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In this paper, we formulate a discrete time version of the Kaldorian macrodynamic model in a
small open economy with fixed exchange rates. The model is described by a system of the
three-dimensional nonlinear difference equations with and without stochastic disturbances
(noise effects). We study the local stability/instability properties analytically by using the
linear approximation method, and chaotic dynamics with and without noise effects are
investigated by means of numerical simulations. In general, it is believed that the effect of the
noise is to obscure the basic structure of the system. But, this is not necessarily the case. We
show by means of numerical analysis that the noise can reveal the hidden structure of the
model contrary to the usual intuition in some situations.
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1. INTRODUCTION

The purpose of this paper is to formulate a

macrodynamic model which is described by a sys-
tem of the three-dimensional nonlinear difference
equations with and without stochastic disturbances

(noise effects), and to investigate its behavior by
means of analytical method and numerical simula-
tions. The model presented in this paper is a discrete
time version of the Kaldorian business cycle model
in an open economy which was formulated by

Asada (1995) as a continuous time model, Con-
trary to Asada (1995)’s original model, we intro-
duce the noise effects.

Generally speaking, the economy is not isolated
system, but it is subject to the interactions with
other subsystems of the society. One of the effective
methods to model such influences is to introduce
the ’noise’ (stochastic disturbance). In our model,
it is supposed that another subsystem named
’foreign country’ exists outside the system, and the
dynamics of the economy are affected by the

Corresponding author. E-mail: asada@tamacc.chuo-u.ac.jp.
The original version of the Kaldorian business cycle model in a closed economy was presented by Kaldor (1940)’s classical paper,

and it was later refined by several authors. See, for example, Chang and Smyth (1971), Gabisch and Lorenz (1989), and Lorenz (1993).
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transactions with ’foreign country’. We assume that
the parameter/3 which reflects the ’degree of capital
mobility’ is subject to the stochastic disturbances,
and study the effects of the noise on the dynamics of
the system by means of numerical simulations.
A seminal paper which introduced noise into the

Kaldorian business cycle model in a closed econo-

my is Kosobad and O’Nell (1972)’s model. Dohtani
et al. (1996)’s work is a more recent contribution.
In particular, Dohtani et al. (1996) introduced the
noise effects into the Kaldorian business cycle
model which is described by the two-dimensional
nonlinear difference equations, and showed by
means of numerical experimentation that the noise
can reveal rather than obscure the hidden structure
of the system in some situations contrary to the
usual intuition. In this paper, we show that such
a conclusion also applies in an extended version of
the three-dimensional Kaldorian system in an open
economy with fixed exchange rates. In particular,
it is shown by means of numerical approach that
the noise can reveal the hidden chaotic attractors
at the vicinity of the ’window’, and two separate
chaotic attractors can be combined under the
influence of the noise.

In this paper, we shall consider a stochastic
version of Asada (1995)’s model of fixed exchange
rates. We can describe the basic system of
equations as follows:

Ks+ Ks Is; (2)

c, c( + Co; 0<c< ,c0>0;

Is I(Ys, Ks, rs); Iy- OIs/OYs > O,

IK- OIs/OKs < O, Ir OIt/Ors < 0; (4)

Tt -"rY,- To; 0 < - < 1, To > 0; (5)

M,/p- L(Ys, r,); Lr- OLs/OYs > O,

Lt OLs/Ors < 0; (6)

Jt J(Yt, Et); Jy- OJt/OYt < O,

JE OJ,/OEs > 0;
(7)

Qt ( + crTt){rt rf (E Es)/Et);
>0, or>0;

2. THE MODEL

Asada (1995) tried to extend the Kaldorian type of
the nonlinear business cycle model to the small open
economy by using the deterministic continuous
time model. In Asada (1995), both the system of
fixed exchange rates and that of flexible exchange
rates were formulated and investigated by analy-
tical method and numerical simulations. In parti-
cular, the effect of the change of the parameter/3
which represents the ’degree of capital mobility’
were analyzed, and it was shown by means of the
Hopf bifurcation theorem that the cyclical fluctua-
tion can occur at some parameter values in the
system of fixed exchange rates.

At-Js+Qs; (9)

Es E; (1 O)

E E; (11)

Ms+l Ms pAs; (12)

where the meanings of the symbols are as follows:
Y net real national income, C real consumption
expenditure, I-net real private investment expen-
diture, G=real government expenditure (fixed),
K=real physical capital stock, T=real income
tax, M-nominal money supply, p=price level

The model of flexible exchange rates will be considered separately in another paper.
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(fixed), r-nominal domestic rate of interest,
rf-nominal foreign rate of interest (fixed),
E value of a unit of foreign currency in terms of
domestic currency (exchange rate), Ee-expected
exchange rate of near future, J-- balance of current
account (net export) in real terms, Q--balance of
capital account in real terms, A- total balance of
payments in real terms, c adjustment speed in the
goods market,/3-parameter which represents the
"degree of capital mobility" (/3 > 0), - normal
pseudo-random number N(0, 1), cr standard devi-
ation parameter (or> 0). The subscript denotes
time period.

Equation (1) formulates the quantity adjustment
process in the goods market, i.e., Yt fluctuates
according as the excess demand in the goods market
is positive or negative. Equation (2) is the capital
accumulation equation. Equations (3)-(5) are con-
sumption function, investment function, and income
tax function respectively. Equation (6) is the
equilibrium condition in the money market. Equa-
tion (7) is the current account function. Equation
(8) says that the balance of capital account depends
on the difference between the rates of return of
domestic and foreign bonds. It is assumed that the
parameter 3 (degree of capital mobility) is fluctu-
ated by noise. Equation (9) is the definition of the
total balance of payments. Equations (10) and (11)
express the institutional arrangement of the system
of fixed exchange rates. Equation (12) says that
money supply endogenously fluctuates according
as the total balance of payments is positive or
negative under the system of fixed exchange rates.

These equations can be reduced to the follow-
ing set of three-dimensional nonlinear difference
equations:

(i)

(ii)

(iii)

(s)

We shall call the system ($1) ’model 1’. By the
way, Chang and Smyth (1971)’s version of the
Kaldorian business cycle model adopts the follow-
ing type of the saving function:

St S(Yt, Kt); > Sy- OSt/OY > O,

SK- OSt/OK < O.
(3)

Since the saving St is the difference between the
disposable income and the consumption Ct, Eq. (13)
implies the following type of the consumption
function:

C, C(Yt, K,); > Cy- OC,/OYt > O,

C:- OCt/OKt > O. (14)

This consumption function represents a sort of
the ’wealth effect’, i.e., the increase of the real
capital stock stimulates the consumption expendi-
ture. Ifwe adopt this type ofconsumption function,
we must replace Eq. (S1)-(i) with the following
equation:

In this case, we have

OYt+l o(Ci + Ii,:) > c Ii. (16)0;, (+) (_)(_)

In particular, in the special case of Cx-IIKI, we
obtain

=0. (17)

The expression r(Yt, Mr) is the ’LM equation’ which is derived from Eq. (6). It is easy to see that r.=_Or,/OY, >0 and ra4
Ort/OMt < O.
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In other words, the negative effect of the change
of Kt on Yt+l through the negative effect on the
investment expenditure tends to be canceled out by
the positive effect on the consumption expenditure
when the ’wealth effect’ exists. If Eq. (17) is
satisfied, the system (S1) must be modified as
follows:

(i) Yt+ F( Y, Mr; c);

(ii) Kt+l F2( rt, Kt, Mt); ($2)

(iii) Mt+l F3( Yt, Mt; , or).

In this system, Yt+ is independent of Kt so that
the system becomes ’decomposable’. In other
words, the path of Kt depends on the paths of Yt
and M,, but the movements of Y and Mt are

independent of the path of Kt. We shall refer to the
system ($2) as ’model 2’.

F2 Ir + Irrr, F22 + IK, F23 Lrg > O,
(+)(-)(+) (-) (-)(-)

F31 (/) p(-m +/3rr),
(+) (+)

F33() + prM.
(--)

In these expressions, m -Jr > 0 is the ’marginal
propensity to import’. The characteristic equation
of this system is expressed as

/1 (/) I- J11
k2k + a + a2A + a3 0, (19)

where

al -trace J1 -Fll (ct) F22 F33 (/), (20)

3. LOCAL STABILITY-INSTABILITY
ANALYSIS OF ’MODEL 1’

First, let us consider the local stability-instability
analysis of ’model 1’ by assuming or=0 (no
stochastic disturbance). Asada (1995) proved that
the system (S) has the unique equilibrium point
(Y*,K*,M*)>(O, 0, 0) under some reasonable
conditions. In this paper, we shall assume that such
an equilibrium point in fact exists. The Jacobian
matrix of this system which is evaluated at the
equilibrium point can be written as follows:

Fll(Ct) F12(oz) F13(ct) lJ1 F21 F22 F23 (18)
F3, (/) 0 F33 (/3)

a2--
F22 F23

0 F33(/)

Fll (oz)
+ g (;)

F13 (o)

F3()

Fll (ct) F12(ct)

F21 F22

F22F33 (/) + Fll (oz)F33 () F13(oz)F31 (/)

+ Fll (oz)f22 F12(o)f21, (21)

a3 ---det J1

-Ell (o)f22F33 (/) f12F23F31 (/)

+ F13(ct)F22F31 (fl) + F12(oz)F21F33(fl). (22)

The Cohn-Schur conditions for local stability
can be expressed as follows:

where

F,,(c) + c[Ir + Irr- {1 c(1 7-) + m}l
(+) (-)(+) (+)

+ a2 -la + a3l > 0,

1--a2+aa3--a32 >0,

(23)

(24)

F12(ct) CtlK < 0, F13(ct) CtlrrM > O,
(--) (--)(--) a2 < 3. (25)

See Gandolfo (1996), p. 90. In fact, the condition (25) is redundant because this condition can be derived from other two conditions.
However, for our purpose, this expression is convenient.
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From these local stability conditions we can
derive a very simple sufficient condition for local
instability, i.e., a2 > 3. By using this local instability
condition, we can derive the following proposition.

PROPOSITION Suppose that If< c(1 r) +
m. Then, the equilibrium point of the system (S) is

locally unstable if c > 0 and/3 > 0 are sufficiently
large.

Proof Differentiating Eq. (21), we have

(26)

From Eq. (26) we have lim_+ Oa2/Oc +oc
so that Oa2/Oc becomes positive for sufficiently
large/3 > 0. In this case, a2 > 3 for sufficiently large
c and/3.
Proposition implies that under certain conditions,
the increase of the adjustment speed in the goods
market (c0 and the degree of capital mobility (/3)
tends to destabilize the system under the system of
fixed exchange rates. This conclusion is in line with
the result which was derived by Asada (1995)’s
continuous time version of the model of fixed
exchange rates.

4. LOCAL STABILITY-INSTABILITY
ANALYSIS OF ’MODEL 2’

Next, we shall consider the local stability-instabil-
ity analysis of ’model 2’. We also assume in this
section that -0 (absence of noise effect). The

Jacobian matrix of the system ($2) becomes

Fll (o) 0 F13 (a) ]J2 F21 F22 F23
F31 (fl) 0 F33 (fl)

(27)

where the meanings of the symbols are the same as
those of the previous chapter. The characteristic
equation of this system is

/2(/) --I ;- J l- F22)(/2 -- bl, + b2) 0,

(28)

where

b --Fll (c) F33(fl), (29)

b2 Fl (c) F33(fl F13(o) F31 (fl). (30)

We can express the Cohn-Schur conditions for
local stability as follows

IF221 < 1, (31)

--1- b2 > bl I, (32)

b2 < 1. (33)

Equation (31) is equivalent to the condition

IIKI < 1. We assume that in fact this condition is
satisfied. By the way, we can easily see that b2 > is
a sufficient condition for local instability.

Differentiating Eq. (30), we have

Ob2/Oct F33(fl){0Fll (oz)/00}

F31 (fl){OF13(ct)/O0}

rMp [Ir- {1 c(1 r)} + m]

(-) (-)

+pm+ [Iy- {1 c(1 7-) + m}+ Irr].
(34)

See Okuguchi (1977), p. 238.
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From Eq. (34), we have lim/+ Ob2/Oct
so that we have b2 > for sufficiently large c > 0
and /3>0. This proves that Proposition also
applies to the system ($2).

5. NUMERICAL EXPERIMENTATION OF
’MODEL 1’

Analytical approach by means of linear approx-
imation of the system without stochastic distur-
bance which was developed in the previous sections
gives us relatively little information on the behavior
of the original nonlinear system with stochastic
disturbance. Numerical approach will provide us
some useful insight, which cannot be obtained if
we stick to the analytical approach. In this section,
we shall summarize the results of our numerical

experimentation of’model 1’
We specify the functional forms of the relevant

functions and the parameter values as follows:

I(Yt, K,, rt) --f(Y) 0.3K rt + 147; (35)

f (Y) 40

180 200 220 240 260 280 300

Y

FIGURE

system (S) in Section 2, we obtain the following
expression"

(i) Yt+ Yt c{-0.66 Yt +f Yt) 0.3Kt

+ 147- lOv/Yt + mt + 165,

(ii) Kt+I Kt f Yt) 0.3Kt 10V/Yt
+ Mt + 147,

f(Y;) (80/70 Arc tan{ (2.25/20)
x (Y- 165/0.66)} + 35; (36)

(iii) M,+I M, -0.3 Yt + 50 + (/+ cr’Tt

x (IOv/Y, Mt- 6). (41)

r, r(Yt, Mt) Ot (37)

J(r,, ?):- -0.3 r, + 50; (38)

c-0.8, 7--0.2, p- 1, f-6; (39)

cTo+Co+G- 115. (4o)

The function f(Yt) in Eq. (36) represents the
Kaldorian S-shaped investment function (see
Fig. 1). Equation (37) is the LM equation which
describes the equilibrium condition in the money
market, and Eq. (38) is the current account
function.# Substituting Eqs. (35)-(40) into the

In this system, it is assumed that the ’degree of
capital mobility’ (/3) is fluctuated by noise, and we
select the parameters c and as the bifurcation

parameters.
Ifwe assume that/3 and cr 0, the equilibrium

solution of the system (41) becomes Y*, K*, M *)_
(250, 503, 127). The equilibrium national income

Y* is independent of the values of c and . On the
other hand, K* and M* depend on the values of c
and /3. Our numerical simulation shows that the
behavior of this model can be very complex even if
the noise does not exist (or-0), and the hidden
structure of the system may be sometimes revealed
rather than obscured when the system is fluctuated
by noise.

# Note that under the system of fixed exchange rates E is fixed, so that we need not explicitly introduce E as a variable into the model.
In other words, in this model the noise effect is modeled by means of the ’parametric noise’ rather than usual additive noise.
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5.1. Dynamics of National Income

In this subsection, we shall consider the dynamics
of national income (Y). First, let us consider the
case without noise (or=0). Figures 2 and 3 are
the bifurcation diagrams of national income with

respect to the parameters c and/3 respectively.
Figure 2 shows that the period of income fluctua-
tion increases rapidly as the adjustment speed in
the goods market (c0 increases, and eventually
the chaotic behavior emerges. However, as the

400

parameter a increases furthermore, the ’window’
which represents the periodical behavior emerges,
and then the chaotic region reappears. We can
confirm this statement by observing the largest
Lyapunov exponent (see Fig. 4). Figures 5 and 6
are the bifurcation diagram and the largest
Lyapunov exponent with small stochastic distur-
bance (a 0.01). We can see from these figures that
the window of periodical solution disappears and

370

.-:.--!it
-o.s

160

o ..--..::...,:.::.
100

0.5 1.5 2.5 --1
0.5 1.5 2.5

FIGURE 2 Bifurcation diagram of Y without noise (param-
eter: c). FIGURE 4 The largest Lyapunov exponent (A) without

noise.
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280
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130
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0.5 1.5

FIGURE 3 Bifurcation diagram of Y without noise (param-
eter: ).
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j: .:" "..:’-.’.:

..(:""’.." :.....p :.."
340 ..,..w..:’,

:..,.-a
":’i"’:"

"’: :’"’ ’’i’-i.;310

Y 250

220

;.::. ":.9o

0.5 1.5 2.5

FIGURE 5. Bifurcation diagram of Y with noise (or=0.01).

It is assumed that/3 when c is selected as a bifurcation parameter, and c-- is assumed when/3 is selected as a bifurcation
parameter.
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FIGURE 6 The largest Lyapunov exponent with noise
(=0.01).
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20
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100
300 340 380 420 460 500 540 580 620 660 700

K

FIGURE 7 Attractor in Y-K plane without noise when
c 2.0.

the behavior of the system becomes more chaotic
because of the noise effects.
Now, let us compare the system with noise effects

and that without noise effects. Figures 2 and 4 show
that the behavior of the system without noise is
chaotic when c= 2.0, while the ’window’ of the
periodical solution appears when c 2.1. However,
the behavior of this system becomes chaotic again
when c 2.2. Figures 7-9 give the attractors of the
system in K- Y plane in these three cases. Figure 10
is the attractor of the system with small noise effects
(or 0.01) when c 2.1. The shape of the attractor
in Fig. 10 is similar to that in Fig. 7 or 9. If there is
no stochastic disturbance, the periodical trajectory
is stable and chaotic trajectory is unstable at the
’window’. This implies that the chaotic structure is
invisible and hidden at the ’window’ if there is no
stochastic disturbance. However, our numerical
experimentation shows that the stochastic noise
can make visible this hidden chaotic structure in
some situations. Hence, it is not correct to say that
the noise only obscures the basic structure of the
system.

Figure 11 is the bifurcation diagram of Y with
respect to the parameter/3 when/3 is subject to the
small stochastic disturbance (or 0.01). Also in this
case, some ’windows’ of the periodical solution

400
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160 " 4
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100
300 340 380 420 460 500 540 580 620 660 700

K

FIGURE 8 Attractor in Y-K plane without noise when
c=2.1.

disappear because of the noise effects (compare
Figs. 3 and 11).

5.2. Dynamics of Capital Stock

Dynamics of capital stock are given by Figs. 12-15.
Figures 12 and 13 compare the bifurcation diagram
of K with respect to c without noise and that with
small noise. Figures 14 and 15 are bifurcation
diagrams of K with respect to ,.
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FIGURE 9 Attractor in Y-K plane without noise when
c 2.2.

FIGURE Bifurcation diagram of Y with noise (or 0.01).
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FIGURE 10 Attractor in Y-K plane with noise when
oe=2.1.

6. NUMERICAL EXPERIMENTATION OF
’MODEL 2’

We can construct a numerical example of’model 2’
by slightly modifying Eq. (41). In fact, we can
obtain such a model by replacing 0.3 K in Eq. (41)(i)
with zero and keeping other two equations of
(41)(ii) and (iii) intact. However, this slight
modification changes the behavior of the system
considerably.

700

580

...:::
K 500

.......",:: "":’ "’,;-
460

g,,]... !...y,,::,..
4aO i’".i’:F’..,

0.5 1.5 2.5

FIGURE 12 Bifurcation diagram of K without noise (param-
eter:

Figure 16 is the bifurcation diagram of Y with
respect to the changes of the parameter c without
noise effects, and Fig. 17 shows the largest
Lyapunov exponent in this case. The equilibrium
point is stable when c is small, but it becomes
unstable and two period cycle becomes stable when
c exceeds 2.25. Then, the period-doubling bifurca-
tions occur rapidly, and the behavior of the system
becomes chaotic.

It is worth to note that this system has two
equilibrium points. In fact, we obtained Fig. 16 by
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FIGURE 13 Bifurcation diagram of K with noise (param-
eter: c) (c 0.01).
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FIGURE 15 Bifurcation diagram of K with noise (param-
eter: /3) (or 0.01).
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FIGURE 14 Bifurcation diagram of K without noise (param-
eter:/3).

FIGURE 16 Bifurcation diagram of Y without noise (param-
eter: c).

adopting the initial condition (Y0, K0, M0), which is
near from the equilibrium point of ’model 1’, i.e.

(Y*, K*, M*)
_

(250, 503, 127). If we adopt another
initial condition, we can obtain another attractor

and another bifurcation diagram. However, Fig. 16
shows that the fusion of two attractors occurs so
that the fluctuating area of Y expands suddenly
when exceeds 2.5. Figure 17 shows that there are
several ’windows’ of periodic solutions in the area

ofc > 2.5.

Figure 18 is the bifurcation diagram which is
fluctuated by noise (or=0.08). This figure shows
that the ’windows’ of the periodic solutions dis-

appear because of the noise effect. Furthermore, in
this figure the fusion of the attractors occur even if
c < 2.5. We can interpret this phenomenon that the
hidden structure of the system is revealed because of
the noise effects. For convenience, let us say that the
economy is in ’boom’ when Yt > 250 and it is in
’slump’ when Yt < 250. Comparing Figs. 16 and 18,
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FIGURE 17 The largest Lyapunov exponent (A) without
noise.

FIGURE 19 Trajectory of Y without noise when c= 2.5.

100
1.5 2.5 3.5

310 ..
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130

100
500 520 540 560 580 600 620 640 660 680 700

FIGURE 18 Bifurcation diagram of Y with noise (cr =0.08). FIGURE 20 Trajectory of Y with noise when c=2.5
(=0.0s).

we can conclude that even if the economy is in
boom, some stochastic disturbance can bring abut
slump if the depressing structure is hidden in the
system.

Figures 19 and 20 compare the trajectories of Yt
without noise and that with noise in the case of
c 2.5. Figures 21 and 22 show the result of the
similar experimentation in the case of c=2.55.
These examples show that the noise may transform
the lasting booms into the violent alternations of
booms and slumps, but the opposite case is also

possible. This is one of the important lessons of our
numerical simulations.

7. COMPARISON WITH ASADA (1995)’s
VERSION

Before closing this paper, let us make a comparison
between the model in this paper and Asada (1995)’s
original version with continuous time without
noise. Asada (1995)’s system of equations, which
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310 ’!280

y 2s;

220

190

160

130

100
500 520 540 560 580 600 620 640 660 680 700

FIGURE 21 Trajectory of Y without noise when c= 2.55.

340

310

280 N
Y 250

220

190

160

(iii) dM/dt pJ( Y, E) +/p{r( Y, M) rf}
=f3(Y,M;).

Asada (1995) derived the following results
analytically under some assumptions:

(1) The equilibrium point of the system S is
locally stable if/ > 0 is sufficiently small, and it
becomes a saddle point if/ is sufficiently large.

(2) There exists the parameter value /0>0 at
which the Hopf bifurcation occurs. In other
words, there exist some nonconstant periodic
solutions at some values of/ which is suffi-
ciently close to fl0.

Asada (1995) also presented some numerical
simulations which support the above analytical
results. However, Asada (1995)’s original version
could not produce chaotic motion, but it produced
rather ’regular’ movement. Compared to Asada
(1995)’s version, the discrete time version with and
without noise which is presented in this paper can

produce much complex and richer behavior, and it
provides us a foundation to further research.

8. CONCLUDING REMARKS

500 520 540 560 580 600 620 640 660 680 700

FIGURE 22 Trajectory of Y with noise when c=2.55
(= 0.08).

corresponds to Eq. ($1) in this paper, is given as
follows:

(i) d Y/dt c[c(1 -) Y + cTo
+ Co + G + I(Y,K,r(Y,M))
+ J(Y,) ]

=f(Y,K,M),

(ii) dK/dt- I(Y,K,r(Y,M))
=--f2(Y,K,M),

In this paper, we investigated the discrete time
version of the Kaldorian business cycle model in an
open economy with and without noise effects by
means of analytical method and numerical simula-
tions. As a result, we could find some interesting
behaviors of the system including chaotic move-
ment. However, the model which was presented in
this paper is restricted to the system of fixed ex-

change rates. While in the system of fixed exchange
rates the money supply becomes an endogenous
variable, in the system of flexible exchange rates we
can consider the money supply as the exogenous
variable which is controlled by the central bank.##

Obviously, the next step must be the analysis of the
system of flexible exchange rates. This is the theme
which we shall study in another paper.

## See Asada (1995).



NONLINEAR MACRODYNAMIC MODEL 331

Acknowledgment

An earlier version of this paper was presented at
the First International Conference on DCDNS
(Discrete Chaotic Dynamics in Nature and Society)
which was held at Beer-Sheva, Israel (October 21,
1998). This research was financially supported by
Chuo University Grant for Special Research,
Waseda University Grant for Special Research
Projects No. 98A-074, and Grant-in-Aid for Scien-
tific Research No. 09640285 from the Ministry of
Education, Science and Culture of Japanese
Government.

References

Asada, T. (1995): "Kaldorian dynamics in an open economy."
Journal of Economics/Zeitschrft fiir Nationalok6nomie 62,
239-269.

Chang, W.W and Smyth, D.J. (1971): "The existence and
persistence of cycles in a nonlinear model: Kaldor’s 1940
model re-examined." Review ofEconomic Studies 38, 37-44.

Dohtani, A., Misawa, T., Inaba, T., Yokoo, M. and Owase, T.
(1996): "Chaos, complex transients and noise: Illustrations
with a Kaldor model." Chaos, Solitons and Fractals 7, 2157-
2174.

Gabisch, G. and Lorenz, H.W. (1989): Business Cycle Theory
(2nd edn.) Berlin, Heidelberg, New York and Tokyo: Springer-
Verlag.

Gandolfo, G. (1996): Economic Dynamics (3rd edn.) Berlin,
Heidelberg, New York and Tokyo: Springer-Verlag.

Kaldor, N. (1940): "A model of the trade cycle." Economic
Journal 511, 78-92.

Kosobud, R.F. and O’Nell, W.D (1972): "Stochastic implica-
tions of orbital asymptotic stability of nonlinear trade cycle
model." Econometrica 411, 69-86.

Lorenz, H.W. (1993): Nonlinear Dynamical Economics and
Chaotic Motion. (2nd edn.) Berlin, Heidelberg, New York
and Tokyo: Springer-Verlag.

Okuguchi, K. (1977): Mathematical Foundations for Economic
Analysis. Tokyo: McGraw-Hill Kogakusha (in Japanese).


