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This paper addresses the hybrid synchronization problem in two nonlinearly coupled complex networks with asymmetrical
coupling matrices under pinning control schemes. The hybrid synchronization of two complex networks is the outer antisynchro-
nization between the driving network and the response network while the inner complete synchronization in the driving network
and the response network.Wewill show that only a small number of pinning feedback controllers acting on some nodes are effective
for synchronization control of the mentioned dynamical networks. Based on Lyapunov Stability Theory, some simple criteria for
hybrid synchronization are derived for such dynamical networks by pinning control strategy. Numerical examples are provided to
illustrate the effectiveness of our theoretical results.

1. Introduction

Complex networks become more and more important
because they abound both in nature and in the artificial net-
works (easy examples include biological ecosystems, internet
connections, the World Wide Web, and various social and
neural networks [1, 2]). Complex networks also providemod-
els formany large-scale and complicated systems occurring in
nature and society that would otherwise be extremely difficult
to study. Indeed, complex networks have been extensively
studied over the past two decades in many fields of science
and engineering because of their general ability to represent
virtually all natural and man-made structures. The focus
of most of these previous works, however, have been on
the structural properties of the dynamical networks [1–
4] with little regard for their collective behavior which is
where some interesting phenomena such as synchronization,
spatiotemporal chaos, autowaves, and spiral waves [5, 6]
occur. Synchronization, in particular, is the time-correlated
behavior between the nodes of a dynamical network and
it is a collective behavior of coupled nonlinear systems
that promises immense potential engineering applications
[7–12].

Many synchronization patterns have been recorded in
the literature such as complete synchronization [7–10], 𝜇-
synchronization [11], cluster synchronization [13, 14], gen-
eralized synchronization [15], lag synchronization [16, 17],
and phase synchronization [18] and it is known that they
can all be encompassed by a unified definition [19]. One
particular type of generalized synchronization that occurs
commonly in symmetrical oscillators is antisynchronization
(AS). Specifically, AS is characterized by the vanishing of
the sum of the relevant variables and is a phenomenon
that has both been experimentally and numerically observed
in coupled chaotic systems. AS has been observed, for
example, in piecewise linearly coupled Chua’s circuits [20]
and in coupled laser systems [21] and it is an important
phenomenon in chaotic systems that has great application
potential. Using antisynchronization in lasers, for instance,
one can generate not only drop-outs of the intensity with
ordinary low frequency fluctuations but also short pulses of
high intensity that provides a new way of generating pulses
of special shapes. Communications security and secrecy can
similarly be enhanced during transmission by continuously
transforming the digital signals between the synchronized
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and antisynchronized modes. Indeed, antisynchronization
has been fairly well studied and many results exist about
the phenomenon. An adaptive control method, for exam-
ple, was proposed in [22] for antisynchronizing an uncer-
tain Chua’s chaotic system and sufficient conditions for
both the synchronization and antisynchronization of the
Colpitts oscillators were obtained using active control in
[23]. In another attempt, a nonlinear control technique
was used to antisynchronize two distinct chaotic systems
in [24] and several sufficient conditions were obtained for
the attainment of AS and adaptive AS in linearly coupled
systems in [25]. The antisynchronization of a class of delayed
chaotic neural networks was also investigated in [26, 27]
using the Halanany Inequality and Lyapunov Stability The-
ory.

Recently, there is much interest in the coexistence of
antisynchronization and complete synchronization (called
hybrid synchronization) in chaotic systems [28–31] although
much of these studies have been concerned with coupled
chaotic systems rather than with coupled networks. The only
investigation of the hybrid synchronization of two-coupled
complex networks, to date, was that carried out by Sun et al.
in [32] in which linearly coupled complex networks (i.e., the
coupling function being linear) were considered. The fact
remains, however, that many state variables of a network
could at times be totally unobservable with ℎ(𝑥

𝑖
(𝑡)) (which is

a nonlinear function of the state [32]) being the only known
quantity.

Since it is literally impossible to add controllers to all
nodes, local feedback injections are applied to only some
of the nodes (this is known as pinning control). It has been
revealed that, in the process of controlling various networks,
pinning control serves as a simple and effective strategy
for stabilization and synchronization. Pinning state feedback
controllers have recently been used for the synchronization of
complex dynamical networks by controlling a small fraction
of nodes [33–35]. The pinning strategy has been shown to
be effective for synchronization of networks. In this paper,
we investigate the hybrid synchronization of nonlinearly
coupled complex networks that are described by ordinary
differential equations (ODE) with coupling functions that
are nonlinear and whose coupling matrix is asymmetrical.
Some simple criteria are derived for the hybrid synchro-
nization of such dynamical networks by using the pinning
controlmethod and the Lyapunov stability theory.The results
of this paper are a nontrivial extension of those in [32],
where the coupling function is linear and the controllers
were added to all nodes for getting hybrid synchroniza-
tion.

This paper is organized as follows. In Section 2, we
construct the hybrid synchronization of nonlinearly coupled
complex networks with differential drive and response net-
work local dynamics. In Section 3, we give some necessary
definitions, lemmas, and hypotheses. In Section 4, we derive
some simple criteria for the hybrid synchronization of such
dynamical networks by pinning control using Lyapunov
stability theory. In Section 5, we present some numerical
simulations that validate the theoretical results. This paper
concludes in Section 6.

2. Model Description

In [32], the authors used linear feedback or adaptive linear
feedback methods to realize the hybrid synchronization of
two-coupled networks. The driving network is

�̇�
𝑖
(𝑡) = 𝑓 (𝑥

𝑖
(𝑡) , 𝑡) + 𝑐

𝑁

∑

𝑗=1

𝑎
𝑖𝑗
Γ𝑥
𝑗
(𝑡) , 𝑖 = 1, 2, . . . , 𝑁,

(1)

and the response network is

̇𝑦
𝑖
(𝑡) = 𝑓 (𝑦

𝑖
(𝑡) , 𝑡) + 𝑐

𝑁

∑

𝑗=1

𝑏
𝑖𝑗
Γ𝑦
𝑗
(𝑡) − 𝑑

𝑖
Γ (𝑥
𝑖
+ 𝑦
𝑖
) ,

𝑖 = 1, 2, . . . , 𝑁.

(2)

For the coupling system (1), we let the inner coupled matrix
Γ to be the identity matrix. Then the driving network of the
nonlinearly coupled differential equation is the following:

�̇�
𝑖
(𝑡) 𝑓 (𝑥

𝑖
(𝑡) , 𝑡) + 𝑐

𝑁

∑

𝑗=1

𝑎
𝑖𝑗
ℎ (𝑥
𝑖
(𝑡)) , 𝑖 = 1, 2, . . . , 𝑁.

(3)

In the following, the hybrid synchronization of the nonlin-
early coupled complex network model (3) is investigated. To
realize the hybrid synchronization, some pinning controllers
will be added to parts of the response network. Without loss
of generality, rearrange the order of the nodes in the response
network and let the first 𝑙 nodes be controlled. Then the
pinning controlled response network can be described by

̇𝑦
𝑖
(𝑡) = 𝑓 (𝑦

𝑖
(𝑡) , 𝑡) + 𝑐

𝑁

∑

𝑗=1

𝑎
𝑖𝑗
ℎ (𝑦
𝑗
(𝑡))

− 𝑐𝑑
𝑖
(𝑥
𝑖
(𝑡) + 𝑦

𝑖
(𝑡)) , 𝑖 = 1, 2, . . . , 𝑙,

̇𝑦
𝑖
(𝑡) = 𝑓 (𝑦

𝑖
(𝑡) , 𝑡) + 𝑐

𝑁

∑

𝑗=1

𝑎
𝑖𝑗
ℎ (𝑦
𝑗
(𝑡)) ,

𝑖 = 𝑙 + 1, 𝑙 + 2, . . . , 𝑁,

(4)

where 𝑁 > 1 is the network size, 𝑥𝑖(𝑡) = (𝑥
𝑖

1
(𝑡), 𝑥
𝑖

2
(𝑡), . . .,

𝑥
𝑖

𝑛
(𝑡))
𝑇

∈ 𝑅
𝑛, 𝑦𝑖(𝑡) = (𝑦

𝑖

1
(𝑡), 𝑦
𝑖

2
(𝑡), . . . , 𝑦

𝑖

𝑛
(𝑡))
𝑇

∈ 𝑅
𝑛 are the

state variables of the 𝑖-node in the driving network and the
response network, respectively, 𝑓 : 𝑅

𝑛
× [0, +∞) → 𝑅

𝑛 is
a continuous function that describes the local dynamics of
the driving networks and the response network, respectively,
𝑐 is the coupling strength, and 𝑘

𝑖
(𝑖 = 1, 2, . . . , 𝑙) are control

gains. 𝐴 = [𝑎
𝑖𝑗
] ∈ 𝑅
𝑛×𝑛 denotes the coupling configuration of

the network and 𝑎
𝑖𝑗
is defined as follows. If nodes 𝑖 and 𝑗 are

linked by an edge then 𝑎
𝑖𝑗

> 0, otherwise 𝑎
𝑖𝑗

= 0. This ensures
that the network is connected, so 𝐴 is irreducible although
𝐴 is not necessary symmetric. The nonlinear coupling func-
tion is ℎ(𝑥

𝑖
(𝑡)) = (𝑔(𝑥

𝑖

1
(𝑡)), 𝑔(𝑥

𝑖

2
(𝑡)), . . . , 𝑔(𝑥

𝑖

𝑛
(𝑡)))
𝑇, 𝑖 =

1, 2, . . . , 𝑁.
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3. Model Description

In this section, we write down some definitions, notations,
and lemmas that will be used throughout this paper.

Definition 1 (see [32]). If

lim
𝑡→∞




𝑥
𝑖
(𝑡) − 𝑥

𝑗
(𝑡)




= 0, lim

𝑡→∞




𝑦
𝑖
(𝑡) − 𝑦

𝑗
(𝑡)




= 0,

lim
𝑡→∞




𝑥
𝑖
(𝑡) + 𝑦

𝑖
(𝑡)




= 0, 𝑖, 𝑗 = 1, 2, . . . , 𝑁,

(5)

then the driving network (3) and the response network (4)
are said to achieve hybrid synchronization.

Definition 2 (see [36]). A nonlinear coupling function 𝑔(⋅) :

𝑅 → 𝑅 is said to belong to the acceptable nonlinear coupling
function class, denoted by ℎ ∈ NCF(𝛾, 𝛽), if there exist two
nonnegative scalers 𝛾 and 𝛽 such that 𝑔(𝑥) − 𝛾𝑥 satisfies the
following Lipschitz condition:

𝑔 (𝑥
1
) − 𝑔 (𝑥

2
) − 𝛾 (𝑥

1
− 𝑥
2
)
 ≤ 𝛽

𝑥1 − 𝑥
2

 (6)

Holds, for any 𝑥
1
, 𝑥
2
∈ 𝑅.

Remark 3. Let 𝑟(𝑥) = 𝑔(𝑥) − 𝛾𝑥. Then the above condition
(6) can be changed as

𝑟 (𝑥
1
) − 𝑟 (𝑥

2
)
 ≤ 𝛽

𝑥1 − 𝑥
2

 (7)

and if 𝑔(⋅) is an odd function, then we have
𝑟 (𝑥
1
) + 𝑟 (𝑥

2
)
 ≤ 𝛽

𝑥1 + 𝑥
2

 . (8)

Definition 4 (see [37]). 𝐴 = [𝑎
𝑖𝑗
] ∈ 𝑅
𝑁×𝑁 is said to belong to

class 𝐴
1
, denoted by 𝐴 ∈ 𝐴

1
, if

(1) 𝑎
𝑖𝑗

≥ 0 (𝑖 ̸= 𝑗), and 𝑎
𝑖𝑖

= −∑
𝑁

𝑗=1,𝑗 ̸= 𝑖
𝑎
𝑖𝑗
, for 𝑖 =

1, 2, . . . , 𝑁,
(2) 𝐴 is irreducible.

If 𝐴 ∈ 𝐴
1
is symmetrical, then we say that 𝐴 belongs to 𝐴

2
,

denoted by 𝐴 ∈ 𝐴
2
.

Lemma 5 (see [36]). Assume that 𝐴 ∈ 𝐴
1
. Then

(1) rank(𝐴) = 𝑁 − 1, that is, 0 is an eigenvalue of 𝐴 of
multiplicity 1, and all nonzero eigenvalues of 𝐴 have
negative real parts;

(2) 1 = (1, 1, . . . , 1)
𝑇 is the right eigenvector of 𝐴

corresponding to the eigenvalue 0 of multiplicity 1, that
is, 𝐴 ⋅ 1 = 0;

(3) let 𝜉 = (𝜉
1
, 𝜉
2
, . . . , 𝜉

𝑁
)
𝑇 be the left eigenvector of 𝐴

corresponding to the eigenvalue 0, that is, 𝜉𝑇𝐴 = 0.
Then, 𝜉𝑖 > 0, 𝑖 = 1, 2, . . . , 𝑁, and its multiplicity is 1. In
the following, we will always assume that ∑𝑁

𝑖=1
𝜉
𝑖
= 1.

Definition 6 (see [36]). Denote Ξ = diag{𝜉1, 𝜉2, . . . , 𝜉𝑁}, 𝐼
𝑁

=

diag{1, 1, . . . , 1}, and define

𝑈 ≡ [𝑢
𝑖𝑗
] = Ξ − 𝜉𝜉

𝑇
, 𝑄 = 𝐼

𝑁
−

1

𝑁
1 ⋅ 1𝑇. (9)

Obviously, 𝑈,𝑄 ∈ 𝐴
2
. Moreover, it is easy to check that if

𝐴 ∈ 𝐴
1
then 𝐴𝑄 = 𝐴.

Lemma 7 (see [37]). If 𝐴 = (𝑎
𝑖𝑗
) ∈ 𝐴

2
, then for any two

vectors 𝑢 = [𝑢
1
, 𝑢
2
, . . . , 𝑢

𝑛
]
𝑇 and 𝑣 = [𝑣

1
, 𝑣
2
, . . . , 𝑣

𝑛
]
𝑇, we have

𝑢
𝑇
𝐴𝑣 =

𝑛

∑

𝑖=1

𝑛

∑

𝑗=1

𝑢
𝑖
𝑎
𝑖𝑗
𝑣
𝑗
= −∑

𝑗>𝑖

𝑎
𝑖𝑗
(𝑢
𝑖
− 𝑢
𝑗
) (𝑣
𝑖
− 𝑣
𝑗
) . (10)

Hypothesis. Let 𝑃 = diag{𝑝
1
, 𝑝
2
, . . . , 𝑝

𝑛
},𝑝
𝑖
> 0, 𝑖 = 1, 2, . . . ,

𝑛, 𝑓(𝑥, 𝑡) ∈ 𝐶[𝑅
𝑛
× [0,∞), 𝑅

𝑛
], satisfies

(𝑥 − 𝑦)
𝑇
𝑃 ((𝑓 (𝑥, 𝑡) − 𝑓 (𝑦, 𝑡)) − Δ (𝑥 − 𝑦))

≤ −𝛼(𝑥 − 𝑦)
𝑇
(𝑥 − 𝑦) ,

(11)

for some 𝛼 > 0, all 𝑥, 𝑦 ∈ 𝑅
𝑛 and 𝑡 > 0 where Δ =

diag{𝛿
1
, 𝛿
2
,. . . , 𝛿

𝑛
}.

Remark 8. When𝑓(𝑥, 𝑡) is oddwith regard to 𝑥, thenwe have

(𝑥 + 𝑦)
𝑇
𝑃 ((𝑓 (𝑥, 𝑡) + 𝑓 (𝑦, 𝑡)) − Δ (𝑥 + 𝑦))

≤ −𝛼(𝑥 + 𝑦)
𝑇
(𝑥 + 𝑦) ,

(12)

for some 𝛼 > 0, all 𝑥, 𝑦 ∈ 𝑅
𝑛, and 𝑡 > 0.

4. Main Result

In this part, we investigate the hybrid synchronization of a
class of nonlinearly coupled complex dynamical networks
and obtain some criteria for hybrid synchronization.

Theorem 9. Suppose Hypothesis holds, 𝐴 = (𝑎
𝑖𝑗
) ∈ 𝐴
1
, 𝑔(⋅) ∈

NCF(𝛾, 𝛽), and 𝑔 is an odd function,𝑓(𝑥, 𝑡) is odd with respect
to 𝑥. If there exist positive scalers 𝜃

𝑘
, 𝜗
𝑘
(𝑘 = 1, 2, . . . , 𝑛) such

that the following inequalities

𝛿
𝑘
𝑈 + 𝑐𝛾(Ξ𝐴)

𝑠
+

𝑐𝜃
𝑘

2
Ξ𝐴𝐴
𝑇
Ξ +

𝑐𝛽
2

2𝜃
𝑘

𝑄 ≤ 0,

𝑐𝛾𝐵
𝑠
+

𝑐

2
(𝜗
𝑘
𝐵𝐵
𝑇
+

𝛽
2

𝜗
𝑘

𝐼
𝑁
) + 𝜗
𝑘
𝐼
𝑁
𝑄 ≤ 0,

𝑘 = 1, 2, . . . , 𝑛

(13)

hold, where Ξ, 𝑈, 𝑄 are defined as in Definition 6, 𝐷 =

diag{𝑑
1
,𝑑
2
, . . . , 𝑑

𝑙
, 0, . . . , 0} ∈ 𝑅

𝑁×𝑁 and 𝐵 = 𝐴 − 𝐷 = (𝑏
𝑖𝑗
) ∈

𝑅
𝑁×𝑁 with 𝑏

𝑖𝑖
= 𝑎
𝑖𝑖
− 𝑑
𝑖
(𝑖 = 1, 2, . . . , 𝑙), otherwise 𝑏

𝑖𝑗
= 𝑎
𝑖𝑗
,

then the nonlinearly coupled driving network (3) can achieve
hybrid synchronization with the response network (4).
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Proof. Denote

𝑋 (𝑡) = (𝑥
1
(𝑡)
𝑇
, 𝑥
2
(𝑡)
𝑇
, . . . , 𝑥

𝑁
(𝑡)
𝑇
)
𝑇

,

𝐹 (𝑋 (𝑡)) = (𝑓(𝑥
1
(𝑡) , 𝑡)

𝑇

, 𝑓(𝑥
2
(𝑡) , 𝑡)

𝑇

, . . . ,

𝑓(𝑥
𝑁

(𝑡) , 𝑡)
𝑇

)

𝑇

,

𝐻 (𝑋 (𝑡)) = (ℎ (𝑥
1
(𝑡))
𝑇

, ℎ(𝑥
2
(𝑡))
𝑇

, . . . , ℎ(𝑥
𝑁

(𝑡))
𝑇

)

𝑇

.

(14)

Then the driving network (3) can be written in a compact
form as

𝑋(𝑡) = 𝐹 (𝑋 (𝑡)) + 𝑐 (𝐴 ⊗ 𝐼
𝑛
)𝐻 (𝑋 (𝑡)) . (15)

In order to achieve the hybrid synchronization of two non-
linearly coupled complex networks with different local dyna-
mical systems, we first choose the synchronization state of
the drive network to be 𝑠

𝜉
(𝑡) = ∑

𝑁

𝑖=1
𝜉
𝑖
𝑥
𝑖
(𝑡) so that the drive

network can be synchronized with 𝑠
𝜉
(𝑡). At the same time, we

antisynchronize the sates 𝑥
𝑖
(𝑡) of the drive network and the

state 𝑦
𝑖
(𝑡) of the response network using pinning control so

that (5) is satisfied, that is, the drive and response networks
are hybrid synchronized.

Let 𝑒
𝑖
(𝑡) = 𝑥

𝑖
(𝑡) + 𝑦

𝑖
(𝑡). Then the antisynchronization

error systems between the driving network (3) and the
response network (4) can be written as

𝑑𝑒
𝑖
(𝑡)

𝑑𝑡
= 𝑓 (𝑥

𝑖
(𝑡) , 𝑡) + 𝑓 (𝑦

𝑖
(𝑡) , 𝑡)

+ 𝑐

𝑁

∑

𝑗=1

𝑏
𝑖𝑗
(ℎ (𝑥
𝑗
(𝑡)) + ℎ (𝑦

𝑗
(𝑡)))

− 𝑐𝑑
𝑖
(ℎ (𝑥
𝑖
(𝑡)) + ℎ (𝑦

𝑖
(𝑡))) , 𝑖 = 1, 2, . . . , 𝑙,

𝑑𝑒
𝑖
(𝑡)

𝑑𝑡
= 𝑓 (𝑥

𝑖
(𝑡) , 𝑡) + 𝑓 (𝑦

𝑖
(𝑡) , 𝑡)

+ 𝑐

𝑁

∑

𝑗=1

𝑏
𝑖𝑗
(ℎ (𝑥
𝑗
(𝑡)) + ℎ (𝑦

𝑗
(𝑡))) ,

𝑖 = 𝑙 + 1, 𝑙 + 2, . . . , 𝑁.

(16)

Construct a Lyapunov function candidate as

𝑉 (𝑡) = 𝑉
1 (𝑡) + 𝑉

2 (𝑡) , (17)

where

𝑉
1 (𝑡) =

1

2

𝑁

∑

𝑖=1

𝜉
𝑖
(𝑥
𝑖
(𝑡) − 𝑥

𝜉
(𝑡))
𝑇

𝑃 (𝑥
𝑖
(𝑡) − 𝑥

𝜉
(𝑡))

=
1

2
𝑋(𝑡)
𝑇
(𝑈 ⊗ 𝑃)𝑋 (𝑡) ,

𝑉
2 (𝑡) =

1

2

𝑁

∑

𝑖=1

𝑒
𝑖
(𝑡)
𝑇
𝑃𝑒
𝑖
(𝑡) .

(18)

Differentiating the function𝑉
1
(𝑡) along the drive network

(15), we have

�̇�
1 (𝑡) = 𝑋(𝑡)

𝑇
(𝑈 ⊗ 𝑃) (𝐹 (𝑋 (𝑡)) + 𝑐 (𝐴 ⊗ 𝐼

𝑛
)𝐻 (𝑋 (𝑡)))

= 𝑋(𝑡)
𝑇
(𝑈 ⊗ 𝑃) (𝐹 (𝑋 (𝑡)) − (𝐼 ⊗ Δ)𝑋 (𝑡))

+ 𝑋(𝑡)
𝑇
(𝑈 ⊗ 𝑃)

× ((𝐼 ⊗ Δ)𝑋 (𝑡) + 𝑐 (𝐴 ⊗ 𝐼
𝑛
)𝐻 (𝑋 (𝑡)))

= 𝑉
11 (𝑡) + 𝑉

12 (𝑡) .

(19)

Because of Hypothesis (11) and Lemma 7, we have

𝑉
11 (𝑡) = 𝑋(𝑡)

𝑇
(𝑈 ⊗ 𝑃) (𝐹 (𝑋 (𝑡)) − (𝐼 ⊗ Δ)𝑋 (𝑡))

= −

𝑁

∑

𝑖>𝑗

𝑢
𝑖𝑗
(𝑥
𝑖
(𝑡) − 𝑥

𝑗
(𝑡))
𝑇

× 𝑃 (𝑓 (𝑥
𝑖
(𝑡) , 𝑡) − 𝑓 (𝑥

𝑗
(𝑡) , 𝑡)

−Δ (𝑥
𝑖
(𝑡) − 𝑥

𝑗
(𝑡)))

≤ 𝛼

𝑁

∑

𝑖>𝑗

𝑢
𝑖𝑗
(𝑥
𝑖
(𝑡) − 𝑥

𝑗
(𝑡))
𝑇

(𝑥
𝑖
(𝑡) − 𝑠

𝑗
(𝑡))

= − 𝛼𝑋(𝑡)
𝑇
𝑈 ⊗ 𝐼𝑋 (𝑡)

≤ −
𝛼

max
𝑘
𝑝
𝑘

𝑋(𝑡)
𝑇
(𝑈 ⊗ 𝑃)𝑋 (𝑡)

= −
2𝛼

max
𝑘
𝑝
𝑘

𝑉
1 (𝑡) .

(20)

Denote 𝑥
𝑘
(𝑡) = (𝑥

1

𝑘
(𝑡), 𝑥
2

𝑘
(𝑡), . . . , 𝑥

𝑁

𝑘
(𝑡))
𝑇, ℎ̃
𝑘
(𝑥
𝑘
(𝑡)) =

(𝑔(𝑥
1

𝑘
(𝑡)), 𝑔(𝑥

2

𝑘
(𝑡)), . . . , 𝑔(𝑥

𝑁

𝑘
(𝑡)))
𝑇 for 𝑘 = 1, 2, . . . , 𝑛 and

rewrite 𝑉
12
(𝑡) as follows

𝑉
12 (𝑡) = 𝑋(𝑡)

𝑇
(𝑈 ⊗ 𝑃Δ)𝑋 (𝑡) + 𝑐𝑋(𝑡)

𝑇
(𝑈𝐴 ⊗ 𝑃)𝐻 (𝑋 (𝑡))

=

𝑛

∑

𝑘=1

𝑝
𝑘
𝛿
𝑘
𝑥
𝑘(𝑡)
𝑇
𝑈𝑥
𝑘 (𝑡) + 𝑐

𝑛

∑

𝑘=1

𝑝
𝑘
𝑥
𝑘(𝑡)
𝑇
Ξ𝐴ℎ̃
𝑘
(𝑥
𝑘 (𝑡))

=

𝑛

∑

𝑘=1

𝑝
𝑘
𝑥
𝑘(𝑡)
𝑇
(𝛿
𝑘
𝑈 + 𝑐𝛾Ξ𝐴) 𝑥

𝑘 (𝑡)

+ 𝑐

𝑛

∑

𝑘=1

𝑝
𝑘
𝑥
𝑘(𝑡)
𝑇
Ξ𝐴 (ℎ̃

𝑘
(𝑥
𝑘 (𝑡)) − 𝛾𝑥

𝑘 (𝑡)) .

(21)
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Since 𝑈𝐴 = Ξ𝐴, 𝐴 ∈ 𝐴
1
, and from the property of 𝑄 in

Definition 6 gives

𝑥
𝑘(𝑡)
𝑇
Ξ𝐴 (ℎ̃

𝑘
(𝑥
𝑘 (𝑡)) − 𝛾𝑥

𝑘 (𝑡))

= 𝑥
𝑘(𝑡)
𝑇
Ξ𝐴𝑄(ℎ̃

𝑘
(𝑥
𝑘 (𝑡)) − 𝛾𝑥

𝑘 (𝑡))

≤
1

2
(𝜃
𝑘
𝑥
𝑘(𝑡)
𝑇
Ξ𝐴𝐴
𝑇
Ξ𝑥
𝑘 (𝑡) +

1

𝜃
𝑘

(ℎ̃
𝑘
(𝑥
𝑘 (𝑡)) − 𝛾𝑥

𝑘 (𝑡))
𝑇

× 𝑄 (ℎ̃
𝑘
(𝑥
𝑘 (𝑡)) − 𝛾𝑥

𝑘 (𝑡)) ) .

(22)

By Lemma 7 and 𝑔 ∈ NCF(𝛾, 𝛽), we have

(ℎ̃
𝑘
(𝑥
𝑘 (𝑡)) − 𝛾𝑥

𝑘 (𝑡))
𝑇

𝑄(ℎ̃
𝑘
(𝑥
𝑘 (𝑡)) − 𝛾𝑥

𝑘 (𝑡))

= −∑

𝑖>𝑖

𝑄
𝑖𝑗
(𝑔 (𝑥
𝑗

𝑘
(𝑡)) − 𝛾𝑥

𝑗

𝑘
(𝑡) − 𝑔 (𝑥

𝑖

𝑘
(𝑡)) + 𝛾𝑥

𝑖

𝑘
(𝑡))
2

≤ −𝛽
2
∑

𝑖>𝑗

𝑄
𝑖𝑗
(𝑥
𝑗

𝑘
(𝑡) − 𝑥

𝑖

𝑘
(𝑡))
2

= 𝛽
2
𝑥
𝑘(𝑡)
𝑇
𝑄𝑥
𝑘 (𝑡) .

(23)

Combining inequalities (22) and (23), we obtain

𝑐

𝑛

∑

𝑘=1

𝑝
𝑘
𝑥
𝑘(𝑡)
𝑇
Ξ𝐴 (ℎ̃

𝑘
(𝑥
𝑘 (𝑡)) − 𝛾𝑥

𝑘 (𝑡))

≤
𝑐

2

𝑛

∑

𝑘=1

𝑝
𝑘
𝑥
𝑘(𝑡)
𝑇
(𝜃
𝑘
Ξ𝐴𝐴
𝑇
Ξ +

𝛽
2

𝜃
𝑘

𝑄)𝑥
𝑘 (𝑡) .

(24)

Substituting inequalities (24) into (21), we get

𝑉
12 (𝑡) ≤

𝑛

∑

𝑘=1

𝑝
𝑘
𝑥
𝑘(𝑡)
𝑇

× (𝛿
𝑘
𝑈 + 𝑐𝛾Ξ𝐴 +

𝑐

2
𝜃
𝑘
Ξ𝐴𝐴
𝑇
Ξ +

𝑐

2

𝛽
2

𝜃
𝑘

𝑄)

× 𝑥
𝑘 (𝑡) ≤ 0,

(25)

which means that

𝑑𝑉
1 (𝑡)

𝑑𝑡
≤ −

2𝛼

max
𝑘
𝑝
𝑘

𝑉
1 (𝑡) ≜ −𝜙𝑉

1 (𝑡) ,

(𝜙 = −
2𝛼

max
𝑘
𝑝
𝑘

< 0) .

(26)

Thus, 𝑉
1
(𝑡) = 𝑜(𝑒

−𝜙𝑡
). From the definition of 𝑉

1
(𝑡), we have

(𝑥
𝑖
(𝑡) − 𝑥

𝜉
(𝑡))
𝑇
(𝑥
𝑖
(𝑡) − 𝑥

𝜉
(𝑡)) = 𝑜(𝑒

−𝜙𝑡
) for 𝑖 = 1, 2, . . . , 𝑁,

which means 𝑥
𝑖
(𝑡) − 𝑥

𝜉
(𝑡) converges to zero exponentially.

Therefore, 𝑥𝑖(𝑡) can be synchronized with 𝑥
𝜉
(𝑡) globally and

exponentially.

Evaluating the timederivative of𝑉
2
(𝑡) along the trajectory

of (16), we get

𝑑𝑉
2 (𝑡)

𝑑𝑡
=

𝑁

∑

𝑖=1

𝑒
𝑖
(𝑡)
𝑇
𝑃[

[

𝑓 (𝑥
𝑖
(𝑡) , 𝑡) + 𝑓 (𝑦

𝑖
(𝑡) , 𝑡)

+ 𝑐

𝑁

∑

𝑗=1

𝑎
𝑖𝑗
(ℎ (𝑥
𝑖
(𝑡)) + ℎ (𝑦

𝑖
(𝑡)))

− 𝑐𝑑
𝑖
(ℎ (𝑥
𝑗
(𝑡)) + ℎ (𝑦

𝑗
(𝑡))) ]

]

=

𝑁

∑

𝑖=1

𝑒
𝑖
(𝑡)
𝑇
𝑃 [𝑓 (𝑥

𝑖
(𝑡) , 𝑡) + 𝑓 (𝑦

𝑖
(𝑡) , 𝑡)

−Δ (𝑥
𝑖
(𝑡) + 𝑦

𝑖
(𝑡))]

+

𝑁

∑

𝑖=1

𝑒
𝑖
(𝑡)
𝑇
𝑃Δ𝑒
𝑖
(𝑡)

+ 𝑐

𝑁

∑

𝑖=1

𝑒
𝑖
(𝑡)
𝑇
𝑃

𝑁

∑

𝑗=1

𝑏
𝑖𝑗
(ℎ (𝑥
𝑗
(𝑡)) + ℎ (𝑦

𝑗
(𝑡)))

= 𝑉
21 (𝑡) + 𝑉

22 (𝑡) + 𝑉
23 (𝑡) .

(27)

By Hypothesis and because 𝑓 is odd respect to 𝑥, we
obtain

𝑉
21 (𝑡) =

𝑁

∑

𝑖=1

𝑒
𝑖
(𝑡)
𝑇
𝑃 [𝑓 (𝑥

𝑖
(𝑡) , 𝑡) + 𝑓 (𝑦

𝑖
(𝑡) , 𝑡)

−Δ (𝑥
𝑖
(𝑡) + 𝑦

𝑖
(𝑡))]

≤ − 𝛼

𝑁

∑

𝑖=1

𝑒
𝑖
(𝑡)
𝑇
𝑒
𝑖
(𝑡) .

(28)

Let 𝑒
𝑘
(𝑡) = 𝑥

𝑘
(𝑡) + 𝑦

𝑘
(𝑡). Since 𝑔 ∈ NCF(𝛾, 𝛽), ℎ

𝑘
(𝑥
𝑘
(𝑡))

can be as ℎ
𝑘
(𝑥
𝑘
(𝑡)) = 𝛾𝑥

𝑘
(𝑡) + 𝑟

𝑘
(𝑥
𝑘
(𝑡)) where 𝑟

𝑘
(𝑥
𝑘
(𝑡)) =

(𝑟(𝑥
1

𝑘
(𝑡)), 𝑟(𝑥

2

𝑘
(𝑡)), . . . , 𝑟(𝑥

𝑁

𝑘
(𝑡)))
𝑇, 𝑘 = 1, 2, . . . , 𝑛, we have

𝑉
22 (𝑡) = 𝑐

𝑁

∑

𝑖=1

𝑒
𝑖
(𝑡)
𝑇
𝑃

𝑁

∑

𝑗=1

𝑏
𝑖𝑗
(ℎ (𝑥
𝑗
(𝑡)) + ℎ (𝑦

𝑗
(𝑡)))

= 𝑐

𝑛

∑

𝑘=1

𝑝
𝑘
𝑒
𝑘(𝑡)
𝑇
𝐵 (ℎ
𝑘
(𝑥
𝑘 (𝑡)) + ℎ

𝑘
(𝑦
𝑘 (𝑡)))

= 𝑐𝛾

𝑛

∑

𝑘=1

𝑝
𝑘
𝑒
𝑘(𝑡)
𝑇
𝐵
𝑠
𝑒
𝑘 (𝑡)

+ 𝑐

𝑛

∑

𝑘=1

𝑝
𝑘
𝑒
𝑘(𝑡)
𝑇
𝐵 (𝑟
𝑘
(𝑥
𝑘 (𝑡)) + 𝑟

𝑘
(𝑦
𝑘 (𝑡))) .

(29)
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Since 𝑔 is odd and there exists 𝜗
𝑘
> 0 for 1 ≤ 𝑘 ≤ 𝑛, we have

𝑒
𝑘(𝑡)
𝑇
𝐵 (𝑟
𝑘
(𝑥
𝑘 (𝑡)) + 𝑟

𝑘
(𝑦
𝑘 (𝑡)))

≤
1

2
(𝜗
𝑘
𝑒
𝑘(𝑡)
𝑇
𝐵𝐵
𝑇
𝑒
𝑘 (𝑡) +

1

𝜗
𝑘

(𝑟
𝑘
(𝑥
𝑘 (𝑡)) + 𝑟

𝑘
(𝑦
𝑘 (𝑡)))

𝑇

× (𝑟
𝑘
(𝑥
𝑘 (𝑡)) + 𝑟

𝑘
(𝑦
𝑘 (𝑡))))

=
1

2
(𝜗
𝑘
𝑒
𝑘(𝑡)
𝑇
𝐵𝐵
𝑇
𝑒
𝑘 (𝑡)

+
1

𝜗
𝑘

𝑁

∑

𝑠=1

(𝑟 (𝑥
𝑠

𝑘
(𝑡)) + 𝑟 (𝑦

𝑠

𝑘
(𝑡)))
2
)

≤
1

2
(𝜗
𝑘
𝑒
𝑘(𝑡)
𝑇
𝐵𝐵
𝑇
𝑒
𝑘 (𝑡) +

𝛽
2

𝜗
𝑘

𝑁

∑

𝑠=1

(𝑥
𝑠

𝑘
(𝑡) + 𝑦

𝑠

𝑘
(𝑡))
2
)

=
1

2
𝑒
𝑘(𝑡)
𝑇
(𝜗
𝑘
𝐵𝐵
𝑇
+

𝛽
2

𝜗
𝑘

𝐼
𝑁
) 𝑒
𝑘 (𝑡) .

(30)

Substituting inequality (30) into (29), we get

𝑉
22 (𝑡) ≤

𝑛

∑

𝑘=1

𝑝
𝑘
𝑒
𝑘(𝑡)
𝑇
{𝑐𝛾𝐵
𝑠
+

𝑐

2
[𝜗
𝑘
𝐵𝐵
𝑇
+

𝛽
2

𝜗
𝑘

𝐼
𝑁
]} 𝑒
𝑘 (𝑡) .

(31)

On the other hand, 𝑉
23
(𝑡) can be directly written as

𝑉
23 (𝑡) =

𝑛

∑

𝑘=1

𝑝
𝑘
𝑒
𝑘(𝑡)
𝑇
𝛿
𝑘
𝑒
𝑘 (𝑡) . (32)

Finally, substituting (28), (31), and (32) into (27), we get

𝑑𝑉
2 (𝑡)

𝑑𝑡
≤ − 𝛼

𝑁

∑

𝑖=1

𝑒
𝑖
(𝑡)
𝑇
𝑒
𝑖
(𝑡) +

𝑛

∑

𝑘=1

𝑝
𝑘
𝑒
𝑘(𝑡)
𝑇

× {𝑐𝛾𝐵
𝑠
+

𝑐

2
(𝜗
𝑘
𝐵𝐵
𝑇
+

𝛽
2

𝜗
𝑘

𝐼
𝑁
) + 𝛿
𝑘
𝐼
𝑁
} 𝑒
𝑘 (𝑡) .

(33)

It now implies that

𝑑𝑉
2 (𝑡)

𝑑𝑡
≤ −𝛼

𝑁

∑

𝑖=1

𝑒
𝑖
(𝑡)
𝑇
𝑒
𝑖
(𝑡) , (34)

and 𝑉
2
(𝑡) = 𝑜(𝑒

−𝛼𝑡
) follows. Thus, 𝑒𝑖(𝑡) → 0 (𝑡 → ∞) for

𝑖 = 1, 2, . . . , 𝑁. This implies that

lim
𝑡→+∞


𝑥
𝑖
(𝑡) + 𝑦

𝑖
(𝑡)


= 0, 𝑖 = 1, 2, . . . , 𝑁. (35)

The proof of the theorem is complete.

From the proof, one can see that the difficulty in inves-
tigating the hybrid synchronization with an asymmetrical

coupling matrix 𝐴 lies in how to deal with the terms
𝑥
𝑘
(𝑡)
𝑇
Ξ𝐴ℎ̃
𝑘
(𝑥
𝑘
(𝑡)) of (22) and 𝑒

𝑘
(𝑡)
𝑇
𝐵(ℎ
𝑘
(𝑥
𝑘
(𝑡)) + ℎ

𝑘
(𝑦
𝑘
(𝑡)))

of (31), where Ξ𝐴 and 𝐵 are asymmetrical. If 𝐴 is symmetric,
then Ξ𝐴 and 𝐵 are symmetric. In the case, by Lemma 7, we
have

𝑐

𝑛

∑

𝑘=1

𝑝
𝑘
𝑥
𝑘(𝑡)
𝑇
𝐴ℎ̃
𝑘
(𝑥
𝑘 (𝑡))

= 𝑐

𝑛

∑

𝑘=1

𝑝
𝑘
∑

𝑖>𝑗

𝑎
𝑖𝑗
(𝑥
𝑖

𝑘
− 𝑥
𝑗

𝑘
) (𝑔 (𝑥

𝑖

𝑘
) − 𝑔 (𝑥

𝑗

𝑘
))

⩽ −𝑐𝛾

𝑛

∑

𝑘=1

𝑝
𝑘
∑

𝑖>𝑗

𝑎
𝑖𝑗
(𝑥
𝑖

𝑘
− 𝑥
𝑗

𝑘
)
2

= 𝑐𝛾

𝑛

∑

𝑘=1

𝑝
𝑘
𝑥
𝑘(𝑡)
𝑇
𝐴𝑥
𝑘 (𝑡) ,

(36)

where 𝛾 is defined as 𝛾 = inf
𝑤
1
̸= 𝑤
2

(𝑔(𝑤
1
)−𝑔(𝑤

2
))/(𝑤
1
−𝑤
2
) >

0, for 𝑤
1
, 𝑤
2
∈ 𝑅.

Therefore

𝑉
12 (𝑡) ≤

𝑛

∑

𝑘=1

𝑝
𝑘
𝑥
𝑘(𝑡)
𝑇
(𝛿
𝑘
𝑈 +

𝑐

𝑁
𝛾𝐴)𝑥

𝑘 (𝑡) , (37)

on the other hand, let 𝑒𝑖
𝑘
(𝑡) = 𝑥

𝑖

𝑘
(𝑡) + 𝑦

𝑖

𝑘
(𝑡), from (29), we get

𝑉
22 (𝑡) = 𝑐

𝑛

∑

𝑘=1

𝑝
𝑘
𝑒
𝑘(𝑡)
𝑇
𝐵 (ℎ̃ (𝑥

𝑘 (𝑡)) + ℎ̃ (𝑦
𝑘 (𝑡)))

= 𝑐

𝑛

∑

𝑘=1

𝑝
𝑘
∑

𝑖>𝑗

𝑏
𝑖𝑗
(𝑒
𝑖

𝑘
(𝑡) − 𝑒

𝑗

𝑘
(𝑡))

× (𝑔 (𝑥
𝑖

𝑘
(𝑡)) + 𝑔 (𝑦

𝑖

𝑘
(𝑡)) − 𝑔 (𝑥

𝑗

𝑘
(𝑡)) − 𝑔 (𝑦

𝑗

𝑘
(𝑡)))

= 𝑐𝛾

𝑛

∑

𝑘=1

𝑝
𝑘
∑

𝑖>𝑗

𝑏
𝑖𝑗
(𝑒
𝑖

𝑘
(𝑡) − 𝑒

𝑗

𝑘
(𝑡))
2

= 𝑐𝛾

𝑛

∑

𝑘=1

𝑝
𝑘
𝑒
𝑘(𝑡)
𝑇
𝐵𝑒
𝑘 (𝑡) .

(38)

Notice (36), (37), and (38), we obtain the following corollar-
ies.

Corollary 10. Suppose𝑓(⋅) satisfyHypothesis.𝐴 = (𝑎
𝑖𝑗
) ∈ 𝐴
2
,

𝑔(⋅) ∈ NCF(𝛾, 𝛽), and 𝑔 is odd function, 𝑓(𝑥, 𝑡) is odd with
regard to 𝑥, if the following inequalities

𝛿
𝑘
𝑈 +

𝑐

𝑁
𝛾𝐴 ≤ 0,

𝑐𝛾𝐵 + 𝛿
𝑘
𝐼
𝑁

≤ 0,

𝑘 = 1, 2, . . . , 𝑛 (39)

hold, then the nonlinearly coupled driving network (3) can
hybrid synchronized to the response network(4).
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If 𝑔 ∈ NCF(𝛾, 0), then the driving network (3) becomes
linear-coupling systems

�̇�
𝑖
(𝑡) = 𝑓 (𝑥

𝑖
(𝑡) , 𝑡) + 𝑐

𝑁

∑

𝑗=1

𝑎
𝑖𝑗
𝑥
𝑗
(𝑡) , 𝑖 = 1, 2, . . . , 𝑁, (40)

respectively, the pinning controlled response network (4) can be
rewritten as

̇𝑦
𝑖
(𝑡) = 𝑓 (𝑦

𝑖
(𝑡) , 𝑡) + 𝑐

𝑁

∑

𝑗=1

𝑎
𝑖𝑗
𝑦
𝑗
(𝑡) − 𝑐𝑑

𝑖
(𝑥
𝑖
(𝑡) + 𝑦

𝑖
(𝑡)) ,

𝑖 = 1, 2, . . . , 𝑙,

̇𝑦
𝑖
(𝑡) = 𝑓 (𝑦

𝑖
(𝑡) , 𝑡) + 𝑐

𝑁

∑

𝑗=1

𝑎
𝑖𝑗
𝑦
𝑗
(𝑡) , 𝑖 = 𝑙 + 1, 𝑙 + 2, . . . , 𝑁.

(41)

As a direct consequence of Theorem 9, we obtain the following
result.

Corollary 11. Suppose Hypothesis holds. 𝐴 = (𝑎
𝑖𝑗
) ∈ 𝐴

1
,

𝑔(⋅) ∈ NCF(𝛾, 0), and 𝑔 is odd function, 𝑓(𝑥, 𝑡) is odd with
regard to 𝑥, if the following inequalities

𝛿
𝑘
𝑈 + 𝑐𝛾(Ξ𝐴)

𝑠
≤ 0,

𝑐𝛾𝐵
𝑠
+ 𝛿
𝑘
𝐼
𝑁

≤ 0

(42)

hold, then the linearly coupled driving network (40) can hybrid
synchronized to the response network (41).

The case has been discussed in [30]. Therefore, one can see
the main result of the paper as a nontrivial extension of the
Theorem 1 of [30].

Remark 12. By using the Lyapunov method combined with
some other technique, the hybrid synchronization criterion
of the pinning-controlled dynamical networks has been
obtained. It means that the outer antisynchronization
between system (3) and system (4) while the inner syn-
chronization in them. Our result displays that pinning con-
trol is effective for the hybrid synchronization of complex
dynamical network. Pinning impulsive control strategy has
been used effectively for the synchronization of stochastic
dynamical networks with nonlinear coupling in [33, 35]. Our
pinning control strategy for the hybrid synchronization of
two nonlinearly coupled complex networks in this paper
differs from them.

5. Numerical Simulation

In this section, we given numerical simulation to verify the
theorem given in the previous section. In order to verify our
results, we consider the driving complex network [32] as

�̇�
𝑖
(𝑡) = 𝑓 (𝑥

𝑖
(𝑡) , 𝑡) + 𝑐

5

∑

𝑗=1

𝑎
𝑖𝑗
ℎ (𝑥
𝑗
(𝑡)) , 𝑖 = 1, 2, . . . , 5

(43)

and the response networks [32] as

̇𝑦
𝑖
(𝑡) = 𝑓 (𝑦

𝑖
(𝑡) , 𝑡) +

5

∑

𝑗=1

𝑎
𝑖𝑗
ℎ (𝑦
𝑗
(𝑡))

− 𝑐𝑑
𝑖
(𝑥
𝑖
(𝑡) + 𝑦

𝑖
(𝑡)) , 𝑖 = 1, 2,

̇𝑦
𝑖
(𝑡) = 𝑓 (𝑦

𝑖
(𝑡) , 𝑡) +

5

∑

𝑗=1

𝑎
𝑖𝑗
ℎ (𝑦
𝑗
(𝑡)) , 𝑖 = 3, 4, 5,

(44)

where

𝑓 (𝑥
𝑖
(𝑡) , 𝑡) = −𝑆𝑥

𝑖
(𝑡) + 𝑇𝑤 (𝑥

𝑖
(𝑡)) ,

𝑆 = [

[

3.2 −10 0

−1 1 −1

0 14.87 0

]

]

, 𝑇 = [

[

5.9 0 0

0 0 0

0 0 0

]

]

,

(45)

and 𝑤(𝑥) = (|𝑥 + 1| − |𝑥 − 1|)/2.
Let 𝑃 = 𝐼

3
, Δ = 𝛿𝐼

3
, if there exists a positive-definite

diagonal matrix Σ = diag{𝜎
1
, . . . , 𝜎

𝑛
}, such that

[
2𝑃 (𝑆 + Δ) − Σ −𝑃𝑇

−𝑇
𝑇
𝑃 Σ

] > 0, (46)

then 𝑓(𝑥
𝑖
(𝑡), 𝑡) satisfies the condition (11) [38] in Hypothesis.

UsingMatlab LMI Control Toolbox, we get 𝛿 = 9.0637.

Example 13. As for the asymmetrical coupling matrix 𝐴, we
use

𝐴 =

[
[
[
[
[

[

−0.794 0.794 0 0 0

0 −0.84 0.311 0 0.529

0.166 0 −0.166 0 0

0.602 0 0.263 −0.865 0

0 0 0 0.654 −0.654

]
]
]
]
]

]

, (47)

whose left eigenvector corresponding to eigenvalue 0 is 𝜉 =

(0.3157, 0.2984, 0.8483, 0.1825, 0.2414)
𝑇. It is clear that 𝜉𝑇𝐿 =

0. Let the nonlinear function 𝑔(𝑥(𝑡)) = 5𝑥(𝑡) + sin(𝑥(𝑡)), so
𝑔(⋅) ∈ NCF(5, 1) (𝛾 = 5, 𝛽 = 1).

The initial values are chosen as

𝑥
1
(0) = (−0.4946, −4.1618, −2.7102)

𝑇
,

𝑥
2
(0) = (4.1334, −3.4762, 3.2582)

𝑇
,

𝑥
3
(0) = (0.3834, 4.9613, −4.2182)

𝑇
,

𝑥
4
(0) = (−0.5732, −3.9335, 4.619)

𝑇
,

𝑥
5
(0) = (−4.9537, 2.7491, 3.173)

𝑇
,

𝑦
1
(0) = (−3.7009, 0.6882, −0.3061)

𝑇
,

𝑦
2
(0) = (−4.881, −1.6288, −3.3782)

𝑇
,

𝑦
3
(0) = (2.9428, −1.8878, 0.2853)

𝑇
,

𝑦
4
(0) = (−3.3435, 1.0198, −2.3703)

𝑇
,

𝑦
5
(0) = (1.5408, 1.8921, 2.4815)

𝑇
,

(48)
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Figure 1: The trajectories evolution of the state variable, (a) 𝑥
𝑖

1
(𝑡),

𝑦
𝑖

1
(𝑡), (b) 𝑥𝑖

2
(𝑡), 𝑦𝑖
2
(𝑡), and (c) 𝑥𝑖

3
(𝑡), 𝑦𝑖
3
(𝑡) (𝑖 = 1, 2, . . . , 5).

and the errors between nodes are defined by

𝐸
𝑥
= ∑

𝑖>𝑗


𝑥
𝑖
(𝑡) − 𝑥

𝑗
(𝑡)


,

𝐸
𝑦
= ∑

𝑖>𝑗


𝑦
𝑖
(𝑡) − 𝑦

𝑗
(𝑡)


,

𝐸
𝑥𝑦

=

5

∑

𝑖=1

5

∑

𝑗=1


𝑥
𝑖
(𝑡) + 𝑦

𝑗
(𝑡)


,

(49)

as measures of hybrid synchronization.
Let 𝑐 = 11.868, 𝜃

𝑘
= 2.309, 𝜗

𝑘
= 0.965, (𝑘 = 1, 2, 3), and

𝑑
1

= 𝑑
2

= 1.76, 𝑑
3

= 𝑑
4

= 𝑑
5

= 0, the calculations show
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𝑡
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𝑡
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)
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Figure 2: (a) The synchronization error evolution of the driver
networks 𝐸

𝑥
(𝑡); (b) The synchronization error evolution of the

response networks 𝐸
𝑦
(𝑡); (c) The anti-synchronization error evolu-

tion between the driver networks and the response networks 𝐸
𝑥𝑦

(𝑡)

with the pinning control.

that eigenvalues of matrix 𝛿
𝑘
𝑈 + 𝑐𝛾(Ξ𝐴)

𝑠
+ (c𝜃
𝑘
/2)Ξ𝐴𝐴

𝑇
Ξ +

(𝑐𝛽
2
/2𝜃
𝑘
)𝑄 are −16.3119, −0.1990, −7.8756, −3.8328, and

−5.5047, and 𝑐𝛾𝐵
𝑠
+ (𝑐/2)(𝜗

𝑘
𝐵𝐵
𝑇

+ (𝛽
2
/𝜗
𝑘
)𝐼
𝑁
) + 𝛿
𝑘
𝐼
𝑁

are
−0.0823, −21.76, −45.804, −103.63, and −77.347.

The trajectories evolution of the pinning control gains
are shown in Figure 1. The evolution of synchronization
error of the driver and the response system in Figures
2(a) and 2(b), respectively. The evolution of synchroniza-
tion error of between the driver and the response system
Figure 2(c).
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Figure 3: The trajectories evolution of the state variable, (a) 𝑥
𝑖

1
(𝑡),

𝑦
𝑖

1
(𝑡), (b) 𝑥𝑖

2
(𝑡), 𝑦𝑖
2
(𝑡), and (c) 𝑥𝑖

3
(𝑡), 𝑦𝑖
3
(𝑡) (𝑖 = 1, 2, . . . , 5).

Example 14. As for the symmetrical coupling matrix 𝐴, we
use

𝐴 =

[
[
[
[
[

[

−2.407 0.792 0.959 0 0.656

0.792 −0.792 0 0 0

0.959 0 −2.572 0.934 0.679

0 0 0.934 −0.934 0

0.656 0 0.679 0 −1.335

]
]
]
]
]

]

. (50)

Let 𝑐 = 9.182, 𝑑
1

= 𝑑
1

= 1.76, and 𝑑
3

= 𝑑
4

= 𝑑
5

= 0, the
calculations show that eigenvalues of matrix 𝛿

𝑘
𝑈 + (𝑐/𝑁)𝛾𝐴

are−30.4559, −18.9805, −15.2688, −9.3311, and−0.1760, and
𝑐𝛾𝐵+𝛿

𝑘
𝐼
𝑁
are: −59.0165, −36.2877, −28.4531, −14.4174, and

−0.2446.
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Figure 4: (a) The synchronization error evolution of the driver
networks 𝐸

𝑥
(𝑡). (b) The synchronization error evolution of the

response networks 𝐸
𝑦
(𝑡). (c) The antisynchronization error evolu-

tion between the driver networks and the response networks 𝐸
𝑥𝑦

(𝑡)

with the pinning control.

The initial values are chosen as above. The trajectories
evolution of the pinning control gains are shown in Figure 3.
The evolution of synchronization error of the driver and the
response system in Figures 4(a) and 4(b), respectively. The
evolution of synchronization error of between the driver and
the response system in Figure 4(c).

6. Conclusions and Future Directions

In this paper, we considered the hybrid synchronization of
two nonlinearly coupled complex dynamical networks with
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asymmetrical coupling matrices under the pinning control
scheme. By placing a small number of feedback controllers
on some nodes, we obtained some criteria for the hybrid syn-
chronization of such dynamical networks based on Lyapunov
Stability Theory. It is shown that under certain conditions,
two nonlinearly coupled complex networks can achieve an
intriguing hybrid synchronization: the outer antisynchro-
nization between the driving network and the response
network and the inner complete synchronization between
the driving network and the response network, respectively.
Numerical examples were also provided to demonstrate the
effectiveness of the theoretical result.

Because the random phenomenon appears frequently
in dynamical complex network, in our further efforts, this
feature should be taken into account in order to solve
problems more practically. More precisely, our future works
may be extended to the consensus problem of the multiagent
systems with stochastic disturbance, the synchronization
issue of the dynamical complex networks with stochastic
disturbance, and so on. On the other side, control methods
would not be limited to the feedback control any more. For
example, in real world, the states of nodes in the networks
often suffer from instantaneous perturbations or abrupt
changes at certain instants, such as switching phenomena,
frequency change, or sudden noise. In order to investigate the
synchronization matters for this situation, suitable pinning
impulsive controllers could be applied to deal with the
impulsive-coupled dynamical networks.Moreover, couplings
or communications between nodes in this paper are con-
sidered to be continuous. However, there are other modes
of the information exchanging among the nodes, such as
impulsive communication and intermittent communication.
The studies on these problems will be also interesting and
meaningful in the further research work.

Acknowledgments

This work was supported by the National Science Foun-
dation of China under Grant no. 61273220, the Guang-
dong Education University Industry Cooperation Project
(2009B090300355), and the Shenzhen Basic Research Project
(JC201006010743A, JCYJ20120613105730482). The authors
are very grateful to the reviewers and editors for their valuable
comments on this paper.

References

[1] D. J. Watts and S. H. Strogatz, “Collective dynamics of ’small-
world9 networks,”Nature, vol. 393, no. 6684, pp. 440–442, 1998.

[2] S. H. Strogatz, “Exploring complex networks,” Nature, vol. 410,
no. 6825, pp. 268–276, 2001.

[3] M. E. J. Newman, “The structure and function of complex
networks,” SIAM Review, vol. 45, no. 2, pp. 167–256, 2003.

[4] X. F.Wang andG. Chen, “Synchronization in scale-free dynam-
ical networks: robustness and fragility,” IEEE Transactions on
Circuits and Systems. I. Fundamental Theory and Applications,
vol. 49, no. 1, pp. 54–62, 2002.

[5] A. Zheleznyak and L. O. Chua, “Coexistence of low- and high-
dimensional spatiotemporal chaos in a chain of dissipatively-
coupled. Chuas circuits,” International Journal of Bifurcation
and Chaos, vol. 4, pp. 639–672, 1994.

[6] V. Perez-Munuzuri, V. Perez-Villar, and L. O. Chua, “Autowaves
for image processing on a two-dimensional CNN array of
excitable nonlinear circuits: flat and wrinkled labyrinths,” IEEE
Transactions on Circuits and Systems I, vol. 40, no. 3, pp. 174–181,
1993.

[7] C. W. Wu and L. O. Chua, “Synchronization in an array of
linearly coupled dynamical systems,” IEEE Transactions on
Circuits and Systems. I. Fundamental Theory and Applications,
vol. 42, no. 8, pp. 430–447, 1995.

[8] J. Cao, P. Li, andW.Wang, “Global synchronization in arrays of
delayed neural networks with constant and delayed coupling,”
Physics Letters A, vol. 353, no. 4, pp. 318–325, 2006.
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