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The Coupling of Dynamics in Coupled Map Lattices
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We investigate the coupling of dynamics in coupled map lattices (CMLs) which is not only related to
coupled parameter, but also the asynchronization among different mean fields in the lattices. Computer
simulations show that the optimal coupling among mean fields can be found from the maximum
coupling of dynamics in various CMLs. As a consequence, the application areas of coupled systems
may be broadened due to the better understanding of their dynamics.
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Coupled chaotic systems are important in the research of
chaos. Not only can they serve as models of nonlinear
spatially extended systems, but they also play an important
role in understanding the mechanism of biological
information processing (Kaneko, 1989). Coupled map
lattices (CMLs) are simple models of spatio-temporal
chaos and have been extensively investigated by a number
of researchers (Kaneko, 1995; Lemaitre and Chate, 1998;
Belykh et al., 1998; Chen et al., 1998; 1999; 2000). They
can be analyzed based on the collective movements of
coupled oscillators (Willeboordse and Kaneko, 1994). In
general, they have the form

Xn+l(i) (1 e)f(xn(i))+ ehn(i) (1)

where xn(i) is the ith unit’s value at time n;
(i 1,2,...,M; M is the size of the one-dimensional
lattice) and hn(i is the interaction mainly caused by other
elements in the lattice. The first term at the right-hand-side
of Eq. (1) represents the unit’s dynamics given by a
properly-selected nonlinear mapping function fix) while
the second term is the coupling of the interaction through
the coupled parameter e(0 -< e -< 1).

In general, there are three types of coupling in CMLs.
Those with local, direct-neighbor coupling have the form
hn(i) f(xn(i + 1)) or hn(i) f(x(i 1)) are called one-
way CMLs. They are simple coupled systems that are
usually regarded as a kind of diffusion process. On the
other hand, the interaction term of globally coupled maps

is actually the mean field with the following form

1 M

h,(i) H, jf Vi= 1,2,...,M (2)

In general, the interaction term, hn(i) of intermediate-
range coupling is given by

1 K

hn(i)
2K q- 1 Z f(xn(i + k))

k=-K

(3)

where K is the coupling range, 1 < K < M/2.
An application of chaotic systems is for communication

(Pecora and Carroll, 1990; Sinha et al., 1992; Xiao et al.,
1996; Rolf et al., 1998; Zhou and Lai, 1998; Anoniou
et al., 1999; Chen et al., 2001). It is reported that a one-
way CML with local, direct-neighbor coupling can be
synchronized with another by just a scalar signal (Johnson
et al., 1996; Peng et al., 1996). More complex coupled
systems such as globally or intermediate coupled maps
may have greater potential in secure communication as
these systems can produce more complex high dimen-
sional hyperchaos. In the investigation of various coupled
systems, the coupled parameter e is frequently used to
indicate the strength of coupling from other fields in the
same lattice (Amengual et al.; Maistrenko et al., 1998).
When e is small, it is weak coupling and the strength of
coupling increases with e. In different ranges of e, there
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are chaotic phenomena with different characteristics
(Kaneko, 1995; Chen et al., 1998; 2000). From Eq. (1), it
is obvious that e can represent the strength of coupling
mainly contributed by other fields in the lattice. However,
it cannot reflect the degree of asynchronization among the
fields, which provides an implication on the coupling of
dynamics in the coupled systems. We take the
intermediate-range coupled system defined by Eqs. (1)
and (3) as an example to illustrate this. The well-known
logistic function f(x) 1 ax2 with 0 --< a -< 2 is used
here as the mapping function. Let M 101, K 40, e

0.8, a 1.99, and the initial field values are random
numbers between 0 and 1. After 1000 initial iterations, the
lattice becomes a one-dimensional system with xn(1)---
Xn(2) Xn(101), i.e. all the field values are the same.
The system enters a phase of global synchronization due
to strong coupling among different fields. The correspond-
ing synchronized motion can be chaotic or regular and the
dynamics is as simple as that of a lattice formed by
independent, uncoupled (e 0) elements (Heagy et al.,
1994; Morelli and Zanette, 1998). In this case, the coupled
parameter alone is not sufficient to indicate the actual
coupling of the system dynamics as it just reflects a factor
of the dynamics: the strength of coupling among different
fields. The other factor, i.e., the degree of asynchroniza-
tion among different fields should also be considered.

Based on the coupled parameter, we propose the
coupling of dynamics to investigate the coupling of the
dynamics in CMLs. It can be used in simple systems, as
well as complex systems such as the intermediate-range
coupled ones. In the following, we define the coupling of
dynamics and present simulation results to show its
properties.
The coupling of dynamics r/can be simply interpreted

as follows

r/= ep (4)

where

1 N

n=l

1 M

Atn Z ([n hn(i))e

i=1

(5)

(6)

1 M

fin /hn(i).= (7)

From Eq. (4), it is obvious that the coupling of
dynamics is governed by two factors. One of them is the
strength of coupling mainly caused by other fields in the
lattice (i.e. the coupled parameter e while the other is the
time-averaged mean-square deviation of the interaction p.
The latter factor reflects the average degree of
asynchronization among different fields from the very
beginning to the current time N. In simple CMLs, the

strongest coupling of dynamics is always achieved when
e 1. However, in complex CMLs such as those with
intermediate-range coupling, too large of e may lead to a
rapid decrease in p. Thus the strongest coupling of
dynamics is not always achieved when e- 1. This is
illustrated by the following two examples.

Example 1 The simplest type of locally-coupled CMLs,
the one-way CML, is studied here. It is defined by the
following equations

Xn+l (i) (1 ei)f(xn(i)) + e’f(Xn(i + 1)) (8)

xn(M / 1) xn(1) (9)

Here we choose logistic function in the lattice with size
M 101 and ei-- Vi 1,2,...,M. The range of is
from 0 to 1 and the precision of calculation is Ae 0.01.
After N 20,000 iterations, p and r/are calculated with
the first 1000 initial transients omitted. The results are
plotted in Fig. l a, b while the two largest Lyapunov
exponents (Eckmann and Ruell, 1985) /max and /max2
(/rnax > /max2) are shown in Fig. lc. From Fig. la, we
find that p does not always decrease monotonously with e.
When e 1, both r/and p are the strongest. The coupling
of dynamics is thus the largest. In this simple coupled
system, the strongest coupling of dynamics can also be
found by using the coupled parameter e. Note that rt
increases with e although the graph in Fig. lb is not
strictly linear. This shows that the coupled parameter can
also reflect the coupling of the dynamics, as the one-way
CML is a simple coupled system. Figure lc shows that
there is only a small difference between the two largest
Lyapunov exponents and thus leads to hyperchaos with
various .
Example 2 We simulate the intermediate-range coupled
system defined by Eqs. (1) and (3). The mapping function
is the logistic function and the lattice size is M 101. In
particular, K varies between 1 and 50 and is between 0
and 1. The precision of calculation is AK 1 and Ae
0.01 while the total number of iterations is N 20,000.
After the 1000 initial transients are omitted, the maximum
coupling of dynamics Tmax and the corresponding value of
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FIGURE Characterization of the coupling of dynamics and Lyapunov
exponents for various coupled parameter when M 101. (a) The degree
of asynchronization among mean fields p, (b) the coupling of dynamics
and (c) the two largest Lyapunov exponents maxl and/max2 (maxl >
Amax2 versus coupled parameter .
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FIGURE 2 Characterization of the strongest coupling of dynamics for
various coupled range K. (a) The strongest coupling of dynamics max
versus K, and (b) the coupled parameter e versus K when the coupling of
dynamics is the strongest.

e are found for each K. The results are plotted in Fig. 2a, b.
From the figures, we observe that with the increasing of K
from 1 to 25, T/max increases accordingly (except a small
drop in the region around K 15). When K 25, the
coupling of dynamics has the largest value among all the
coupled ranges. At this point, the two factors e and p
achieve the best combination. The corresponding
attractors are widely distributed in space. For the globally
coupled case (K 50), T/max --0.002 which corresponds
to a weak coupling of dynamics. The system is similar to a
one-dimensional logistic map that generates simple
dynamics and locally distributed attractors. Evidently,
this system is not suitable for some applications such as
secure communication. From Fig. 2b, we observe that
when K is small, e is found to have the value around one.
This shows that both the coupled parameter and the
coupling dynamics possess the largest value at the same
time. Within this range of intermediate coupling, the
coupled parameter, together with the Lyapunov exponents
are sufficient to reflect the dynamics of simple CMLs.
However, when the coupling range is extended and the
CMLs become more complex, these parameters cannot
fully describe the system dynamics besides pointing out
that a particular region in phase space is the coherent
phase (i.e. T/= 0). Although the fully synchronization
among different fields (corresponds to the case p 0) can
easily be found from the field values during the iterations,
the abandon of p at regions where p # 0 may lead to a
wrong analysis on the dynamics which may then affect the
applications of CMLs.

Figure 3 is a plot of the coupling of dynamics and the
Lyapunov exponents of the intermediate coupled system
with K 40 versus the coupled parameter. In Fig. 3a, we
observe that T/is at its maximum (0.6) when e 0.42. At
the point e 0 and within the range 0.62 < e < 1, T/= 0
which correspond to uncoupled and synchronized
dynamics, respectively. Figure 3b is a plot of the two
largest Lyapunov exponents Amaxl and Amax2 (Amaxl >
Amax2) versus e. When T/= 0, Amax 0.66 which is the
value of the Lyapunov exponent in one-dimensional
system. After omitted the 1000 initial transients, the fields
xn(1),x,(2),...,xn(lO1) have different styles at various
coupled parameters. When e 0, the fields are fully
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FIGURE 3 Properties of the coupling of dynamics and the Lyapunov
exponents for various coupled parameter whenM 101 and K 40. (a)
The coupling of dynamics r/, (b) the two largest Lyapunov exponents
Amaxl and Amax (Amaxl > Amax2) and (c) the difference in Lyaponov
exponents AA versus coupled parameter .
uncoupled and they lead to the highest value of p. When
0.62 < e--< 1, they are fully synchronized due to the
strong coupling among different fields. The coupled
parameter has different values in these two cases, but the
corresponding coupling of dynamics are both zero. This
implies that both dynamics are the same as that of a one-
dimensional map (Maistrenko et al., 1998). The difference
of the two largest Lyapunov exponents AA(AA--
Amax Amax2) versus e is plotted in Fig. 3c. When e <
0.42, AA remains at small values. But when e > 0.42, AA
increases rapidly. As a result, e 0.42 can be considered
as a threshold ec. At this point, the it has its largest value
T/max 0.60 which implies the strongest coupling of
dynamics.
The proposed coupling of dynamics can reflect the

actual coupling of the dynamics in various CMLs
effectively and may advance their potential applications.
For example, there are chaotic, as well as regular states in
Figs. 1 and 3. In chaotic states, the large values of coupling
of dynamics indicate low mutual correlation among
different fields which is important in multi-channel
spread-spectrum communication (Xiao et al., 1996).
When e < ec (where ec corresponds to the coupled
parameter that leads to the largest coupling of dynamics.
In Fig. 1, ec 1), the chaotic states are hyperchaos
because the difference among the two largest Lyapunov
exponents are small. On the other hand, when e > ec, the
coupling of dynamics drops substantially and hyperchaos
disappear no matter how large the lattice size is. In regular
states, one of the important applications is for information
processing in artificial intelligence. This application
requires that the information representation is stable
over a wide range of parameters. This means that the
periods are relatively independent of the parameters
(Ishii et al., 1996). If the coupling of dynamics can be kept
at approximately the same value over a wide range
of parameter, the intermediate coupled system with
the corresponding range of parameter can meet the
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requirement. In Fig. 3a, when 0.35 < e < 0.43, the values
of /range are between 0.5 and 0.6 and it is suitable for
information-processing applications.
To summarize, we have investigated the coupling of

dynamics in both simple and complex CMLs developed
from mapping functions. Simulation results show that for
this purpose, it can reflect the properties of dynamics more
effectively than the coupled parameter. Moreover, it leads
to a deeper understanding of various coupled systems and
may advance their applications.
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