functions (Eq. (23)), which implies almost everywhere

We differentiate this equality and recall that an > 0 to find
that

O102exp-02yth(x)dx t1 2exp-2f0h(x)a, (T- 8, T].

(31)

Juxtaposing Eqs. (30) and (31), we see readily that
02 2. Then Eq. (30) implies 0 . Therefore, 0 ,
which completes the proof.

COROLLARY In the case n 1, that is, for the dose-rate
function (21), the functional equation (Eq. (29)) is simply
t) (t T), --> T. Every solution of this equation is
a T-periodic function on [0,oo). If such function has a finite
limit at infinity, then it is necessarily constant. Therefore,
in accordance with Proposition 2, Y-P model with the
dose-rate function (21) is identifiable.

COROLLARY 2 Consider the case n 2 with equally
spaced switching points (r0 0, rl T/2, r2 T),
which corresponds to the dose-rate function (22). Then
Eq. (29) becomes

p(t)=(1-k)t-T/2)+kt-T), t>--T, (32)
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with k a2/al. Note that k > 0, k 1. It was shown by
Hanin and Boucher (1999) that, for k > 1, every bounded
solution of Eq. (32) is T/2-periodic. Therefore, arguing as
above and applying Proposition 2 we find that in the case
of the dose-rate function (22) with a2 > al the Y-P model
is identifiable.

Remark For 0 < k < 1, Eq. (32) does have non-constant
solutions with finite limit at infinity which makes
Proposition 2 inapplicable. We also note that the proof
of identifiability of the Y-P model by Hanin and Boucher
(1999) in the case 0 < k < 1 contains a technical gap thus
leaving the problem open.

We now turn to identifiability of the Y-P model for the
more general class of arbitrary bounded dose-rate
functions which contains, in particular, the class (23) of
piecewise constant functions. To make this problem
tractable, we will have to restrict to the following non-
parametrically specified class of families of promotion
time distributions.

DEFINITION 3 A family - of absolutely continuous
probability distributions on [0,oo) is called graduated if for
every two distinct PDFs f, f and for every e > 0,
there is a number A > 0 (which may depend onf,fand e
such that eitherf(t) _< eft) for all >- A off(t) --< ef(t) for
all --> A.

Ifo consists of non-vanishing PDFs then this definition
is equivalent to claiming that the ratio of any two distinct
PDFs from must tend to zero or infinity at infinity.
Indeed, every subfamily of a graduated family is
graduated. As an example, the family of gamma
distributions with PDF given by

f(t) f,(t) t-le-tt > 0, (33)

and f(t) 0 for -< 0, where c, /3 > 0 and F is the
gamma function, is graduated. On the contrary, the
family (16) of latency time distributions arising in the
MVK model is not graduated. For any PDF from this
family with parameters a, b, p behaves at infinity like
Cexp{-bpt}, where C is a positive constant depending
on a, b and p, so that the ratio of two distinct PDFs
with parameters al, bl, Pl and a2, b2, P2 satisfying
blPl -bzp2 tends at infinity to a constant different
from 0 and infinity. More generally, the same is true
for any family of distributions (10) (where it can
always be assumed that F is a CDF of a proper
probability distribution, i.e. that tl.inF(t)= 1) under the
condition that the distribution with CDF F has finite
first moment.

Let h be a given measurable non-negative bounded
function on [0,oo) supported on an interval [0,T]. Denote
Sh :-- {x [0, T] h(x) # 0 }. For a non-negative function

f L([0, eo)), we set

Ef [0, T] f does not vanish a.e. on

t- Sh f-! [0, t]}.

Significance of the set Ef stems from the fact that, for
O<_t<_T,

I Lh(x)f(t x)dx h(x)f(t x)dx
0 Cl[0,t]

| h(t- u)f(u)du,
Jt-Sh (q [0,

so that Ef is equivalent to

h(x)f(t x)dx > O.
0

THEOREM 3 Suppose that dose-rate function h is
bounded and for some T > 0 we have h(t)= 0 for all
> T, Let be a graduatedfamily.

1. If Y-P model is identifiable in the family then
mes Ef > 0 for every function f .

2. If mes(Sh f-I Ef > 0 for all f then Model 1 is

identifiable.

As a corollary of Theorem 3, we obtain the following
verifiable criterion of identifiability of the Y-P model that
extends Theorem 2 to the case of graduated families of
promotion time distributions.

THEOREM 4 Suppose that dose-rate function h is
bounded, supported on [O,T]for some T > O, andpositive
almost everywhere on [0,T]. Then Y-P model is

identifiable in a graduatedfamily ifand only ifF(T) >
0 for all F .

Yakovlev et al. (1977), Yakovlev and Polig (1996),
Boucher and Yakovlev (1997), Boucher et al. (1998) and
Tsodikov and Mtiller (1998) used Y-P model for analysis
of real time-to-tumor data that resulted from animal
experiments. In particular, Y-P model has explained
successfully the inverse dose-rate effect in radiation
carcinogenesis (Yakovlev et al., 1977; Yakovlev and
Polig, 1996) and allowed estimation of the proportion of
initiated cells, which are killed by urethane in mice
(Boucher and Yakovlev, 1997; Boucher et al., 1998). The
promotion time distribution was assumed to belong to the
gamma family with PDF given by Eq. (33). As follows
from Theorem 4, in this case the model is identifiable for
all practically important dose-rate functions h. This
explains why in the papers cited above parameters of the
Y-P model were successfully estimated using the method
of maximum likehood.
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Possible lack of identifiability of the Y-P model
leads to the problem of computing its parametric
dimension and describing identifiable combinations of
parameters 01, 02, f.

IDENTIFIABILITY PROBLEM FOR TWO-STAGE
MODELS

In the two previous sections, we discussed mechanistic
models of tumor latency providing biologically motivated
explicit analytic expressions for the distribution of time T
to the appearance of the first clonogenic tumor cell
measured from the birth of individual for spontaneously
arising tumors and from the start of exposure to
carcinogen in the case of induced tumorigenesis. These
formulas contain several parameters which, under certain
conditions discussed above, are identifiable from the
distribution ofRV T. In many instances, the distribution of
time to tumor is assumed to belong to the gamma family or
any other flexible multiparametric identifiable family for
that matter. It should be emphasized that duration of tumor
latency is unobservable which renders direct inference
about its distribution including parameter estimation
impossible. This difficulty can be circumvented by
resorting to observable endpoints, such as age at tumor
detection. This necessitates involvement of the pro-
gression stage of tumor development (Yakovlev et al.,
1996; Hanin et al., 1997; Bartoszyffsky et al., 2001) that
was neglected in most of the previous works, and
modeling the process of tumor detection, see next section
for details. A distinctive feature that makes this approach
appealing is availability of additional clinical information
on tumor size at detection. Consider, in particular, the
simplest case of deterministic exponential tumor growth.
In this casef(t) eat, where is time from the appearance
of the first clonogenic tumor cell (that is, from tumor
onset), fit) is the tumor size (the number of cells) at time t,
and A > 0 is a constant growth rate. As shown in the next
section, under natural assumptions about the detection
process, the time W of spontaneous tumor detection
measured from tumor onset has the distribution with PDF

distribution of RV T / W? This leads to the following
general problem.

PROBLEM Let and 52 be two families ofprobability
distributions on [0,c). Is it true that the family of
convolutions P’Q, where P and Q 52, is

identifiable ? In other words, does

P1 * QI P2 * Q2,

where P1,P2 and Q1, Q2 52, imply that P1 P2
and Q Q27

Taking both families to be the set of degenerate
distributions 6a, a >- O, and observing that 6a * 6b 6a+b,
we conclude that in general the answer to this question is
negative. Yet another counterexample is given by gamma
distributions F(al,b) and I’(az,b) with the convolution
being equal to F(a + a2, b).

The following theorem provides sufficient conditions
for the positive solution of the problem. For the proof of
this result, see Bartoszyffsky et al. (2001).

THEOREM 5 Let and 52 be two families of absolutely
continuous probability distributions on [0, oo) with PDFs
p and q 52. Suppose that

(1) family is graduated;
(2) for every p , there is M M(p) > 0 such that

p(t) > 0 for all > M;
(3) for every p and for each s > O, there exist a

finite limit

hp(s) lim
p(t s).

t--. p(t)

(4) for each q 52,

It P(t-s)lim q(s)ds hp(s)q(s)ds;
t.-,oo o p(t) o

(5) for all p . . and q . 52,

0 < hp(s)q(s)ds <
o

Then the family of convolutions P * Q, where P
and Q 52, is identifiable.

fw(w) oze)tWe-(cff’)(ew-1), w-->O, (34)

where a is a positive constant interpreted as the rate of
spontaneous tumor detection. It is easy to see that
parameters a and A are jointly identifiable from the
distribution of RV W.

In practice, observed is a sample from the distribution
of RV T + W (age at spontaneous tumor detection). Since
biological mechanisms governing duration of tumor
latency and those of tumor progression and detection are
quite different and have no direct bearing on each other,
RYs T and W can be viewed as independent. The question
now becomes: Is the entire set ofparameters involved in
the distributions of RVs r and W identifiable from the

Remark 1 For concrete families and 52, condition (4)
of the theorem usually follows from standard results about
passage to limit in the Lebesgue integral. In particular,
Theorem 5 can be applied in the case when is the family
of gamma distributions F(a,b) with shape parameter a ->
1 and 52 is the family (34). First, conditions (1) and (2) of
Theorem 5 are clearly satisfied. Next, for p F(a, b) we
have for all s >- 0

p(t- s) (t--S)
a-1

ebs ebs
p(t)

as t--, oo.

Hence, condition (3) is met with hp(s)= ebs. Further,
assuming that a -> we obtain, for any PDF q from the
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family (34),

p(t- s) Ip(t s)

o
q(s)ds

o p(t) X[o,tl(s)q(s)ds

Iebsq(s)ds < oo
0

by the Lebesgue’s Theorem on Dominated Convergence,
which is condition (4). Finally, condition (5) also holds.
This leads us to a conclusion that if promotion time T
follows a gamma distribution F(a,b) with a >-1 and
tumor growth is exponential with rate A then parameters a,
b, a and A are jointly identifiable from the observed
distribution of the age at spontaneous tumor detection.

Remark 2 Since the MVK family (16) is not graduated
and for the family (34) condition (3) of Theorem 5 is
missed, the convolution of the PDF corresponding to the
MVK model with Eq. (34) is not covered by Theorem 5.
The same is true for the Y-P model. However, this does
not mean necessarily that those convolutions are non-
identifiable, but rather that more powerful analytic
methods are required to clarify their properties associated
with the notion of identifiability.

The process of spontaneous tumor detection will be
characterized by the hazard function (detection rate) r(t).
We proceed from the following assumptions.

(1) Function f is differentiable andf > 0.
(2) RVs T and W are absolutely continuous and

independent.
(3) The rate of spontaneous detection is proportional to

tumor size: r aS, where a > 0 is a constant.

Assumption (2) suggests that tumor progression is
independent of the age of onset of the disease.
Assumption (3) goes back to Brown et al. (1984), see
also Klein and Bartoszyrfski (1991) and Bartoszyfisky
et al. (2001). For a more detailed discussion of our
hypotheses, the reader is referred to Bartoszyfisky et al.
(2001) and Hanin et al. (2001). It will be assumed in
what follows that lim f(t)= oo; however, all results in
this section are also true with minor notational
changes for the case when the limit is finite. An
example of saturated tumor growth is given by the
Gompertz model (35).

According to assumption (2) and formula (3), the
survival function for the RV W is given by

IDENTIFIABILITY OF THE JOINT
DISTRIBUTION OF AGE AND TUMOR SIZE AT
DETECTION

Fw(w) exp(- r(u)du) exp(-a f(u)du)
o o

e-aw), w >-- O,

Age U and tumor size S at spontaneous tumor detection
serve as a valuable source of information for making
inference about important biological parameters involved
in the distribution of unobservable duration T of tumor
latency discussed in "Non-identifiability of the Moolgav-
kar-Venzon-Knudson two-stage model of carcinogen-
esis" and "Identifiability properties of the Yakovlev-
Polig model of carcinogenesis" sections. Spontaneous
tumor detection occurs in the course of occasional medical
checks or through onset of clinical symptoms of the
disease and should be distinguished from screening based
detection that comes as a result of disease specific medical
exams scheduled at prescribed time moments. Let W be
the time of spontaneous detection counted from the
moment of tumor onset, then U--T4-W. Let f:
[0, )--, [1, oo) be a deterministic function describing
the law of tumor growth, then S--f(W) is the
corresponding tumor size at detection. The function f
may depend on one or several parameters that reflects
individual variability of tumor progression. The most
important example is the exponential growth f(w) eAw,
A>0, see Bartoszyrsky (1987) for substantiation.
Another example is given by the two-parametric
Gompertz family,

S(w) ea(1-e-/w) (35)

with constant parameters A, B > 0.

where cI)(w)’- f(u)du. Hence,

fw(w)-- af(w)e-’I’(w), w >-- O.

Then for the tumor size S at detection we have

s(s) ;w(g(s)) e-a4(g(s)) s > 1

where we denote hereafter by g the inverse function to
f(g := f-l) which existence follows from assumption (1).
Therefore,

fs(s) asg(s)e-g(s))

In particular, for f(t) eAt,
s >-- 1. (36)

w(W) e-(c/A)(ezw-1), w > 0,

which justifies formula (34) for the PDF ofRV W, and also

[Zs(s e-(/h)(s-1) s > 1 (37)

Equation (37) suggests that tumor size at detection follows
a translated exponential distribution with parameter a/A.

To compute the distribution of random vector Y
(T 4- W,S), we look at Y as a transformation of the
random vector X := (T, W), Y q(X), where q(t, w)
(t + w,f(w)), t,w >--O. According to assumption (2),
components of X are independent RVs. The inverse
function q 9-1 A [0, cx3) X [0, (x)), where A
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{(u,s)’u->0,1 <-s<-f(u)}, is given by (u,s)=
(u- g(s),g(s)). Note that the Jacobian of p is g. Then
for the PDF of Y we have

fy(u, s) fx((u, s))g’(s)

fv(u g(s))fw(g(s))g’(s)

fv(u g(s))fs(s), u >-- 0, 1 <-- s <--f(u),
(38)

and 0 otherwise. In the particular case of exponential
tumor growth with rate A > O, we find using formula
(37) that

( ls)Cee-(/A)(s-1)fr Ufr(u, s) X
u >-- O, 1 <-- s <-- e".

Thus, the distribution of random vector Y is absolutely
continuous, but the support of Y depends on unknown
parameters involved in the law of tumor growth (A in the
case of exponential growth).

Let the distribution of tumor latency time Tdepend on a
parameter set 0. Notationally, this will be reflected by
settingfv(t) h(t; O) with the understanding that h(t; O)
0 for < 0. Similarly, to show dependence of the law of
tumor growth f and the distribution of tumor size at
detection S on parameters, we will write f(t) --f(t; rl) and
fs(s) k(s; 3. Observe that parameter sets and : may
have common elements. The following theorem shows
that under natural conditions all parameters involved in
the joint distribution of age and tumor size at detection are
identifiable.

THEOREM 6 Suppose that

i) f(t; rl) > 0 for all >- 0 and
ii) h(u, O) > 0 for all u > 0 and 0;
iii) k(s, > 0 for all s -> 1 and
iv) parameters offunctions h, k, f are identifiable.

Then model (38) of the joint distribution of age and
tumor size at detection is identifiable.

Proof Suppose that

h(u g(s; r/); O)k(s; h(u g(s; ); )k(s; ) (39)

for all u >- 0, s >- 1. Comparing the supports of both sides
of this equality with conditions (i)-(iii) and formula (38)
taken into account, we conclude that f(t, ) f(t; l) for
all >-0. Therefore, in view of condition (iv), rt--.
Next, integrating both sides of Eq. (39) for fixed s from
g(s; q) to infinity and observing that

Ih(u g(s; r/); O)du h(x; O)dx 1
g(s;r/) 0

we conclude that k(s; 3 k(s; ) for all s >- 1. Hence,
owing to condition (iv), sc . Also, due to condition (iii),
we derive from Eq. (39) that h(u g(s; r/); 0) h(u
g(s; rt); ) for all s >- 1 and u >- g(s; rt) so that h(x; O)
h(x; O) for x -> 0. Finally, applying condition (iv) we find
that 0-- 0. Theorem 6 is proved.

Remark Condition (i) is satisfied for the exponential and
Gompertz laws of tumor growth. Condition (ii) is met for
any tumor latency time model in which the hazard
function is positive on (0,oo). In particular, this is the case
for the gamma distribution, MVK model and also Y-P
model provided that CDF F of the promotion time is
positive on (0,oo) and the dose rate function h is positive
almost everywhere on (0, a) for some a > 0. Finally, it
follows from Eq. (36) that condition (iii) of the theorem
holds under assumptions (1) and (3).

IDENTIFICATION OF RANDOMIZED MULTIHIT
MODELS OF IRRADIATED CELL SURVIVAL

It was discovered in the 1920s that biological effects of
ionizing radiation are significantly different from those
caused by other physical and chemical agents. In the spirit
of the ideas of quantum mechanics, this was attributed to
the discrete nature of ionizing radiation and stochastic
character of radiation energy scattering on cell structures.
The following two postulates that form the core of the "hit
and target" theory were suggested to obtain a quantitative
description of the biological effects of ionizing radiation.

(1) Targetprinciple. Every cell contains a small sensitive
region (called the target) that has to be effected for
damage to result.

(2) Hit principle. There is a critical number m of hits in
the cell target such that the cell is killed if its target is
hit at least m + 1 times.

It is now commonly believed that cell target can be
identified with cellular DNA, which single and double
strand breaks constitute primary radiation-induced
lesions. These lesions are subject to repair. Therefore, it
is more biologically relevant to interpret m as the number
of unrepaired (or irreparable) lesions (assumed to be
identical) that a cell can bear without being killed.
Alternatively, one may assume that a cell dies when it has
at least one unrepaired lesion, but its repair capacity is
limited to m lesions. For an at depth discussion of the
foundations of the hit and target theory, the reader is
referred to Dantzer (1934), Clifford (1972), Turner
(1975), Hanin et al. (1993), Hanin et al. (1994) and
Hanin et al. (1996).

It follows from the above two principles that survival
probability of a cell exposed to an instantaneously
delivered dose D of ionizing radiation is given by

(xD)k
S(D; m, x) e-xDE k---. (40)

k=O
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where x > 0 is referred to as cell radiosensitivity. Since
the expected number of hits in the cell target is equal to
xD, parameter x can be viewed as a basic characteristic of
the physical side of the damaging process. Formula (40)
represents the classical m hit model.
Damage repair capacity of cells displays a high degree

of variability. Therefore, it is appropriate to view the
critical number m of hits in the target as a RV M taking
non-negative integer values. By compounding Eq. (40)
with the distribution of RV M we obtain the following
randomized version of the multihit model (40):

(xD)k
S(D; Q,x) e-xDZpr(M m)Z k!m=O k=O

(xD)ke-XZ k! Q(k),
k=O

(41)

where Q(k) .’= Pr(M --> k), k --> 0, is the survival sequence
for the RV M. Denote by 2 the class of all such sequences.
It is easy to see that a sequence Q(k)}k=0 belongs to if
and only if it is non-increasing, Q(0) 1 and lim Q(k)
0. The model (41) was extensively studied @Clifford
(1972). It is used for describing dose-effect relationships
for a single cell or a cell population that is homogeneous
with respect to radiosensitivity x. A few biologically
motivated examples of model (41) are given below.

(1) The classical m-hit model (40). It corresponds to the
sequence Q(k) 1 for k 0, 1,..., m and Q(k) 0
for k > m.

(2) One-hit-to-kill model with misrepair. This is the
classical m-hit model with m 0 with the additional
feature that repair of a lesion may not be successful
(which is called misrepair). Suppose that misrepair
of a primary lesion occurs with probability q. Then
the expected number of unrepaired lesions is (1-
q)xD, and therefore

S(D; q,x) e-(1-q)xD e-xD- (xD)k, qk
k!

k=O

which is a randomized multihit model (41) with
Q(k) qk, k >- O.

(3) m-hit model with radiation-induced damage repair.
There is experimental evidence suggesting that
exposure to radiation enhances lesion repair pro-
cesses, so that every lesion that is not repaired by the
background damage repair system can be repaired by
its additional radiation-induced component. Let p be
the probability of this event. Then the survival
probability is given by

S(D;m,p,x)= e-xD[k=o (xD)kk---(--t-" k=m+lZ (xD)kk--.pk-mI

This function belongs to the class (41) with Q(k) 1
for k 0, 1,..., m and Q(k) pk-m for k > m.

(4) Multitarget model. Suppose that a cell having n --> 2
identical targets (for example, chromosomes) is
killed when all its targets are destroyed, i.e. hit at
least once. If x is radiosensitivity of the cell, then for
its survival probability we have

S(D; n, x) 1 (1 e-xD/)

e-xD (xD)k

k!
Qn(k)

k=0

with

Qn(k) (-1)n-i-1
i--o

It was shown by Clifford (1972) that this sequence belongs
to the class .
The use of the model (41) is hampered by the fact that

parameter x is not identifiable from the dose-effect
function S(D). This remarkable fact, that was discovered
by Clifford (1972), is a matter of the following statement.

PROPOSITION 3 If a function S(D has representation
(41) for some x > 0 with a sequence Q-- Qx then,
for every y > x, there exists a sequence Qy such that

(xD)k
S(D) e-xDZ k!

Qx(k)
k=O

(yD)k
Qy(k). (42)e-wDZ k!

k=O

Specifically,

Qy(k)-- Z 1
i=o

k-i

k_>0.

Estimates of the smallest value of x for which
representation (41) of a given function S(D) holds with
some sequence Q Qx were obtained by Hanin et al.
(1996). It was also shown in this work that each of the two
parameters Q and x of the model (41) is uniquely
determined by the dose-effect function S(D) if the other
parameter is fixed. Therefore, parametric dimension of the
randomized multihit model (41) is equal to one.

Radiosensitivity x of cells in a cell population varies in
wide limits and thus could be thought of as a RV.
Denoting by /x its distribution and integrating Eq. (41)
with respect to /x, we obtain the following randomized
multihit model for the population dose effect function:

S(D; Q, la,) e-xD
(xD)k

Q(k)dtz(x). (43)
0 k=O

k!

By contrast to the model (41), the two distributional
parameters of the model (43) turn out to be identifiable in
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several important cases listed in the following theorem.
For the proof of this theorem, see Hanin et al. (1996).

THEOREM 7

(1) For the classical m-hit model with a fixed non-
random value m and random x, the distribution tx is

identifiable.
(2) If Ix is any given non-degenerate distribution (Ix v

go) that has finite moments of all orders then the
distribution of the hit parameter m is identifiable.

(3) Model (43) is completely identifiable in everyfamily
(Q, Ix)}, where Q is the survival sequence for a

distribution on 7/+ with finite moments of all orders
and Ix is a gamma distribution.
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