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An effect of the random plasma inhomogeneity onto the scenario of ion-acoustic anomalous
resistivity is considered. It is shown that such an inhomogeneity could be more efficient than
nonlinear effects to determine the turbulent resistivity. In application to Z-pinches, some
peculiarities of the skin-effect are considered, in particular, subsequent inhomogeneity of the
current penetration into the conducting medium.
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1 INTRODUCTION

In our recent paper [1] we have taught upon some
features of the regime of anomalous resistivity in
plasma opening switches. In particular, our state-
ment was that in most pulsed plasmas ion-acoustic
mechanism of anomalous resistivity seemed to be
predominating one. Of course, some competing
instabilities (low-hybrid, modified two-stream) can
also join the game (we believe, the best candidate is
the Bernstein mode). However, they can predomi-
nate in the resistive mechanism only under the
following condition:

(MBe > (Mpe (1)

or, what is the same,

B2 > 47rnmc2. (2)
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The inequality (2) is not typical of the pulsed
plasmas up-to-date (however, it Will be able to be
more realistic at JUPITER’s level of the basic
parameters). The reason of importance of the
condition (1) is the following. To magnetize the
ion-acoustic waves, it is necessary to satisfy two
conditions:

(a) (M << (MBe; (b) ksPBe (( 1. (3)

The first one is always true in Z-pinches while the
second just for the typical unstable k rDe-1 turns
out to be equivalent to (1). Moreover, if it is
violated, the Cherenkov (quasilinear) coupling
becomes non-magnetized as well. So, if we operate
with the range of the moderate magnetic field
(opposite to (2)), we have to compare ion-acoustic
quantum as competing to other possible momen-
tum carriers. Then, in accordance with our paper
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[1], we have very serious reason just for this
choice.
The whole hierarchy of the anomalous resistivity

includes, generally speaking, linear excitation of
waves [2], quasilinear stage [3], nonlinear saturation
[4] and anomalous transport [5]. (We have cited in
this paragraph only first exact solutions.) However,
on the level of very precise estimates it is not less
known that such a hierarchy works as a whole only
if the electric field is not so strong:

m (4rnT)1/2E << (4)

where m/M is the mass ratio. If the inequality
opposite to (4) is true, quasilinear effects are

immaterial. This essentially nonlinear regime is just
the case of the Kadomtsev’s spectrum [6] and
Sagdeev’s formula for conductivity [7] we have used
in [1]. There exists some especial reason of this
preference in the case of Z-pinches. All the resistive
plasma systems may be separated in two classes:
(a) with a given electric field inside the gap and
(b) with a net current completely determined by the
outer circuit. The Z-pinches represent just the
second case, hence, in such a system the current
flow velocity cannot be restricted by the threshold
of the instability. If this velocity exceeds essentially
the threshold, the quasilinear (Cherenkov) effects
do take place but cannot determine the effective
collisional frequency.
At first sight, it means that only essentially

nonlinear regime could be realized in the dynamics
of anomalous resistivity of pulsed plasmas. How-
ever, it was noticed as early as in [4] that effect of the
inhomogeneous plasma density n(r) (or concentra-
tion of carriers in the general case) could effectively
compete with the typical nonlinearity, i.e., non-

linear wave-particle scattering. The subsequent
scenario in [4] was typical of the plasmas of mirror
traps, that’s why we have to "rebuild" it completely,
in application to Z-pinches.

Let us emphasize: to "catch" proper instability in
the unwieldy variety of instabilities and to con-
struct the subsequent turbulent scenario, it would
be rather useless to compare thresholds, growth

rates, even levels of saturation. It looks much more

reasonable, to use le Chatelier-Brown principle
with respect to the momentum transfer which is
always the main point of the problem of resistivity.
In particular, it just provides the proper selection of
the damping mechanism. In our case, by taking
into account the plasma inhomogeneity, this damp-
ing may remain linear as well as the exitation of
waves. The basic system of equations ("optical" or

Hamiltonian) describing the trajectory of the ion-
acoustic quantum in the phase space is the fol-
lowing one:

Ot Ok’ Ot Or (5)

Such a description is true ifthe outer conditions do
not depend on time. The momentum transfer is
conditioned by the second ofEq. (5) via the exchange
of momentum between the quantum and the
medium the predominating mass of which is being
contained just in ions. As it will be shown hereafter,
the random inhomogeneity of the plasma density
can efficiently provide the momentum balance. Such
an inhomogeneity may result as from the scenario of
the plasma column production as from the nonlinear
MHD evolution of Z-pinch (so-called regime of the
"enhanced stability", see details in [8]).
Here and below, we will consider this random

inhomogeneity as quasisteady from the "stand-
point" of an ion-acoustic plasmon. That means,
the redistribution of the density has to be slow
compared to the ion-acoustic time scale:

tA B /4rne2

Cdpi where VA
a v/47rnMA CdPi V

A is the mass number ofthe ion, Mthe proton mass,
a the typical scale length of the spatial inhomo-
geneity. This inequality may be readily transformed
into the following one:

a>>
B I

47me 4rnerc

where r is the radius of Z-pinch. Let us take, as an

example, n 1016 cm-3, which corresponds to the
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rarefied corona of the fast Z-pinch. Then, let us
estimate the condition of the quasistationarity for
the SATURN parameters:

/max 20 MA =;, r 2 cm ::> a >> 4.10-2 cm.

The same condition may be expressed in terms of
the current flow velocity.

Let sk be the space scale of the skin depth, then
I 27Crsk .j. Our inequality results in

a/sk >> j/nec,

as one easily can see, this restriction is not strong
even if we take into account that j has to be much
above the threshold of the ion-acoustic instability,
j>> necs where Cs (ZTe/MA) 1/2. It is useful to note
that even when the temperature is of the order of
several hundreds eV, the ratio Cs/C < 10-3.
To be sure in the efficiency of the collective

phenomena, we have to keep Debye number

ND>> l=>T/(47reZn 1/3) >> 1. Even if we take, e.g.,
n 1021 cm-3, that means T>> 20 eV.

ION-ACOUSTIC CURRENT FLOW
INSTABILITY IN THE RANDOMLY
INHOMOGENEOUS PLASMA

For simplicity, we will demonstrate all the basic
effects on the 1-D model, i.e., n- n(x), E 110x. It
has to be emphasized, however, that such a model is
always more or less artificial since effect of
anomalous resistivity is never one-dimensional. In
pure 1-D plasma (e.g., presented by the PIC code)
something like plateau on the particle distribution
functions has to be formed cancelling the effect of
resistivity (relative dynamics in a given electric field,
see in [9,10]).
The dispersion law of the ion-acoustic waves is

well known:

Cos(k) kcs pi (6)
V/1 / k2F2De W/1 + (kFDe) -2

We will take into account only the spatial inhomo-
geneity of plasma density as the ion-acoustic waves
are much less sensitive to the effect of inhomoge-
neous temperature. Equation (5) results in
cv=const which, together with (6), leads to the
following result:

k-2 + re inv, rDe O n-1

dn
> 0 =: k kmin,

dx
n-O = k--oo.

(7)

Thus, no reflection of an ion-acoustic plasmon may
occur in the 1-D problem but it can disappear due to
the ion Landau damping conditioned by the
essential decrease of the density. It is interesting to
note that within the frames of the self-consistent
problem it disappears just in the opposite case of
growing density (see below).

In the conventional case of multimode spectrum
which can be presented in the form of the wave

spectral density Wk or of the quasiparticle distribu-
tion Nk- Wk/CVk, the system (5) is equivalent to the
Liouville equation:

0Nk
Ot

O ON+ VNk Vcv 27k

Equation (5) represents two characteristics of (8),
the third one is the following:

N(k, r) N(k0, r0). exp dl
0,r0 1Oc/Okl

(9)

where (k,r) and (k0, r0) are connected by the
invariant (7) by given n(r) dependence and the
integration is being fulfilled along the plasmon
trajectory given by the solution of the same system
(5) or, in the 1-D case, by the invariant (7). In
many cases, it turns out to be more useful to
rewrite (9) in terms of c, instead of k, since c is
invariant.
The growth rate in (8) and (9) 7 ")/e -- ")/i

includes both electron and ion increments of the
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current-carrying plasma, under the condition

/k >> VTe they may be presented as follows:

% ku )
(10)

where M/m is the mass ratio and u- j/ne current
flow velocity. If we vary slightly this velocity (that
just happens in a weakly inhomogeneous plasma),
both increments have to vary as well. If one deals
with the purely linear situation (in particular,
Maxwellian distribution functions), the ion res-

ponse is more essential since the %(k) dependence is
linear while that of f(/k) is exponential one. In
efficiency, resonant ions, due to their small number,
are normally "overheated", as a result, the function

fri(co/k) is smooth enough. Thus, in the case of the
well-developed current flow instability, it seems
more reasonable to follow, first of all, fe(U,/k)
and to compare j/(n(x)e) with Ucr.
When they look for the threshold condition, the

necessary equations that determine the point in the
k-space are the following:

07(k, u)7(k, u) 0, 0 0, (11)

which results in the threshold current flow velocity
Ucr. In principle, such a "threshold" regime is
available in the weakly inhomogeneous plasma as
well. In uniform plasmas balance of purely linear
increments (10) hardly may provide the real steady
state since the momentum acquired by the electrons
from the electric field is being transformed to the
small fraction of ions, i.e., resonant ions while the
main fraction of ions being freely accelerated. That
is why quasilinear regime [9] inevitably includes
essential modification of both particle distributions
and dispersion relations of the spectra. In the in-
homogeneous plasmas another regime is possible.

Let us turn to the Fig. where the plasma in-
homogeneity is modeled, for simplicity, by the 1-D
sinusoidal profile (which is quite immaterial for the
subsequent conclusions). The current value I is

n(x)

/,--- u=j/(ne) <Cs
A’

().,-’-"-’,/ (2)
/ -

B
3,>0

x

FIGURE

determined by the outer circuit, hence, ]u] n-1.
In Fig. 1, the dotted line corresponds to lul Ucr
determined by (11). More exactly, it has to follow
from (9):

k’rl
dl- 0,2%

o, o O /Okl

where (r0, rl) is just the period of the density
perturbation. The exchange ofmomentum between
the waves and medium (i.e., ions) follows from the
second of Eq. (5) and also from Eqs. (6) and (7):

7n Ok
V pi-no Ot

At first sight, this exchange is impossible since each
plasmon conserves its momentum after passing the
whole period. Let us, however, compare the
intervals A"A’ and A’A in Fig. 1. In both 7 < 0,
hence, according to (9), the number of quasiparti-
cles in some point of A"A’ interval where they loss
their momentum is less than in the point with the
same density in A’A where they acquire momen-
tum. Now let us compare the intervals AB where
plasmons acquire momentum and BB’ where they
loss it. The number of the latters is greater,
according to (9), since in that region 7 > 0. Thus,
in a whole, we can see that during the spectrum
travelling along the inhomogeneous profile, it
successfully transfers the momentum obtained from
the electrons to the main body ofthe plasma ions. In
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accordance with the basic features of the resistive
problem, it can provide the quasisteady state of the
instability.

Unfortunately, this regime hardly could be
typical of the systems with a given current as it
hardly would correspond just to the dotted line in
Fig. 1. Besides, this regime is too close to the
threshold, and quasilinear effects can join the game
cancelling the damping on the small angles
/(k, j) << [4,11]. Another regime seems to be more
realistic, which is presented in Fig. 2. We suppose
that density fluctuations are great enough to
provide the "trapping" of quanta, e.g., in some

vicinity of the density wells. It cannot be real
trapping since, as it has been noticed above,
reflection of the ion-acoustic plasmons is impos-
sible in the 1-D model. Their localization has to be
conditioned by the efficient damping in the regions
of higher density where j/(ne)< Ucr. For conve-

nience, let us introduce the quasiperiod of the
inhomogeneity L which exceeds, in a general case,
the typical space scale of the localization of the
acoustic quanta:

2% dl < 0.j
10co/0kl

An example of the localization of the plasma waves
in the vicinity ofthe only well is shown in Fig. 3. The

current flow velocity at the bottom n(x) is supposed
to exceed essentially Ucr, the region of the instability
(Xl, x]) and the region of localization (xl, x2) are
determined by the current value I supported by the
outer circuit. The regions of the waves localization
(see Fig. 2) turn out to be the regions of local
heating and, what is more important, the regions
of the enhanced field diffusion. If the net current I
is so high that J> 1, the inhomogeneity cannot
provide the stationary state of the instability and
nonlinear effects join the game.

The spatial density of momentum varies in
time according to Eq. (5):

0 0Pe
Ot OV

0 0Pi Ok
OtOV- -Uk 0-7

k

0k(co, r)ZSo 0----7 So0Vco. (12)

On the other hand, balance of the electron
momentum results in the following expression
introducing the effective collisional frequency:

x2 rn Ix Uerf(x)dx.neEdx TJxl (13)

We have already replaced k-representation by the
co-representation, let us, in addition, introduce the

n(x)
y<O

7,<0

1 1’

7>0 ,>0

x

n(x)

X

k(x)

W(x)

FIGURE 2 FIGURE 3
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integral spatial density of the energy of noises, as
follows:

Nd03 W(x)/03

which allows to simplify essentially the estimate of
/eff

(14)

In Fig. 3, the level of noises at the point x has to
be equal to that of thermal fluctuations,

W(xl) Wo nT/ND,

where ND is the Debye number (here taking into
account the difference between Te and Ti would be
above the accuracy). At first sight, this value, W(x),
leads to more rough estimates than N. In fact, as
we will be able to see below, the spectrum would not
be so broad since its typical frequency has to be
close to the ion plasma frequency at the bottom,
COpi(X0).

Including (9) and (10), one can readily obtain:

W(x) Wo exp P,

E odfXX21- ) dx
VTe x

1x(j k({, 1)d{,
const /rsl(0), r(x,,x2) 0,

v evl

let Imax I(Xl, x2)P0.

In accordance with (6)and (7),

003 032 On n(xo) On
2 n22 03pi n Ox 2 Ox_

oz n -x o (16)

After that, we can modify (14):

//7 fx
x2

l,’eff(X) dxJe
-a{n) (ND) xx exp[P(x,x)]dx.

(17)

Now we can define the effective collisional frequ-
ency throughout the region of instability uB (which
has to determine the field diffusion) and also the
effective collisional frequency averaged over the
current-carrying layer u (which has to determine
the integral resistance) by the following relation:

/-/B(X2 Xl) //R" L

(n)5/2e4

X20(!) exp[r(Xl x)] dx,X

(18)

where L is the quasiperiod, fl > 1. Let us take the
RHS of (18) by parts, by taking into account that
P(Xl, Xl) P(Xl, X2) 0,

1)

That allows to rewrite (1 8) in the following form:

(19)
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where e _< 1. Let us introduce the space scale ofsome
partial well a < L, then close to the bottom

(x- jn n(xo) + a2

After that, we will have to deal with rather few
parameters in the subsequent estimates, i.e., nmin or

n(xo), a and, may be, L > a. All the trajectories of
quasiparticles have to obey the condition
k-Z-- r2D- inv. To look for the selection rule to
determine the kind of ion-acoustic plasmons just
providing the resistance, let us turn to Fig. 4.

In accordance with all the suggestions declared
above, our system has to be essentially above the
threshold in the main part of the unstable interval

[X l,X’l]. That allows to neglect the quasilinear
effects. In particular, that means, we cannot restrict
ourselves by only ion plasma waves pi and
have to deal with j>necs within this region.
Threshold points are determined by j-n(xl)eCs

The growth rate "7 c [(ku/) 1], hence, the more
is (less /k), the more is 7. From this standpoint,
just ion plasma waves seem to be most profitable.
However, if we create a plasmon with -+ vi(x)
not at the bottom x-x0 (double arrows (i, ii) in
Fig. 4), it would keep -inv while travelling
towards the bottom. Formally, at some point its
frequency should exceed pi(X). In efficiency, that
means /k 0 close to this point. As a result,

Xo X

(iii)

(i)

(ii)

J;"///////////////////////////////////////A’/.

FIGURE 4

strong ion Landau damping becomes sharply
"switched" on and cuts off the trajectory. Let us
consider another possibility, plasmon to be "born"
after the bottom following the current flow (see
double arrow (iii) in Fig. 4). It would be suppressed
by the damping at some xf where r(xi, xf)=0, in
such a case, x0 < xi < xf < x2. As the initial level of
noises is close to that of thermal fluctuations while
the maximal one W(X’l) is not so far from n T, the
maximal r Fo A In ND (e.g., 10-20). In all
the cases of reduced trajectories (i, ii, iii), their
shortened length exponentially reduces the max-
imal level of noises:

Fi,ii,iii(max < Fo Wi,ii,iii(max << Wmax.

As a result, we obtain quite obvious selection
rule. The most profitable in respect of the momen-
tum transfer is the ion-acoustic plasmons passing
through the bottom but possessing as high fre-
quency as possible, that means vi(x0). Such a

trajectory coincides with the whole interval [xl, x2]
(solid arrow in Fig. 4).

After that, some useful relations can be added to
go on our calculations:

k(xl) dpi(X0)Hle 6Opi(X0) 51 (X0)
j Cs

(20)

Note that k(xl)rD(xl)(nlecs/j)(no/nl)l/2<< 1. In
the case of quasiparabolic profile of the well, we can
establish the relation between the "noisy" interval

[x l, x2] and the typical space scale a or L:

nl no -+- a2ecs

= (x2 Xl) 2(x’ xl) 4Ax

4a/n J 1.
OeCs

At the level of accuracy we follow in our estimates,
one can neglect unity in the RHS. Thus, we obtain
the resulting estimate of the ratio of the length of
the turbulent region which gives some input into
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the resistance, to the typical space scale of the
inhomogeneity"

(x2-xl) / j
a f/rnineCs nmineCs

(21)

More exactly, this space scale can be determined
by using the condition F(xl, x2)- 0, i.e.,

X2j= de- X2 Xl. (22)

For convenience, let us denote for some particular
well (see Fig. 4)

xo O, xl -A, x
A2 j
a2 noers

Invariant (7) may be rewritten in the form"

E + +

where 5, << is the cutoff factor to cancel the
singularity in the integral (22). That allows to
present the integrand of the Eq. (22) as follows:

where -&/(1 + &)<< 1. It is useful to introduce
the dimensionless variables by taking a as the space
scale"

(X) X2 Xl A/a A in j
a oecs

then the transcendental equation for (x) follows
from (22):

(x) 41 + A2 v/A2 +
(x)-Zx d

+ +
(23)

Now we can rewrite the estimates (19) in the
dimensionless form:

’R-- (X)’B /
(n)5/2e4

noamjx,/-

/ (X)2 2(x)A
x / (1 + A2)(1 + [(x) A]2)

+e a f(x)-/x dx

rD(0) a-a + x2

X V
x exp drD(O)

, g, 1. (24)

In principle, Eqs. (23) and (24) solve the problem
and such a result turns out to depend on the
following parameters: j, a, no, In), T.

Let us estimate the window of parameters
providing the predominating role of the random
inhomogeneity over the nonlinear effects. First, as
it has been noticed above, roughly, A (j/noecs) 1/2.
Taking into account restrictions implied by the
Buneman instability, we may believe m2 v/M/m.
Then, our cutoff factor k-Z(0)r2(0)<< 1, it
cannot be, however, too small because of the ion
Landau damping. Thus, we may put Ti/Te.

In the nonlinear regime [6,7] with a given current
the following estimate of the density of noises is
true"

nl rteVTe
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In our case,

Inhomogeneity turns out to be more efficient
mechanism which determines the resistivity if

<< = I0 < ln(A2ND),
max nl

A2 J- ND
T3e/2

noecs 6v/- n1/2e3

After all, the following inequality determines the
applicability of our model:

/ fzX da AV/1 +A2
rD zX V/1 + 2V/2 + 8

< ln(A2nr3o). (25)
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