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A compartmental model is established for schistosomiasis with praziquantel resistance. The model considers the impact of genetic
resistance and drug treatment on the transmission of schistosomiasis. We calculate the basic reproductive number and discuss
the existence and stability of disease-free equilibrium, boundary equilibrium, and coexistence equilibrium. Our analysis shows
that regardless of whether drug treatment leads to the emergence of resistance, once the impact of genetic resistance is larger, the
resistant strain will be dominant, which is detrimental to the control of schistosomiasis. In addition, once the proportion of human
with drug-resistant strain produced by drug treatment is larger, the number of human and snails with resistant strain is larger. This
is not a good result for drug treatment with praziquantel.

1. Introduction

Currently, treatment of human beings infected by schistoso-
miasis primarily focuses on chemotherapy with praziquantel
(PZQ). PZQ appeared as a new schistosomicidal compound
during the 1970s [1]. In recent years, PZQ has become the
drug of choice in most endemic areas because of its efficacy,
its ease of administration, its tolerable side-effects, and its cost
[1]. Although the effectiveness of PZQagainst schistosomiasis
is well documented, the precise mode of action of the drug
has not clearly defined [2]. It is reported that the chemother-
apy of many helminth infections is complicated by the
occurrence of drug resistance and drug tolerance (a natural
resistance) to certain anthelmintics [2]. Not surprisingly,
recent epidemiological evidence suggests the emergence of
PZQ-resistant\tolerant schistosomes [1, 3, 4]. Resistance is
defined as a genetically transmitted loss of sensitivity in a
parasite population that was previously sensitive to a given
drug [2]. Tolerance is an innate insusceptibility of a parasite
to a drug, with the caveat that the parasite must not have
been previously exposed to the drug [2]. The first report
of possible PZQ resistance came from an intensive focus in
northern Senegal, where the drug had produced very low
cure rates (18–39%) [5, 6]. And snails collected in the area
carried schistosoma strains. When tested in the laboratory,
those snails had a decreased susceptibility to PZQ [7, 8].

Additional PZQ-resistant evidence was collected in Egypt
[4, 9]. Preliminary studies have begun on these isolates to
identify genetic, physiological, and morphological character-
istics associated with PZQ resistance, and some of these may
find use as markers for monitoring whether or not resistance
is developing in endemic areas, where the drug is used [10].

Many papers have reported that drug treatment results in
the emergence of schistosome resistance to PZQ [11–13].Drug
treatment can remove drug-susceptible parasites in infected
human beings, while resistant parasites survive. However,
many investigations find that traits of PZQ resistance of
Schistosoma mansoni are dominant inheritance [14–16]. The
resistant worms can reproduce and pass the resistant genes to
the next generation. Furthermore, the resistance of Schisto-
soma mansoni to PZQ can be expressed in eggs, miracidia,
cercariae, adults, and all stages of development [14–16].
In other words, some definitive hosts carrying resistant
schistosomes can infect snails and make those snails carry
resistant schistosomes. On the contrary, some snails carrying
resistant schistosomes can infect definitive hosts and also
make those definitive hosts carry resistant schistosomes. It
goes on, the control of schistosomiasis will face enormous
difficulties. Therefore, it is necessary to study the impact of
this schistosome genetic resistance on the transmission of
schistosomiasis.



2 Discrete Dynamics in Nature and Society

In previous schistosomiasis models, resistant problems
have been studied by considering that the resistance of
schistosomiasis is due to drug treatment [11–13]. In [11, 13], the
authors proposed a multistrain schistosome model including
sensitive and resistant parasite strains. Their goal was to
infer the impact of drug treatment on the maintenance of
schistosome genetic diversity. In their assumptions, the drug-
sensitive parasite strain had an additional per capita death
rate, 𝜎, due to treatment. For a parasite strain that had
developed drug resistance with a resistance level 𝜃 (𝜃 > 1),
this treatment-related death rate was assumed to be reduced
by the factor 𝜃 to 𝜎/𝜃. Their results implied that higher
treatment rate could allow for coexistence between sensitive
and resistant parasite strains. In [12], the authors formulated a
deterministic model with multiple strains of schistosomes in
order to explore the role of drug treatment in themaintenance
of a polymorphism of parasite strains that differed in their
resistance levels. And snails infected by parasite strains were
divided into multistrain subclasses according to the different
level 𝜃

𝑖
of parasite strains. Analysis of the model showed

that the likelihood that resistant strains would increase in
frequency depended on the interplay between their relative
fitness, the cost of resistance, and the degree of selection
pressure exerted by drug treatments.

Motivated by [11–13], we establish a new model consider-
ing hosts with sensitive and resistant strains in this paper. Our
purpose is mainly to study the impact of drug treatment and
genetic resistance on the transmission of schistosomiasis.

Our paper is organized as follows. In Section 2, we
establish a mathematical model with praziquantel resistance
and obtain basic reproductive number and existence of
equilibria. And then the stability of disease-free equilibrium
is obtained in Section 3. Section 4 devotes to stability analysis
of boundary equilibria. In Section 5, stability analysis of
endemic equilibrium is performed.

2. Mathematical Model

According to different level of parasite strains, we divide
infected hosts into sensitive and resistant strains. Considering
resistance and inheritance of resistance, new resistant strains
are composed of two parts. We classify definitive and inter-
mediate hosts as susceptible, sensitive and resistant in the
following:

(i) 𝑋
𝑠
(𝑡), the population of susceptible human;

(ii) 𝑋
𝑖
(𝑡), the population of human infectedwith sensitive

parasite strain;
(iii) 𝑋

𝑟
(𝑡), the population of human infectedwith resistant

parasite strain;
(iv) 𝑌

𝑠
(𝑡), the population of susceptible snail host;

(v) 𝑌
𝑖
(𝑡), the population of snail host carrying sensitive

parasites;
(vi) 𝑌

𝑟
(𝑡), the population of snail host carrying resistant

parasites.

We follow some of the available models for schistosomi-
asis [17–19] and assume that the reproduction rate of hosts is

constant, and we ignore the recovery class of host since the
life span of infected is short in comparison to that of human
[18, 20]. All parameters in the model are assumed to be non-
negative constants:

(i) Λ
1
, recruitment rate of human;

(ii) 𝜇
1
, per capita natural death rate of human;

(iii) 𝛼
1
, per capita disease-induced death rate of human;

(iv) 𝛽
1
, per capita contact transmission rate from infected

snails to susceptible human;

(v) Λ
2
, recruitment rate of snails;

(vi) 𝜇
2
, per capita natural death rate of snails;

(vii) 𝛼
2
, per capita disease-induced death rate of snails;

(viii) 𝛽
2
, per capita contact transmission rate from infected

human to susceptible snails;

(ix) 𝜃, the rate of treatment for infected human;

(x) 𝜌, the proportion of human with drug-resistant strain
produced by treatment;

(xi) 𝑘, represents the impact of inheritance and the cost
of resistance on transmission rate, we assume that
𝑘 ≤ 1 since the transmission rate is reduced due to
resistance [12];

(xii) 𝑘
1
, represents the impact of resistance on disease-

induced death rate of human;

(xiii) 𝑘
2
, represents the impact of resistance on disease-

induced death rate of snails.

Then, we have a model with the form:

𝑑𝑋
𝑠

𝑑𝑡
= Λ
1
− 𝛽
1
𝑋
𝑠
𝑌
𝑖
− 𝑘𝛽
1
𝑋
𝑠
𝑌
𝑟
− 𝜇
1
𝑋
𝑠
+ (1 − 𝜌) 𝜎𝑋

𝑖
,

𝑑𝑋
𝑖

𝑑𝑡
= 𝛽
1
𝑋
𝑠
𝑌
𝑖
− 𝜇
1
𝑋
𝑖
− 𝛼
1
𝑋
𝑖
− 𝜎𝑋
𝑖
,

𝑑𝑋
𝑟

𝑑𝑡
= 𝑘𝛽
1
𝑋
𝑠
𝑌
𝑟
+ 𝜌𝜎𝑋

𝑖
− 𝜇
1
𝑋
𝑟
− 𝑘
1
𝛼
1
𝑋
𝑟
,

𝑑𝑌
𝑠

𝑑𝑡
= Λ
2
− 𝛽
2
𝑌
𝑠
𝑋
𝑖
− 𝑘𝛽
2
𝑌
𝑠
𝑋
𝑟
− 𝜇
2
𝑌
𝑠
,

𝑑𝑌
𝑖

𝑑𝑡
= 𝛽
2
𝑌
𝑠
𝑋
𝑖
− 𝜇
2
𝑌
𝑖
− 𝛼
2
𝑌
𝑖
,

𝑑𝑌
𝑟

𝑑𝑡
= 𝑘𝛽
2
𝑌
𝑠
𝑋
𝑟
− 𝜇
2
𝑌
𝑟
− 𝑘
2
𝛼
2
𝑌
𝑟
.

(1)

Using standard methods, it is easy to see that disease free
equilibrium 𝐸

0
= (Λ
1
/𝜇
1
, 0, 0, Λ

2
/𝜇
2
, 0, 0) always exists. Let

𝑋
𝑠0

= Λ
1
/𝜇
1
, 𝑌
𝑠0

= Λ
2
/𝜇
2
,𝑚
1
= 𝜇
1
+𝛼
1
+𝜎,𝑚

2
= 𝜇
1
+ 𝑘
1
𝛼
1
,

𝑚
3
= 𝜇
2
+ 𝛼
2
, and𝑚

4
= 𝜇
2
+ 𝑘
2
𝛼
2
. According to the concept

of next generation matrix [21] and the formula of the basic
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reproductive number for ODE compartmental models [22],
if we let

𝐹 = (

0 0 𝛽
1
𝑋
𝑠0

0

0 0 0 𝑘𝛽
1
𝑋
𝑠0

𝛽
2
𝑌
𝑠0

0 0 0

0 𝑘𝛽
2
𝑌
𝑠0

0 0

) ,

𝑉 = (

𝑚
1

0 0 0

0 𝑚
2

0 0

0 0 𝑚
3

0

0 0 0 𝑚
4

),

(2)

one can calculate that the eigenvalues of the next generation
matrix 𝐹𝑉

−1 are given by

𝑅
0𝑖
= √

𝛽
1
𝛽
2
𝑋
𝑠0
𝑌
𝑠0

𝑚
1
𝑚
3

, 𝑅
0𝑟

= √
𝑘
2
𝛽
1
𝛽
2
𝑋
𝑠0
𝑌
𝑠0

𝑚
2
𝑚
4

. (3)

Then, it follows that the basic reproductive number for the
system (1) is given by

𝑅
0
= max {𝑅

0𝑖
, 𝑅
0𝑟
} . (4)

To obtain other equilibria, we let the right-hand side of
(1) equal to zero and obtain

Λ
1
− 𝛽
1
𝑋
𝑠
𝑌
𝑖
− 𝑘𝛽
1
𝑋
𝑠
𝑌
𝑟
− 𝜇
1
𝑋
𝑠
+ (1 − 𝜌) 𝜎𝑋

𝑖
= 0, (5)

𝛽
1
𝑋
𝑠
𝑌
𝑖
− 𝜇
1
𝑋
𝑖
− 𝛼
1
𝑋
𝑖
− 𝜎𝑋
𝑖
= 0, (6)

𝑘𝛽
1
𝑋
𝑠
𝑌
𝑟
+ 𝜌𝜎𝑋

𝑖
− 𝜇
1
𝑋
𝑟
− 𝑘
1
𝛼
1
𝑋
𝑟
= 0, (7)

Λ
2
− 𝛽
2
𝑌
𝑠
𝑋
𝑖
− 𝑘𝛽
2
𝑌
𝑠
𝑋
𝑟
− 𝜇
2
𝑌
𝑠
= 0, (8)

𝛽
2
𝑌
𝑠
𝑋
𝑖
− 𝜇
2
𝑌
𝑖
− 𝛼
2
𝑌
𝑖
= 0, (9)

𝑘𝛽
2
𝑌
𝑠
𝑋
𝑟
− 𝜇
2
𝑌
𝑟
− 𝑘
2
𝛼
2
𝑌
𝑟
= 0. (10)

If𝑋
𝑖
= 0, we have 𝑌

𝑖
= 0 and a formula of𝑋

𝑟
as follows:

(𝑘
2
𝛽
1
𝛽
2
Λ
2
𝑚
2
+ 𝜇
1
𝑚
2
𝑚
4
𝑘𝛽
2
)𝑋
𝑟

= 𝑘
2
𝛽
1
𝛽
2
Λ
1
Λ
2
− 𝜇
1
𝜇
2
𝑚
2
𝑚
4
.

(11)

Note that 𝑅
0𝑟

> 1 equals to 𝑘
2
𝛽
1
𝛽
2
Λ
1
Λ
2
> 𝜇
1
𝜇
2
𝑚
2
𝑚
4
.

Hence, if 𝑅
0𝑟

> 1, there exists a boundary equilibrium with
only resistant type, given as 𝐸

0𝑟
= (𝑋

𝑠𝑟
, 0, 𝑋
𝑟𝑟
, 𝑌
𝑠𝑟
, 0, 𝑌
𝑟𝑟
),

where

𝑋
𝑠𝑟

=
Λ
1
(𝜇
1
𝑚
4
𝑅
2

0𝑟
+ 𝑘𝛽
1
Λ
2
)

(𝜇2
1
𝑚
4
+ 𝑘𝛽
1
𝜇
1
Λ
2
) 𝑅2
0𝑟

,

𝑋
𝑟𝑟

=
𝜇
1
𝜇
2
𝑚
4
(𝑅
2

0𝑟
− 1)

(𝜇
1
𝑚
4
+ 𝑘𝛽
1
Λ
2
) 𝑘𝛽
2

,

𝑌
𝑠𝑟

=
Λ
2
(𝜇
1
𝑚
4
+ 𝑘𝛽
1
Λ
2
)

𝜇
1
𝜇
2
𝑚
4
𝑅2
0𝑟

+ 𝑘𝛽
1
Λ
2
𝜇
2

,

𝑌
𝑟𝑟

=
Λ
2
𝜇
1
(𝑅
2

0𝑟
− 1)

𝜇
1
𝑚
4
𝑅2
0𝑟

+ 𝑘𝛽
1
Λ
2

.

(12)

If drug treatment does not lead to drug resistance, that
is, 𝜌 = 0, then when 𝑅

0𝑖
> 1, we can obtain the other

boundary equilibriumwith only sensitive type, given as 𝐸
0𝑖
=

(𝑋
𝑠𝑖
, 𝑋
𝑖𝑖
, 0, 𝑌
𝑠𝑖
, 𝑌
𝑖𝑖
, 0), where

𝑋
𝑠𝑖
=

Λ
1
𝑚
1
𝑚
3
+ (𝜇
1
+ 𝛼
1
) 𝜇
2
𝑚
1
𝑚
3

𝛽
1
𝛽
2
Λ
2
(𝜇
1
+ 𝛼
1
) + 𝜇
1
𝑚
1
𝑚
3

,

𝑋
𝑖𝑖
=

𝜇
1
𝜇
2
𝑚
1
𝑚
3
(𝑅
2

0𝑖
− 1)

𝛽
1
𝛽
2
Λ
2
(𝜇
1
+ 𝛼
1
) + 𝜇
1
𝑚
1
𝑚
3

,

𝑌
𝑠𝑖

=
𝛽
1
𝛽
2
Λ
2

2
(𝜇
1
+ 𝛼
1
) + Λ

2
𝜇
1
𝑚
1
𝑚
3

𝛽
2
𝜇
1
𝜇
2
𝑚
1
𝑚
3
(𝑅2
0𝑖
−1)+𝛽

1
𝛽
2
Λ
2
𝜇
2
(𝜇
1
+𝛼
1
)+𝜇
1
𝜇
2
𝑚
1
𝑚
3

,

𝑌
𝑖𝑖

=
Λ
2
𝛽
2
𝜇
1
𝜇
2
𝑚
1
(𝑅
2

0𝑖
− 1)

𝛽
2
𝜇
1
𝜇
2
𝑚
1
𝑚
3
(𝑅2
0𝑖
−1)+𝛽

1
𝛽
2
Λ
2
𝜇
2
(𝜇
1
+𝛼
1
)+𝜇
1
𝜇
2
𝑚
1
𝑚
3

.

(13)

Now, we study existence of coexistence equilibrium for
the system (1). From (5)–(10), we obtain

[𝛽
1
𝛽
2
Λ
2
(𝜇
1
+ 𝛼
1
) + 𝜇
1
𝑚
1
𝑚
3
𝛽
2
]𝑋
𝑖

+ (𝜇
1
𝑚
1
𝑚
3
𝑘𝛽
2
+ 𝛽
1
𝛽
2
Λ
2
𝑚
2
)𝑋
𝑟

= 𝛽
1
𝛽
2
Λ
1
Λ
2
− 𝜇
1
𝜇
2
𝑚
1
𝑚
3
.

(14)

Following (6), (7), (9), and (10), we have

𝑌
𝑖

𝑌
𝑟

=
𝑘𝑚
1
𝑋
𝑖

𝑚
2
𝑋
𝑟
− 𝜌𝜎𝑋

𝑖

=
𝑚
4
𝑋
𝑖

𝑘𝑚
3
𝑋
𝑟

. (15)

In the case that 𝜌 = 0, (15) leads to

𝑘𝑚
1
𝑋
𝑖

𝑚
2
𝑋
𝑟

=
𝑚
4
𝑋
𝑖

𝑘𝑚
3
𝑋
𝑟

. (16)

Note that 𝑅
0𝑖
= 𝑅
0𝑟
equals to 𝑘𝑚

1
/𝑚
2
= 𝑚
4
/𝑘𝑚
3
. It is easy to

see that if𝑅
0𝑖

̸= 𝑅
0𝑟
, (16) cannot hold, which implies that there

is not coexistence equilibrium. If 𝑅
0𝑖
= 𝑅
0𝑟
, (16) always holds.

Hence, if 𝑅
0𝑟

= 𝑅
0𝑖

> 1, that is, 𝛽
1
𝛽
2
Λ
1
Λ
2
> 𝜇
1
𝜇
2
𝑚
1
𝑚
3
,

(14) represents the existence of coexistence equilibrium in the
form of a line.

In the case that 𝜌 ̸= 0, (15) leads to

𝑚
4
𝜌𝜎𝑋
𝑖
= (𝑚
2
𝑚
4
− 𝑘
2
𝑚
1
𝑚
3
)𝑋
𝑟
. (17)

Note that 𝑅
0𝑖
> 𝑅
0𝑟
equals to𝑚

2
𝑚
4
− 𝑘
2
𝑚
1
𝑚
3
> 0. Following

(14) and (17), we can obtain that if 𝑅
0𝑖

> 𝑅
0𝑟

and 𝑅
0𝑖

> 1,
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then the unique coexistence equilibrium is given by 𝐸
𝑐

=

(𝑋
𝑠𝑐
, 𝑋
𝑖𝑐
, 𝑋
𝑟𝑐
, 𝑌
𝑠𝑐
, 𝑌
𝑖𝑐
, 𝑌
𝑟𝑐
), where

𝑋
𝑟𝑐

= 𝑚
4
𝜌𝜎 (𝛽
1
𝛽
2
Λ
1
Λ
2
− 𝜇
1
𝜇
2
𝑚
1
𝑚
3
)

× ([𝛽
1
𝛽
2
Λ
2
(𝜇
1
+ 𝛼
1
) + 𝜇
1
𝑚
1
𝑚
3
𝛽
2
]

× (𝑚
2
𝑚
4
− 𝑘
2
𝑚
1
𝑚
3
)

+ 𝑚
4
𝜌𝜎 (𝜇
1
𝑚
1
𝑚
3
𝑘𝛽
2
+ 𝛽
1
𝛽
2
Λ
2
𝑚
2
))
−1
,

𝑋
𝑖𝑐
=

𝑚
2
𝑚
4
− 𝑘
2
𝑚
1
𝑚
3

𝑚
4
𝜌𝜎

𝑋
𝑟𝑐
,

𝑌
𝑠𝑐
=

Λ
2

𝛽
2
𝑋
𝑖𝑐
+ 𝑘𝛽
2
𝑋
𝑟𝑐
+ 𝜇
2

,

𝑌
𝑟𝑐

=
𝑘Λ
2
𝛽
2
𝑋
𝑟𝑐

𝑚
4
(𝛽
2
𝑋
𝑖𝑐
+ 𝑘𝛽
2
𝑋
𝑟𝑐
+ 𝜇
2
)
,

𝑌
𝑖𝑐
=

𝛽
2
𝑌
𝑠𝑐
𝑋
𝑖𝑐

𝜇
2
+ 𝛼
2

,

𝑋
𝑠𝑐
=

Λ
1
+ (1 − 𝜌) 𝜎𝑋

𝑖𝑐

𝛽
1
𝑌
𝑖𝑐
+ 𝑘𝛽
1
𝑌
𝑟𝑐
+ 𝜇
1

.

(18)

Summarizing above analyses, we have the following
result.

Lemma 1. The existence of equilibria for the system (1) is as
follows:

(1) the disease free equilibrium 𝐸
0
always exists;

(2) if 𝑅
0𝑟

> 1, there exists a boundary equilibrium with
only resistant type 𝐸

0𝑟
;

(3) if 𝜌 = 0 and 𝑅
0𝑖
> 1, there exists a boundary equilibri-

um with only sensitive type 𝐸
0𝑖
;

(4) if 𝜌 = 0 and 𝑅
0𝑖

= 𝑅
0𝑟

> 1, there exists coexistence
equilibrium in the form of a line (14);

(5) if 𝜌 ̸= 0 and𝑅
0𝑖
> 𝑅
0𝑟
and𝑅

0𝑖
> 1, there exists a unique

coexistence equilibrium 𝐸
𝑐
.

The following section shows that the basic reproductive
number 𝑅

0
provides a threshold condition for schistosoma

extinction in (1).

3. Stability Analysis of the Disease
Free Equilibrium

In this section, we will analyze stability of the disease free
equilibrium of the model (1). The stability of the disease
free equilibrium determines whether schistosomiasis will be
permanent in an uninfected population. The following result
shows that schistosome will go extinct if 𝑅

0
< 1.

Theorem 2. The disease free equilibrium 𝐸
0
of the system (1)

is locally asymptotically stable if 𝑅
0
< 1 and unstable if 𝑅

0
> 1.

Proof. The Jacobian matrix for the system (1) is given by

𝐽 = (

(

−𝛽
1
𝑌
𝑖
− 𝑘𝛽
1
𝑌
𝑟
− 𝜇
1

(1 − 𝜌) 𝜎 0 0 −𝛽
1
𝑋
𝑠

−𝑘𝛽
1
𝑋
𝑠

𝛽
1
𝑌
𝑖

−𝑚
1

0 0 𝛽
1
𝑋
𝑠

0

𝑘𝛽
1
𝑌
𝑟

𝜌𝜎 −𝑚
2

0 0 𝑘𝛽
1
𝑋
𝑠

0 −𝛽
2
𝑌
𝑠

−𝑘𝛽
2
𝑌
𝑠

−𝛽
2
𝑋
𝑖
− 𝑘𝛽
2
𝑋
𝑟
− 𝜇
2

0 0

0 𝛽
2
𝑌
𝑠

0 𝛽
2
𝑋
𝑖

−𝑚
3

0

0 0 𝑘𝛽
2
𝑌
𝑠

𝑘𝛽
2
𝑋
𝑟

0 −𝑚
4

)

)

. (19)

Then, the eigenvalues of 𝐸
0
are −𝜇

1
, −𝜇
2
and roots of the

following equations:

𝜆
2
+ (𝑚
1
+ 𝑚
3
) 𝜆 + 𝑚

1
𝑚
3
− 𝛽
1
𝛽
2
𝑋
𝑠0
𝑌
𝑠0

= 0,

𝜆
2
+ (𝑚
2
+ 𝑚
4
) 𝜆 + 𝑚

2
𝑚
4
− 𝑘
2
𝛽
1
𝛽
2
𝑋
𝑠0
𝑌
𝑠0

= 0.

(20)

Note that𝑅
0
< 1 equals to𝑅

0𝑖
< 1 and𝑅

0𝑟
< 1, which leads to

𝑚
1
𝑚
3
−𝛽
1
𝛽
2
𝑋
𝑠0
𝑌
𝑠0

> 0 and𝑚
2
𝑚
4
−𝑘
2
𝛽
1
𝛽
2
𝑋
𝑠0
𝑌
𝑠0

> 0. Hence,
if 𝑅
0
< 1, then all the roots of (20) have negative real parts.

Hence, using the Routh-Hurwitz criterion, we can obtain that
the disease free equilibrium 𝐸

0
of the system (1) is locally

asymptotically stable if 𝑅
0
< 1 and unstable if 𝑅

0
> 1.

Now, we turn to the study of the global stability of the dis-
ease free equilibriumof themodel (1) by usingMetzlermatrix
theory and the technique of Kamgang and Sallet [23].

Consider systems of the following form:

𝑑𝑥
1

𝑑𝑡
= 𝑓 (𝑥

1
, 𝑥
2
) ,

𝑑𝑥
2

𝑑𝑡
= 𝑔 (𝑥

1
, 𝑥
2
) ,

(21)

where 𝑥
1
∈ 𝑅
𝑛
1

+
, 𝑥
2
∈ 𝑅
𝑛
2

+
, and 𝑓 and 𝑔 are 𝐶

1. We denote
by 𝑥 = (𝑥

1
, 𝑥
2
) the state of the system and (𝑥

∗

1
, 0) is a disease

free equilibrium on a positively invariant setΩ ⊂ 𝑅
𝑛
1
+𝑛
2

+
. Now

rewrite (21) as

𝑑𝑥
1

𝑑𝑡
= 𝐴
1 (𝑥) ⋅ (𝑥1 − 𝑥

∗

1
) + 𝐴
12 (𝑥) ⋅ 𝑥2,

𝑑𝑥
2

𝑑𝑡
= 𝐴
2 (𝑥) 𝑥2.

(22)
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For the system (22), we make the following assumptions.

(h
1
) The system is defined on the positively invariant setΩ
of the nonnegative orthant. The system is dissipative
onΩ.

(h
2
) The subsystem 𝑑𝑥

1
/𝑑𝑡 = 𝐴

1
(𝑥) ⋅ (𝑥

1
− 𝑥
∗

1
) is globally

asymptotically stable at the equilibrium 𝑥
∗

1
on the

canonical projection of Ω on 𝑅
𝑛
1

+
.

(h
3
) The matrix 𝐴

2
(𝑥) is Metzler and irreducible for any

given 𝑥 ∈ Ω.

(h
4
) There exists an maximummatrix𝐴

2
, then for any 𝑥 ∈

Ω such that 𝐴
2
= 𝐴
2
(𝑥), 𝑥 ∈ 𝑅

𝑛
1

+
× {0}.

(h
5
) 𝛼(𝐴

2
) ≤ 0, that is, the greatest real part of eigenvalues

of 𝐴
2
is nonnegative.

For convenience, we state two lemmas due to Kamgang and
Sallet [23].

Lemma 3. If the above hypotheses, h
1
–h
5
, are satisfied, then

the disease free equilibrium is globally asymptotically stable in
Ω.

Lemma 4. If the same notations and hypotheses in Lemma 3
hold and if, furthermore, we have 𝐴

2
= 𝐴
2
(𝑥
∗

1
, 0), the disease

free equilibrium is globally asymptotically stable if and only if
𝛼(𝐴
2
) ≤ 0.

Next, we discuss the global stability of the disease free
equilibrium𝐸

0
of the system (1) using the above two Lemmas.

From the system (1), we know

𝑑 (𝑋
𝑠
+ 𝑋
𝑖
+ 𝑋
𝑟
)

𝑑𝑡

= Λ
1
− 𝜇
1
(𝑋
𝑠
+ 𝑋
𝑖
+ 𝑋
𝑟
) − 𝛼
1
𝑋
𝑖
− 𝑘
2
𝛼
1
𝑋
𝑟

≤ Λ
1
− 𝜇
1
(𝑋
𝑠
+ 𝑋
𝑖
+ 𝑋
𝑟
) ,

𝑑 (𝑌
𝑠
+ 𝑌
𝑖
+ 𝑌
𝑟
)

𝑑𝑡

= Λ
2
− 𝜇
2
(𝑌
𝑠
+ 𝑌
𝑖
+ 𝑌
𝑟
) − 𝛼
2
𝑌
𝑖
− 𝑘
4
𝛼
2
𝑌
𝑟

≤ Λ
2
− 𝜇
2
(𝑌
𝑠
+ 𝑌
𝑖
+ 𝑌
𝑟
) .

(23)

This proves that the set

Ω = { (𝑋
𝑠
, 𝑋
𝑖
, 𝑋
𝑟
, 𝑌
𝑠
, 𝑌
𝑖
, 𝑌
𝑟
) ∈ R
5

+
| 𝑋
𝑠
+ 𝑋
𝑖
+ 𝑋
𝑟

≤
Λ
1

𝜇
1

, 𝑌
𝑠
+ 𝑌
𝑖
+ 𝑌
𝑟
≤

Λ
2

𝜇
2

}

(24)

is a compact positively invariant absorbing set contained in
the nonnegative orthant.Thus, the system (1) is dissipative on
Ω because the trajectories of (1) are forward bounded. Now,
we will study the system (1) onΩ.

We set for system (1) 𝑥
1
= (𝑋
𝑠
, 𝑌
𝑠
), 𝑥
2
= (𝑋
𝑖
, 𝑋
𝑟
, 𝑌
𝑖
, 𝑌
𝑟
),

and 𝑥
∗

1
= (Λ
1
/𝜇
1
, Λ
2
/𝜇
2
). As in [23], we express the subsys-

tem as 𝑑𝑥
1
/𝑑𝑡 = 𝐴

1
(𝑥
1
, 0)(𝑥
1
− 𝑥
∗

1
) and

𝑑𝑋
𝑠

𝑑𝑡
= Λ
1
− 𝜇
1
𝑋
𝑠
,

𝑑𝑌
𝑠

𝑑𝑡
= Λ
2
− 𝜇
2
𝑌
𝑠
.

(25)

This is a linear system, and its unique equilibrium (𝐴
1
/𝜇
1
,

𝐴
2
/𝜇
2
) (corresponding to the disease free equilibrium of (1))

is globally asymptotically stable, hence the assumptions (h
1
)

and (h
2
) are satisfied.

The matrix 𝐴
2
(𝑥) is given by

𝐴
2 (𝑥) = (

−𝑚
1

0 𝛽
1
𝑋
𝑠

0

𝜌𝜎 −𝑚
2

0 𝑘𝛽
1
𝑋
𝑠

𝛽
2
𝑌
𝑠

0 −𝑚
3

0

0 𝑘𝛽
2
𝑌
𝑠

0 −𝑚
4

). (26)

As required by hypothesis h
3
, for any 𝑥 ∈ Ω, thematrix𝐴

2
(𝑥)

is irreducible.
Now, let us check (h

4
). There is a maximum which is

uniquely realized inΩ if𝑋
𝑠
= Λ
1
/𝜇
1
and 𝑌

𝑠
= Λ
2
/𝜇
2
, which

corresponds to the disease free equilibrium. This maximum
matrix is then 𝐽

2
, the subblock of the Jacobian matrix at the

disease free equilibrium, corresponding to the matrix 𝐴
2
(𝑥).

The matrix 𝐽
2
is given by

𝐽
2
= (

−𝑚
1

0 𝛽
1
𝑋
𝑠0

0

𝜌𝜎 −𝑚
2

0 𝑘𝛽
1
𝑋
𝑠0

𝛽
2
𝑌
𝑠0

0 −𝑚
3

0

0 𝑘𝛽
2
𝑌
𝑠0

0 −𝑚
4

). (27)

Therefore, we are in the situation of Lemma 4,where themax-
imum is attained at the disease free equilibrium.

Thehypothesis (h
5
) requires that𝛼(𝐽

2
) ≤ 0.Writing 𝐽

2
as a

block matrix 𝐽
2
= (
𝐴
2 × 2
𝐵
2 × 2

𝐶
2 × 2
𝐷
2 × 2

). Since 𝐴 is already a Metzler
stable matrix, the condition 𝛼(𝐽

2
) ≤ 0 is equivalent to the

condition 𝛼(𝐷 − 𝐶𝐴
−1
𝐵) ≤ 0 [23], where

𝐷−𝐶𝐴
−1
𝐵 = (

𝛽
1
𝛽
2
𝑋
𝑠0
𝑌
𝑠0

𝑚
1

−𝑚
3

0

𝜌𝜎𝑘𝛽
1
𝛽
2
𝑋
𝑠0
𝑌
𝑠0

𝑚
1
𝑚
2

𝑘
2
𝛽
1
𝛽
2
𝑋
𝑠0
𝑌
𝑠0

𝑚
2

−𝑚
4

).

(28)
Then,

𝛼 (𝐷 − 𝐶𝐴
−1
𝐵)

= max{
𝛽
1
𝛽
2
𝑋
𝑠0
𝑌
𝑠0
− 𝑚
1
𝑚
3

𝑚
1

,
𝑘
2
𝛽
1
𝛽
2
𝑋
𝑠0
𝑌
𝑠0
− 𝑚
2
𝑚
4

𝑚
2

} .

(29)

Hence, the condition 𝛼(𝐷−𝐶𝐴
−1
𝐵) ≤ 0 is equivalent to 𝑅

0
≤

1. We have seen that the hypotheses (h
1
), (h
2
), (h
3
), (h
4
), and

(h
5
) are satisfied. Then, by Lemma 4, we have the following

result.

Theorem 5. The disease free equilibrium 𝐸
0
of the system (1)

is globally asymptotically stable if 𝑅
0
≤ 1.
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4. Stability Analysis of
the Boundary Equilibria

In this section, we turn to study stability of the two boundary
equilibria. From Lemma 1, we know that if 𝑅

0𝑟
> 1, there

exists a boundary equilibrium with only resistant type 𝐸
0𝑟
.

Through calculations, we can obtain the characteristic equa-
tion as following:

{(𝜆 + 𝑚
1
) (𝜆 + 𝑚

3
) − 𝛽
1
𝛽
2
𝑋
𝑠𝑟
𝑌
𝑠𝑟
}

× { (𝜆 + 𝑚
2
) (𝜆 + 𝑚

4
) (𝜆 + 𝜇

1
+ 𝑘𝛽
1
𝑌
𝑟𝑟
)

× (𝜆 + 𝜇
2
+ 𝑘𝛽
2
𝑋
𝑟𝑟
)

−𝑘
2
𝛽
1
𝛽
2
𝑋
𝑠𝑟
𝑌
𝑠𝑟
(𝜆 + 𝜇

1
) (𝜆 + 𝜇

2
)} = 0.

(30)

Hence, the eigenvalue of 𝐸
0𝑟
are roots of the following equa-

tions:

𝜆
2
+ (𝑚
1
+ 𝑚
3
) 𝜆 + 𝑚

1
𝑚
3
− 𝛽
1
𝛽
2
𝑋
𝑠𝑟
𝑌
𝑠𝑟

= 0, (31)

𝜆
4
+ 𝑎
1
𝜆
3
+ 𝑎
2
𝜆
2
+ 𝑎
3
𝜆 + 𝑎
4
= 0. (32)

Here,

𝑎
1
= 𝑚
2
+ 𝑚
4
+

Λ
1

𝑋
𝑠𝑟

+
Λ
2

𝑌
𝑠𝑟

> 0,

𝑎
2
= 𝑚
2
𝑚
4
+ (𝑚
2
+ 𝑚
4
) (

Λ
1

𝑋
𝑠𝑟

+
Λ
2

𝑌
𝑠𝑟

)

+
Λ
1

𝑋
𝑠𝑟

Λ
2

𝑌
𝑠𝑟

− 𝑘
2
𝛽
1
𝛽
2
𝑋
𝑠𝑟
𝑌
𝑠𝑟
,

𝑎
3
= 𝑚
2
𝑚
4
(
Λ
1

𝑋
𝑠𝑟

+
Λ
2

𝑌
𝑠𝑟

) + (𝑚
2
+ 𝑚
4
)
Λ
1

𝑋
𝑠𝑟

Λ
2

𝑌
𝑠𝑟

− 𝑘
2
𝛽
1
𝛽
2
𝑋
𝑠𝑟
𝑌
𝑠𝑟
(𝜇
1
+ 𝜇
2
) ,

𝑎
4
= 𝑚
2
𝑚
4

Λ
1

𝑋
𝑠𝑟

Λ
2

𝑌
𝑠𝑟

− 𝑘
2
𝛽
1
𝛽
2
𝑋
𝑠𝑟
𝑌
𝑠𝑟
𝜇
1
𝜇
2
.

(33)

From (12), we can obtain 𝑋
𝑠𝑟
𝑌
𝑠𝑟

= 𝑋
𝑠0
𝑌
𝑠0
/𝑅
2

0𝑟
=

𝑚
2
𝑚
4
/𝑘
2
𝛽
1
𝛽
2
. Then,

𝑚
1
𝑚
3
− 𝛽
1
𝛽
2
𝑋
𝑠𝑟
𝑌
𝑠𝑟

= 𝑚
1
𝑚
3
−

𝑚
2
𝑚
4

𝑘2
. (34)

It is easy to see that 𝑅
2

0𝑖
/𝑅
2

0𝑟
= (𝑚

2
𝑚
4
/𝑘
2
)/𝑚
1
𝑚
3
. Then,

𝑅
0𝑖

< 𝑅
0𝑟
equals to 𝑚

1
𝑚
3
> 𝛽
1
𝛽
2
𝑋
𝑠𝑟
𝑌
𝑠𝑟
, which implies that

the roots of (31) have negative real parts if 𝑅
0𝑖
< 𝑅
0𝑟
.

Based on (Λ
1
/𝑋
𝑠𝑟
)(Λ
2
/𝑌
𝑠𝑟
) = 𝜇

1
𝜇
2
𝑅
2

0𝑟
and

𝑘
2
𝛽
1
𝛽
2
𝑋
𝑠𝑟
𝑌
𝑠𝑟

= 𝑚
2
𝑚
4
, we can obtain

𝑎
2
= (𝑚
2
+ 𝑚
4
) (

Λ
1

𝑋
𝑠𝑟

+
Λ
2

𝑌
𝑠𝑟

) +
Λ
1

𝑋
𝑠𝑟

Λ
2

𝑌
𝑠𝑟

> 0,

𝑎
3
= 𝑚
2
𝑚
4
[
𝑘𝛽
1
𝜇
1
Λ
2
(𝑅
2

0𝑟
− 1)

𝜇
1
𝑚
4
𝑅2
0𝑟

+ 𝑘𝛽
1
Λ
2

+
𝜇
1
𝜇
2
𝑚
4
(𝑅
2

0𝑟
− 1)

𝜇
1
𝑚
4
+ 𝑘𝛽
1
Λ
2

]

+ (𝑚
2
+ 𝑚
4
) 𝜇
1
𝜇
2
𝑅
2

0𝑟
,

𝑎
4
= 𝑚
2
𝑚
4
𝜇
1
𝜇
2
(𝑅
2

0𝑟
− 1) .

(35)

Here, 𝑎
3
> 0 and 𝑎

4
> 0 if 𝑅

0𝑟
> 1.

If 𝑅
0𝑟

> 1, let 𝑘𝛽
1
𝜇
1
Λ
2
(𝑅
2

0𝑟
− 1)/(𝜇

1
𝑚
4
𝑅
2

0𝑟
+ 𝑘𝛽
1
Λ
2
) =

𝑝
1
> 0 and 𝜇

1
𝜇
2
𝑚
4
(𝑅
2

0𝑟
− 1)/(𝜇

1
𝑚
4
+ 𝑘𝛽
1
Λ
2
) = 𝑝
2
> 0, then

Λ
1
/𝑋
𝑠𝑟

= 𝑝
1
+ 𝜇
1
> 𝜇
1
and Λ

2
/𝑌
𝑠𝑟

= 𝑝
2
+ 𝜇
2
> 𝜇
2
. Note

that 𝑚
2
= 𝜇
1
+ 𝑘
1
𝛼
1
> 𝜇
1
and 𝑚

4
= 𝜇
2
+ 𝑘
2
𝛼
2
> 𝜇
2
, then

𝑚
2
+ 𝑚
4
> 𝜇
1
+ 𝜇
2
and𝑚

2
𝑚
4
> 𝜇
1
𝜇
2
. Hence, we can obtain

𝐻
1
= 𝑎
1
> 0,

𝐻
2
=



𝑎
1

𝑎
3

1 𝑎
2


= 𝑎
1
𝑎
2
− 𝑎
3

= (𝑚
2

2
+ 𝑚
2

4
+ 𝑚
2
𝑚
4
+ 𝜇
1
𝜇
2
𝑅
2

0𝑟
) (

Λ
1

𝑋
𝑠𝑟

+
Λ
2

𝑌
𝑠𝑟

)

+ (𝑚
2
+ 𝑚
4
) (

Λ
1

𝑋
𝑠𝑟

+
Λ
2

𝑌
𝑠𝑟

)

2

+ 𝑚
2
𝑚
4
(𝜇
1
+ 𝜇
2
) > 0,

𝐻
3
=



𝑎
1

𝑎
3

0

1 𝑎
2

0

0 𝑎
1

𝑎
3



= 𝑎
1
𝑎
2
𝑎
3
− 𝑎
2

3
− 𝑎
2

1
𝑎
4

= (𝑚
2
+ 𝑚
4
)
2
𝑚
2
𝑚
4
(
Λ
1

𝑋
𝑠𝑟

+
Λ
2

𝑌
𝑠𝑟

)

2

+ (𝑚
2
+ 𝑚
4
)
3
(
Λ
1

𝑋
𝑠𝑟

+
Λ
2

𝑌
𝑠𝑟

)𝜇
1
𝜇
2
𝑅
2

0𝑟

+ 𝜇
1
𝜇
2
𝑅
2

0𝑟
(𝑚
2
+ 𝑚
4
)𝑚
2
𝑚
4
(
Λ
1

𝑋
𝑠𝑟

+
Λ
2

𝑌
𝑠𝑟

)

+ (𝑚
2
+ 𝑚
4
)𝑚
2
𝑚
4
(
Λ
1

𝑋
𝑠𝑟

+
Λ
2

𝑌
𝑠𝑟

)

3

+ (𝑚
2
+ 𝑚
4
)
2
(
Λ
1

𝑋
𝑠𝑟

+
Λ
2

𝑌s𝑟
)

2

𝜇
1
𝜇
2
𝑅
2

0𝑟

+ (𝑚
2
+ 𝑚
4
) (

Λ
1

𝑋
𝑠𝑟

+
Λ
2

𝑌
𝑠𝑟

)𝜇
2

1
𝜇
2

2
𝑅
4

0𝑟

+ 2 (𝜇
1
+ 𝜇
2
)𝑚
2

2
𝑚
2

4
(
Λ
1

𝑋
𝑠𝑟

+
Λ
2

𝑌
𝑠𝑟

)

+ (𝑚
2
+ 𝑚
4
) 𝜇
1
𝜇
2
𝑅
2

0𝑟
𝑚
2
𝑚
4
(𝜇
1
+ 𝜇
2
)

+ (𝑚
2
+ 𝑚
4
)
2
𝜇
1
𝜇
2
𝑚
2
𝑚
4
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+ 2 (𝑚
2
+ 𝑚
4
) (

Λ
1

𝑋
𝑠𝑟

+
Λ
2

𝑌
𝑠𝑟

)𝜇
1
𝜇
2
𝑚
2
𝑚
4

+ (
Λ
1

𝑋
𝑠𝑟

+
Λ
2

𝑌
𝑠𝑟

)

2

𝜇
1
𝜇
2
𝑚
2
𝑚
4

− (𝑚
2
+ 𝑚
4
)
2
𝑚
2
𝑚
4
(
Λ
1

𝑋
𝑠𝑟

+
Λ
2

𝑌
𝑠𝑟

) (𝜇
1
+ 𝜇
2
)

− (𝑚
2
+ 𝑚
4
)𝑚
2
𝑚
4
(
Λ
1

𝑋
𝑠𝑟

+
Λ
2

𝑌
𝑠𝑟

)

2

(𝜇
1
+ 𝜇
2
)

− 𝜇
1
𝜇
2
𝑅
2

0𝑟
(𝜇
1
+ 𝜇
2
)𝑚
2
𝑚
4
(
Λ
1

𝑋
𝑠𝑟

+
Λ
2

𝑌
𝑠𝑟

)

− (
Λ
1

𝑋
𝑠𝑟

+
Λ
2

𝑌
𝑠𝑟

)

2

𝑚
2

2
𝑚
2

4
− 𝑚
2

2
𝑚
2

4
(𝜇
1
+ 𝜇
2
)
2

− 2𝑚
2
𝑚
4
(𝑚
2
+ 𝑚
4
) (

Λ
1

𝑋
𝑠𝑟

+
Λ
2

𝑌
𝑠𝑟

)𝜇
1
𝜇
2
𝑅
2

0𝑟

− 𝑚
2
𝑚
4
(𝑚
2
+ 𝑚
4
)
2
𝜇
1
𝜇
2
𝑅
2

0𝑟

> (𝑚
2

2
+ 𝑚
2

4
)
2

𝑚
2
𝑚
4
(𝑝
2

1
+ 𝑝
2

2
+ 𝑝
1
𝑝
2
+ 𝑝
1
𝜇
1
+ 𝑝
2
𝜇
2
)

+ 𝑚
2

2
𝑚
2

4
(𝑝
2

1
+ 𝑝
2

2
+ 2𝑝
1
𝜇
1
+ 2𝑝
2
𝜇
2
) > 0,

𝐻
4
=



𝑎
1

𝑎
3

0 0

1 𝑎
2

𝑎
4

0

0 𝑎
1

𝑎
3

0

0 1 𝑎
2

𝑎
4



= 𝑎
4
𝐻
3
> 0.

(36)

It follows from Routh-Hurwitz criterion that all roots of
(32) have negative real parts if 𝑅

0𝑟
> 1. Summering above

analyses, we have the following result.

Theorem 6. The boundary equilibrium 𝐸
0𝑟
of the system (1) is

locally asymptotically stable if 𝑅
0𝑟

> 1 and 𝑅
0𝑖
< 𝑅
0𝑟
.

Now, we study the global stability of the boundary equi-
librium 𝐸

0𝑟
. Consider the Lyapunov function

𝑉
1
= 𝑑
1
𝑋
𝑖
+ 𝑑
2
𝑌
𝑖
, (37)

where 𝑑
1
= (𝑚
3
+ 𝛽
2
(Λ
2
/𝜇
2
))/𝑚
1
𝑚
3
(𝑅
0𝑖
+ 1) and 𝑑

2
= (𝑚
1
+

𝛽
1
(Λ
1
/𝜇
1
))/𝑚
1
𝑚
3
(𝑅
0𝑖
+ 1). The Lyapunov derivative is

𝑑𝑉
1

𝑑𝑡
= 𝑑
1
(𝛽
1
𝑋
𝑠
𝑌
𝑖
− 𝑚
1
𝑋
𝑖
) + 𝑑
2
(𝛽
2
𝑌
𝑠
𝑋
𝑖
− 𝑚
3
𝑌
𝑖
)

≤ (𝑑
1
𝛽
1

Λ
1

𝜇
1

− 𝑑
2
𝑚
3
)𝑌
𝑖
+ (𝑑
2
𝛽
2

Λ
2

𝜇
2

− 𝑑
1
𝑚
1
)𝑋
𝑖

≤ (𝑅
0𝑖
− 1) (𝑌

𝑖
+ 𝑋
𝑖
)

≤ 0 for 𝑅
0𝑖
≤ 1.

(38)

This implies that the sensitive type dies out if 𝑅
0𝑖

≤ 1. Then
the largest compact invariant set of the system (1) in the set

{𝑑𝑉
1
/𝑑𝑡 = 0} is Ω

1
= (𝑋
𝑠
, 𝑋
𝑖
, 𝑋
𝑟
, 𝑌
𝑠
, 𝑌
𝑖
, 𝑌
𝑟
) ∈ Ω | 𝑋

𝑖
=

𝑌
𝑖
= 0. Using the LaSalle-Lyapunov theorem, we know that

all trajectories in Ω eventually tend to Ω
1
as 𝑡 → ∞. Then,

we only need to study the dynamical behavior of (1) inΩ
1
. At

this time, (1) reduces to the following system

𝑑𝑋
𝑠

𝑑𝑡
= Λ
1
− 𝑘𝛽
1
𝑋
𝑠
𝑌
𝑟
− 𝜇
1
𝑋
𝑠
,

𝑑𝑋
𝑟

𝑑𝑡
= 𝑘𝛽
1
𝑋
𝑠
𝑌
𝑟
− 𝑚
2
𝑋
𝑟
,

𝑑𝑌
𝑠

𝑑𝑡
= Λ
2
− 𝑘𝛽
2
𝑌
𝑠
𝑋
𝑟
− 𝜇
2
𝑌
𝑠
,

𝑑𝑌
𝑟

𝑑𝑡
= 𝑘𝛽
2
𝑌
𝑠
𝑋
𝑟
− 𝑚
4
𝑌
𝑟
.

(39)

To show that all trajectories of (39) in the interior of Ω
1

approach the point (𝑋
𝑠𝑟
, 𝑋
𝑟𝑟
, 𝑌
𝑠𝑟
, 𝑌
𝑟𝑟
) corresponding to the

boundary equilibrium 𝐸
0𝑟
, consider the Lyapunov function

𝑉
2
= 𝑑
1
{[𝑋
𝑠
− 𝑋
𝑠𝑟
− 𝑋
𝑠𝑟
ln(

𝑋
𝑠

𝑋
𝑠𝑟

)]

+ [𝑋
𝑟
− 𝑋
𝑟𝑟
− 𝑋
𝑟𝑟
ln(

𝑋
𝑟

𝑋
𝑟𝑟

)]}

+ 𝑑
2
{[𝑌
𝑠
− 𝑌
𝑠𝑟
− 𝑌
𝑠𝑟
ln(

𝑌
𝑠

𝑌
𝑠𝑟

)]

+ [𝑌
𝑟
− 𝑌
𝑟𝑟
− 𝑌
𝑟𝑟
ln(

𝑌
𝑟

𝑌
𝑟𝑟

)]} ,

(40)

where positive constants 𝑑
1
and 𝑑

2
are defined in the

following. It is easy to see that𝑉
2
≥ 0 for (𝑋

𝑠
, 𝑋
𝑟
, 𝑌
𝑠
, 𝑌
𝑟
) ∈ Ω
1
,

and 𝑉
2
= 0 ⇔ (𝑋

𝑠
, 𝑋
𝑟
, 𝑌
𝑠
, 𝑌
𝑟
) = (𝑋

𝑠𝑟
, 𝑋
𝑟𝑟
, 𝑌
𝑠𝑟
, 𝑌
𝑟𝑟
). Hence,

the function 𝑉
2
is positive definite with respect to the point

(𝑋
𝑠𝑟
, 𝑋
𝑟𝑟
, 𝑌
𝑠𝑟
, 𝑌
𝑟𝑟
).

Computing the derivative of 𝑉
2
along solutions of system

(39), we have

𝑑𝑉
2

𝑑𝑡
= 𝑑
1
{[

𝑑𝑋
𝑠

𝑑𝑡
−

𝑑𝑋
𝑠

𝑑𝑡
(
𝑋
𝑠𝑟

𝑋
𝑠

)] + [
𝑑𝑋
𝑟

𝑑𝑡
−

𝑑𝑋
𝑟

𝑑𝑡
(
𝑋
𝑟𝑟

𝑋
𝑟

)]}

+ 𝑑
2
{[

𝑑𝑌
𝑠

𝑑𝑡
−

𝑑𝑌
𝑠

𝑑𝑡
(
𝑌
𝑠𝑟

𝑌
𝑠

)] + [
𝑑𝑌
𝑟

𝑑𝑡
−

𝑑𝑌
𝑟

𝑑𝑡
(
𝑌
𝑟𝑟

𝑌
𝑟

)]}

= 𝑑
1
[Λ
1
− 𝜇
1
𝑋
𝑠
−

𝑋
𝑠𝑟

𝑋
𝑠

Λ
1
+ 𝑘𝛽
1
𝑋
𝑠𝑟
𝑌
𝑟
+ 𝜇
1
𝑋
𝑠𝑟

−𝑚
2
𝑋
𝑟
− 𝑘𝛽
1
𝑋
𝑠
𝑌
𝑟

𝑋
𝑟𝑟

𝑋
𝑟

+ 𝑚
2
𝑋
𝑟𝑟
]

+ 𝑑
2
[Λ
2
− 𝜇
2
𝑌
𝑠
−

𝑌
𝑠𝑟

𝑌
𝑠

Λ
2
+ 𝑘𝛽
2
𝑌
𝑠𝑟
𝑋
𝑟
+ 𝜇
2
𝑌
𝑠𝑟

−𝑚
4
𝑌
𝑟
− 𝑘𝛽
2
𝑌
𝑠
𝑋
𝑟

𝑌
𝑟𝑟

𝑌
𝑟

+ 𝑚
4
𝑌
𝑟𝑟
] .

(41)
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SubstitutingΛ
1
= 𝑘𝛽
1
𝑋
𝑠𝑟
𝑌
𝑟𝑟
+𝜇
1
𝑋
𝑠𝑟
,Λ
2
= 𝑘𝛽
2
𝑌
𝑠𝑟
𝑋
𝑟𝑟
+𝜇
2
𝑌
𝑠𝑟
,

𝑚
2
𝑋
𝑟𝑟

= 𝑘𝛽
1
𝑋
𝑠𝑟
𝑌
𝑟𝑟
and 𝑚

4
𝑌
𝑟𝑟

= 𝑘𝛽
2
𝑌
𝑠𝑟
𝑋
𝑟𝑟
into 𝑑𝑉

2
/𝑑𝑡, we

obtain

𝑑𝑉
2

𝑑𝑡

= 𝑑
1
{𝜇
1
𝑋
𝑠𝑟
(2 −

𝑋
𝑠

𝑋
𝑠𝑟

−
𝑋
𝑠𝑟

𝑋
𝑠

) + (𝑘𝛽
1
𝑋
𝑠𝑟
𝑌
𝑟
− 𝑚
2
𝑋
𝑟
)

+[2𝑘𝛽
1
𝑋
𝑠𝑟
𝑌
𝑟𝑟
−𝑘𝛽
1
𝑌
𝑟𝑟

(𝑋
𝑠𝑟
)
2

𝑋
𝑠

−𝑘𝛽
1
𝑋
𝑠
𝑌
𝑟

𝑋
𝑟𝑟

𝑋
𝑟

]}

+ 𝑑
2
{𝜇
2
𝑌
𝑠𝑟
(2 −

𝑌
𝑠

𝑌
𝑠𝑟

−
𝑌
𝑠𝑟

𝑌
𝑠

) + (𝑘𝛽
2
𝑌
𝑠𝑟
𝑋
𝑟
− 𝑚
4
𝑌
𝑟
)

+[2𝑘𝛽
2
𝑌
𝑠𝑟
𝑋
𝑟𝑟
−𝑘𝛽
2
𝑋
𝑟𝑟

(𝑌
𝑠𝑟
)
2

𝑌
𝑠

−𝑘𝛽
2
𝑌
𝑠
𝑋
𝑟

𝑌
𝑟𝑟

𝑌
𝑟

]} .

(42)

Let 𝑑
1

= 𝑘𝛽
2
𝑌
𝑠𝑟
𝑋
𝑟𝑟
and 𝑑

2
= 𝑘𝛽
1
𝑋
𝑠𝑟
𝑌
𝑟𝑟
. Following from

𝑚
2
𝑋
𝑟𝑟

= 𝑘𝛽
1
𝑋
𝑠𝑟
𝑌
𝑟𝑟
and𝑚

4
𝑌
𝑟𝑟

= 𝑘𝛽
2
𝑌
𝑠r𝑋𝑟𝑟, we have

𝑑
1
(𝑘𝛽
1
𝑋
𝑠𝑟
𝑌
𝑟
− 𝑚
2
𝑋
𝑟
) + 𝑑
2
(𝑘𝛽
2
𝑌
𝑠𝑟
𝑋
𝑟
− 𝑚
4
𝑌
𝑟
) = 0. (43)

Hence, for all (𝑋
𝑠
, 𝑋
𝑟
, 𝑌
𝑠
, 𝑌
𝑟
) ∈ Ω
1
,

𝑑𝑉
2

𝑑𝑡
= 𝑑
1
{𝜇
1
𝑋
𝑠𝑟
(2 −

𝑋
𝑠

𝑋
𝑠𝑟

−
𝑋
𝑠𝑟

𝑋
𝑠

)

+ 𝑘𝛽
1
𝑋
𝑠𝑟
𝑌
𝑟𝑟
[2 −

𝑋
𝑠𝑟

𝑋
𝑠

−
𝑋
𝑠
𝑌
𝑟
𝑋
𝑟𝑟

𝑋
𝑠𝑟
𝑌
𝑟𝑟
𝑋
𝑟

]}

+ 𝑑
2
{𝜇
2
𝑌
𝑠𝑟
(2 −

𝑌
𝑠

𝑌
𝑠𝑟

−
𝑌
𝑠𝑟

𝑌
𝑠

)

+ 𝑘𝛽
2
𝑌
𝑠𝑟
𝑋
𝑟𝑟
[2 −

𝑌
𝑠𝑟

𝑌
𝑠

−
𝑌
𝑠
𝑋
𝑟
𝑌
𝑟𝑟

𝑌
𝑠𝑟
𝑋
𝑟𝑟
𝑌
𝑟

]}

= 𝑑
1
𝜇
1
𝑋
𝑠𝑟
(2 −

𝑋
𝑠

𝑋
𝑠𝑟

−
𝑋
𝑠𝑟

𝑋
𝑠

)+𝑑
2
𝜇
2
𝑌
𝑠𝑟
(2 −

𝑌
𝑠

𝑌
𝑠𝑟

−
𝑌
𝑠𝑟

𝑌
𝑠

)

+ 𝑑
1
𝑑
2
(4−

𝑋
𝑠𝑟

𝑋
𝑠

−
𝑋
𝑠
𝑌
𝑟
𝑋
𝑟𝑟

𝑋
𝑠𝑟
𝑌
𝑟𝑟
𝑋
𝑟

−
𝑌
𝑠𝑟

𝑌
𝑠

−
𝑌
𝑠
𝑋
𝑟
𝑌
𝑟𝑟

𝑌
𝑠𝑟
𝑋
𝑟𝑟
𝑌
𝑟

) ≤ 0.

(44)

It is easy to see that

𝑑𝑉
2

𝑑𝑡
= 0 ⇐⇒ 𝑋

𝑠
= 𝑋
𝑠𝑟
, 𝑋

𝑟
= 𝑎𝑋
𝑟𝑟
,

𝑌
𝑠
= 𝑌
𝑠𝑟
, 𝑌

𝑟
= 𝑎𝑌
𝑟𝑟
,

(45)

where 𝑎 is an arbitrary positive number. Substituting 𝑋
𝑠
=

𝑋
𝑠𝑟
,𝑋
𝑟
= 𝑎𝑋
𝑟𝑟
,𝑌
𝑠
= 𝑌
𝑠𝑟
, and𝑌

𝑟
= 𝑎𝑌
𝑟𝑟
into the first equation

of system (39), we obtain

0 = Λ
1
− 𝑎𝑘𝛽

1
𝑋
𝑠𝑟
𝑌
𝑟𝑟
− 𝜇
1
𝑋
𝑠𝑟
, (46)

and then the above formula holds if and only if 𝑎 = 1.
Therefore, the only compact invariant subset of the set where

𝑑𝑉
2
/𝑑𝑡 = 0 is the point (𝑋

𝑠𝑟
, 𝑋
𝑟𝑟
, 𝑌
𝑠𝑟
, 𝑌
𝑟𝑟
), corresponding

to the boundary equilibrium 𝐸
0𝑟
. By LaSalle’s Invariance

Principle, 𝐸
0𝑟
is globally asymptotically stable if 𝑅

0𝑟
> 1 and

𝑅
0𝑖

≤ 1. Summering above analyses, we have the following
result.

Theorem 7. The boundary equilibrium 𝐸
0𝑟
of the system (1) is

globally asymptotically stable if 𝑅
0𝑟

> 1 ≥ 𝑅
0𝑖
.

Now, we turn to the other boundary equilibrium. From
Lemma 1, we know that if 𝜌 = 0 and 𝑅

0𝑖
> 1, the boundary

equilibrium with only sensitive type 𝐸
0𝑖
exists. Through cal-

culations, we can obtain the characteristic equation as follow-
ing:

{(𝜆 + 𝑚
2
) (𝜆 + 𝑚

4
) − 𝑘
2
𝛽
1
𝛽
2
𝑋
𝑠𝑖
𝑌
𝑠𝑖
}

× {(𝜆 + 𝑚
1
) (𝜆 + 𝑚

3
) (𝜆 + 𝜇

1
) (𝜆 + 𝜇

2
+ 𝛽
2
𝑋
𝑖𝑖
)

+ 𝛽
1
𝑌
𝑖𝑖
(𝜆 + 𝑚

3
) (𝜆 + 𝜇

2
+ 𝛽
2
𝑋
𝑖𝑖
) (𝜆 + 𝑚

1
− 𝜎)

− 𝛽
1
𝛽
2
𝑋
𝑠𝑖
𝑌
𝑠𝑖
(𝜆 + 𝜇

1
) (𝜆 + 𝜇

2
)} = 0.

(47)

Hence, the eigenvalue of 𝐸
0𝑖
are roots of the following equa-

tions:

𝜆
2
+ (𝑚
2
+ 𝑚
4
) 𝜆 + 𝑚

2
𝑚
4
− 𝑘
2
𝛽
1
𝛽
2
𝑋
𝑠𝑖
𝑌
𝑠𝑖
= 0, (48)

𝜆
4
+ 𝑏
1
𝜆
3
+ 𝑏
2
𝜆
2
+ 𝑏
3
𝜆 + 𝑏
4
= 0. (49)

Here,

𝑏
1
= 𝑚
1
+ 𝑚
3
+ 𝜇
1
+ 𝜇
2
+ 𝛽
2
𝑋
𝑖𝑖
+ 𝛽
1
𝑌
𝑖𝑖
> 0,

𝑏
2
= 𝜇
1
(𝑚
1
+ 𝑚
3
+ 𝜇
2
+ 𝛽
2
𝑋
𝑖𝑖
) + 𝑚
1
(𝑚
3
+ 𝜇
2
+ 𝛽
2
𝑋
𝑖𝑖
)

+ 𝑚
3
(𝜇
2
+ 𝛽
2
𝑋
𝑖𝑖
) + 𝛽
1
𝑌
𝑖𝑖
(𝑚
1
− 𝜎 + 𝑚

3
+ 𝜇
2
+ 𝛽
2
𝑋
𝑖𝑖
)

− 𝑚
1
𝑚
3

= 𝜇
1
(𝑚
1
+ 𝑚
3
+ 𝜇
2
+ 𝛽
2
𝑋
𝑖𝑖
) + 𝑚
1
(𝜇
2
+ 𝛽
2
𝑋
𝑖𝑖
)

+ 𝑚
3
(𝜇
2
+ 𝛽
2
𝑋
𝑖𝑖
) + 𝛽
1
𝑌
𝑖𝑖
(𝜇
1
+ 𝛼 + 𝑚

3
+ 𝜇
2
+ 𝛽
2
𝑋
𝑖𝑖
)

> 0,

𝑏
3
= 𝜇
1
𝑚
1
(𝑚
3
+ 𝜇
2
+ 𝛽
2
𝑋
𝑖𝑖
) + 𝑚
1
𝑚
3
(𝜇
2
+ 𝛽
2
𝑋
𝑖𝑖
)

+ 𝛽
1
𝑌
𝑖𝑖
[𝑚
3
(𝜇
2
+ 𝛽
2
𝑋
𝑖𝑖
) + (𝑚

1
− 𝜎) (𝑚

3
+ 𝜇
2
+ 𝛽
2
𝑋
𝑖𝑖
)]

− 𝑚
1
𝑚
3
(𝜇
1
+ 𝜇
2
)

= 𝜇
1
𝑚
1
(𝜇
2
+ 𝛽
2
𝑋
𝑖𝑖
) + 𝑚
1
𝑚
3
𝛽
2
𝑋
𝑖𝑖

+ 𝛽
1
𝑌
𝑖𝑖
[𝑚
3
(𝜇
2
+ 𝛽
2
𝑋
𝑖𝑖
) + (𝜇

1
+ 𝛼) (𝑚

3
+ 𝜇
2
+ 𝛽
2
𝑋
𝑖𝑖
)]

> 0,

𝑏
4
= 𝜇
1
𝑚
1
𝑚
3
(𝜇
2
+ 𝛽
2
𝑋
𝑖𝑖
) + 𝛽
1
𝑌
𝑖𝑖
𝑚
3
(𝜇
2
+ 𝛽
2
𝑋
𝑖𝑖
) (𝑚
1
− 𝜎)

− 𝑚
1
𝑚
3
𝜇
1
𝜇
2

= 𝜇
1
𝑚
1
𝑚
3
𝛽
2
𝑋
𝑖𝑖
+ 𝛽
1
𝑌
𝑖𝑖
𝑚
3
(𝜇
2
+ 𝛽
2
𝑋
𝑖𝑖
) (𝜇
1
+ 𝛼) > 0.

(50)
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From (13), we can obtain that 𝛽
1
𝛽
2
𝑋
𝑠𝑖
𝑌
𝑠𝑖
= 𝑚
2
𝑚
4
. Then,

it is easy to see that the roots of (48) have negative real parts if
𝑅
0𝑖
> 𝑅
0𝑟
. Similarly to the case of 𝐸

0𝑟
, using Routh-Hurtwitz

criterion, we can obtain that all roots of (49) have negative
real parts if 𝑅

0𝑖
> 1. Summering above analysis, we have the

following result.

Theorem 8. When 𝜌 = 0, the boundary equilibrium 𝐸
0𝑖
of

the system (1) is locally asymptotically stable if 𝑅
0𝑖

> 1 and
𝑅
0𝑖
> 𝑅
0𝑟
.

Now, we study the global stability of the boundary equi-
librium 𝐸

0𝑖
. Consider the Lyapunov function

𝐿
1
= 𝑙
1
𝑋
𝑟
+ 𝑙
2
𝑌
𝑟
, (51)

where 𝑙
1
= (𝑚
4
+ 𝑘𝛽
2
(Λ
2
/𝜇
2
))/𝑚
2
𝑚
4
(𝑅
0𝑟
+ 1) and 𝑙

2
= (𝑚
2
+

𝑘𝛽
1
(Λ
1
/𝜇
1
))/𝑚
2
𝑚
4
(𝑅
0𝑟

+ 1). The Lyapunov derivative is
𝑑𝐿
1

𝑑𝑡
= 𝑙
1
(𝑘𝛽
1
𝑋
𝑠
𝑌
𝑟
− 𝑚
2
𝑋
𝑟
) + 𝑙
2
(𝑘𝛽
2
𝑌
𝑠
𝑋
𝑟
− 𝑚
3
Y
𝑟
)

≤ (𝑙
1
𝑘𝛽
1

Λ
1

𝜇
1

− 𝑙
2
𝑚
4
)𝑌
𝑟
+ (𝑙
2
𝑘𝛽
2

Λ
2

𝜇
2

− 𝑙
1
𝑚
2
)𝑋
𝑟

≤ (𝑅
0𝑟

− 1) (𝑌
𝑟
+ 𝑋
𝑟
)

≤ 0 for 𝑅
0𝑟

≤ 1.

(52)

This implies that the resistant type dies out if 𝑅
0𝑟

≤ 1. Then,
the largest compact invariant set of the system (1) in the set
{𝑑𝐿
1
/𝑑𝑡 = 0} is Ω

2
= {(𝑋

𝑠
, 𝑋
𝑖
, 𝑋
𝑟
, 𝑌
𝑠
, 𝑌
𝑖
, 𝑌
𝑟
) ∈ Ω | 𝑋

𝑟
=

𝑌
𝑟
= 0}. Using the LaSalle-Lyapunov theorem, we know that

all trajectories in Ω eventually tend to Ω
2
as 𝑡 → ∞. Then,

we only need to study the dynamical behavior of (1) inΩ
2
. At

this time, (1) reduces to the following system:
𝑑𝑋
𝑠

𝑑𝑡
= Λ
1
− 𝛽
1
𝑋
𝑠
𝑌
𝑖
− 𝜇
1
𝑋
𝑠
+ 𝜎𝑋
𝑖
,

𝑑𝑋
𝑖

𝑑𝑡
= 𝛽
1
𝑋
𝑠
𝑌
𝑖
− 𝑚
1
𝑋
𝑖
,

𝑑𝑌
𝑠

𝑑𝑡
= Λ
2
− 𝛽
2
𝑌
𝑠
𝑋
𝑖
− 𝜇
2
𝑌
𝑠
,

𝑑𝑌
𝑖

𝑑𝑡
= 𝛽
2
𝑌
𝑠
𝑋
𝑖
− 𝑚
3
𝑌
𝑖
.

(53)

To show that all trajectories of (53) in the interior of Ω
2

approach the point (𝑋
𝑠𝑖
, 𝑋
𝑖𝑖
, 𝑌
𝑠𝑖
, 𝑌
𝑖𝑖
) corresponding to the

boundary equilibrium 𝐸
0𝑖
, consider the Lyapunov function

𝐿
2
= 𝑙
1
{[𝑋
𝑠
− 𝑋
𝑠𝑖
− 𝑋
𝑠𝑖
ln(

𝑋
𝑠

𝑋
𝑠𝑖

)]

+ [𝑋
𝑖
− 𝑋
𝑖𝑖
− 𝑋
𝑖𝑖
ln(

𝑋
𝑖

𝑋
𝑖𝑖

)]}

+ 𝑙
2
{[𝑌
𝑠
− 𝑌
𝑠𝑖
− 𝑌
𝑠𝑖
ln(

𝑌
𝑠

𝑌
𝑠𝑖

)]

+ [𝑌
𝑖
− 𝑌
𝑖𝑖
− 𝑌
𝑖𝑖
ln(

𝑌
𝑖

𝑌
𝑖𝑖

)]} ,

(54)

where positive constants 𝑙
1
and 𝑙
2
are defined in the following.

It is easy to see that 𝐿
2

≥ 0 for (𝑋
𝑠
, 𝑋
𝑖
, 𝑌
𝑠
, 𝑌
𝑖
) ∈ Ω

1
and

𝐿
2

= 0 ⇔ (𝑋
𝑠
, 𝑋
𝑖
, 𝑌
𝑠
, 𝑌
𝑖
) = (𝑋

𝑠𝑖
, 𝑋
𝑖𝑖
, 𝑌
𝑠𝑖
, 𝑌
𝑖𝑖
). Hence, the

function 𝐿
2
is positive definite with respect to the point

(𝑋
𝑠𝑖
, 𝑋
𝑖𝑖
, 𝑌
𝑠𝑖
, 𝑌
𝑖𝑖
).

Computing the derivative of 𝐿
2
along solutions of system

(39), we have

𝑑𝐿
2

𝑑𝑡
= 𝑙
1
{[

𝑑𝑋
𝑠

𝑑𝑡
−

𝑑𝑋
𝑠

𝑑𝑡
(
𝑋
𝑠𝑖

𝑋
𝑠

)] + [
𝑑𝑋
𝑖

𝑑𝑡
−

𝑑𝑋
𝑖

𝑑𝑡
(
𝑋
𝑖𝑖

𝑋
𝑖

)]}

+ 𝑙
2
{[

𝑑𝑌
𝑠

𝑑𝑡
−

𝑑𝑌
𝑠

𝑑𝑡
(
𝑌
𝑠𝑖

𝑌
𝑠

)] + [
𝑑𝑌
𝑖

𝑑𝑡
−

𝑑𝑌
𝑖

𝑑𝑡
(
𝑌
𝑖𝑖

𝑌
𝑖

)]}

= 𝑙
1
[Λ
1
− 𝜇
1
𝑋
𝑠
−

𝑋
𝑠𝑖

𝑋
𝑠

Λ
1
+ 𝛽
1
𝑋
𝑠𝑖
𝑌
𝑖
+ 𝜇
1
𝑋
𝑠𝑖
− 𝑚
1
𝑋
𝑖

−𝛽
1
𝑋
𝑠
𝑌
𝑖

𝑋
𝑖𝑖

𝑋
𝑟

+ 𝑚
1
𝑋
𝑖𝑖
+ 𝜎𝑋
𝑖
(1 −

𝑋
𝑠𝑖

𝑋
𝑠

)]

+ 𝑙
2
[Λ
2
− 𝜇
2
𝑌
𝑠
−

𝑌
𝑠𝑖

𝑌
𝑠

Λ
2
+ 𝛽
2
𝑌
𝑠𝑖
𝑋
𝑖
+ 𝜇
2
𝑌
𝑠𝑖
− 𝑚
3
𝑌
𝑖

−𝛽
2
𝑌
𝑠
𝑋
𝑖

𝑌
𝑖𝑖

𝑌
𝑖

+ 𝑚
3
𝑌
𝑖𝑖
] .

(55)

Substituting Λ
1
= 𝛽
1
𝑋
𝑠𝑖
𝑌
𝑖𝑖
+ 𝜇
1
𝑋
𝑠𝑖
− 𝜎𝑋
𝑖𝑖
, Λ
2
= 𝛽
2
𝑌
𝑠𝑖
𝑋
𝑖𝑖
+

𝜇
2
𝑌
𝑠𝑖
, 𝑚
1
𝑋
𝑖𝑖
= 𝛽
1
𝑋
𝑠𝑖
𝑌
𝑖𝑖
, and 𝑚

3
𝑌
𝑖𝑖
= 𝛽
2
𝑌
𝑠𝑖
𝑋
𝑖𝑖
into 𝑑𝐿

2
/𝑑𝑡,

we obtain

𝑑𝐿
2

𝑑𝑡
= 𝑙
1
{𝜇
1
𝑋
𝑠𝑖
(2 −

𝑋
𝑠

𝑋
𝑠𝑖

−
𝑋
𝑠𝑖

𝑋
𝑠

) + (𝛽
1
𝑋
𝑠𝑖
𝑌
𝑖
− 𝑚
1
𝑋
𝑖
)

+ 𝜎 (𝑋
𝑖
− 𝑋
𝑖𝑖
) (1 −

𝑋
𝑠𝑖

𝑋
𝑠

)

+[2𝛽
1
𝑋
𝑠𝑖
𝑌
𝑖𝑖
− 𝛽
1
𝑌
𝑖𝑖

(𝑋
𝑠𝑖
)
2

𝑋
𝑠

− 𝛽
1
𝑋
𝑠
𝑌
𝑖

𝑋
𝑖𝑖

𝑋
𝑖

]}

+ 𝑙
2
{𝜇
2
𝑌
𝑠𝑖
(2 −

𝑌
𝑠

𝑌
𝑠𝑖

−
𝑌
𝑠𝑖

𝑌
𝑠

) + (𝛽
2
𝑌
𝑠𝑖
𝑋
𝑖
− 𝑚
3
𝑌
𝑖
)

+ [2𝛽
2
𝑌
𝑠𝑖
𝑋
𝑖𝑖
− 𝛽
2
𝑋
𝑖𝑖

(𝑌
𝑠𝑖
)
2

𝑌
𝑠

− 𝛽
2
𝑌
𝑠
𝑋
𝑖

𝑌
𝑖𝑖

𝑌
𝑖

]} .

(56)

Note that for the limiting system 𝑋
𝑠
+ 𝑋
𝑖
= 𝑋
𝑠𝑖
+ 𝑋
𝑖𝑖

=

Λ
1
/𝜇
1
, then (𝑋

𝑖
− 𝑋
𝑖𝑖
)(𝑋
𝑠
− 𝑋
𝑠𝑖
) ≤ 0. Let 𝑙

1
= 𝛽
2
𝑌
𝑠𝑖
𝑋
𝑖𝑖
and

𝑙
2
= 𝛽
1
𝑋
𝑠𝑖
𝑌
𝑖𝑖
. Following from 𝑚

1
𝑋
𝑖𝑖
= 𝛽
1
𝑋
𝑠𝑖
𝑌
𝑖𝑖
and 𝑚

3
𝑌
𝑖𝑖
=

𝛽
2
𝑌
𝑠𝑖
𝑋
𝑖𝑖
, we have

𝑙
1
(𝛽
1
𝑋
𝑠𝑖
𝑌
𝑖
− 𝑚
1
𝑋
𝑖
) + 𝑙
2
(𝛽
2
𝑌
𝑠𝑖
𝑋
𝑖
− 𝑚
3
𝑌
𝑖
) = 0. (57)
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Hence, for all (𝑋
𝑠
, 𝑋
𝑖
, 𝑌
𝑠
, 𝑌
𝑖
) ∈ Ω
2
,

𝑑𝐿
2

𝑑𝑡
≤ 𝑙
1
{𝜇
1
𝑋
𝑠𝑖
(2 −

𝑋
𝑠

𝑋
𝑠𝑖

−
𝑋
𝑠𝑖

𝑋
𝑠

)

+𝛽
1
𝑋
𝑠𝑖
𝑌
𝑖𝑖
[2 −

𝑋
𝑠𝑖

𝑋
𝑠

−
𝑋
𝑠
𝑌
𝑖
𝑋
𝑖𝑖

𝑋
𝑠𝑖
𝑌
𝑖𝑖
𝑋
𝑖

]}

+ 𝑙
2
{𝜇
2
𝑌
𝑠𝑖
(2 −

𝑌
𝑠

𝑌
𝑠𝑖

−
𝑌
𝑠𝑖

𝑌
𝑠

)

+𝛽
2
𝑌
𝑠𝑖
𝑋
𝑖𝑖
[2 −

𝑌
𝑠𝑖

𝑌
𝑠

−
𝑌
𝑠
𝑋
𝑖
𝑌
𝑖𝑖

𝑌
𝑠𝑖
𝑋
𝑖𝑖
𝑌
𝑖

]}

≤ 𝑙
1
𝜇
1
𝑋
𝑠𝑖
(2 −

𝑋
𝑠

𝑋
𝑠𝑖

−
𝑋
𝑠𝑖

𝑋
𝑠

) + 𝑙
2
𝜇
2
𝑌
𝑠𝑖
(2 −

𝑌
𝑠

𝑌
𝑠𝑖

−
𝑌
𝑠𝑖

𝑌
𝑠

)

+ 𝑙
1
𝑙
2
(4 −

𝑋
𝑠𝑖

𝑋
𝑠

−
𝑋
𝑠
𝑌
𝑖
𝑋
𝑖𝑖

𝑋
𝑠𝑖
𝑌
𝑖𝑖
𝑋
𝑖

−
𝑌
𝑠𝑖

𝑌
𝑠

−
𝑌
𝑠
𝑋
𝑖
𝑌
𝑖𝑖

𝑌
𝑠𝑖
𝑋
𝑖𝑖
𝑌
𝑖

) ≤ 0.

(58)

It is easy to see that

𝑑𝐿
2

𝑑𝑡
= 0 ⇐⇒ 𝑋

𝑠
= 𝑋
𝑠𝑖
, 𝑋

𝑖
= 𝑋
𝑖𝑖
,

𝑌
𝑠
= Y
𝑠𝑖
, 𝑌

𝑖
= 𝑌
𝑖𝑖
.

(59)

Therefore, the only compact invariant subset of the set where
𝑑𝐿
2
/𝑑𝑡 = 0 is the point (𝑋

𝑠𝑖
, 𝑋
𝑖𝑖
, 𝑌
𝑠𝑖
, 𝑌
𝑖𝑖
), corresponding to

the boundary equilibrium 𝐸
0𝑖
. By LaSalle’s Invariance Princi-

ple,𝐸
0𝑖
is globally asymptotically stable if𝑅

0𝑖
> 1 and𝑅

0𝑟
≤ 1.

Summering above analysis, we have the following result.

Theorem 9. When 𝜌 = 0, the boundary equilibrium 𝐸
0𝑖
of the

system (1) is globally asymptotically stable if 𝑅
0𝑖
> 1 ≥ 𝑅

0𝑟
.

5. Stability Analysis of
the Coexistence Equilibrium

In this section, we turn to study the local stability of the coex-
istence equilibrium 𝐸

𝑐
in the limiting system of (1) by using

Krasnoselskii sublinearity trick [24], as in [25, 26]. In detail,
if 𝑥 = 𝑓(𝑥) is a system of differential equations and 𝑥

∗ is
an equilibrium point, then to prove the local asymptotical
stability of 𝑥∗ is to prove that the linearized equation 𝑍


=

𝑓

(𝑥
∗
)𝑍 has no solutions of the form

𝑍 (𝑡) = 𝑍
0
𝑒
𝜔𝑡
, (60)

with 𝑍
0

∈ 𝐶
𝑛, 𝜔 ∈ 𝐶 and, Re𝜔 ≥ 0. This implies that

the eigenvalues of the characteristic polynomial associated
with the linearized equations have negative real part, that is,
Re𝜔 < 0. Then, the coexistence equilibrium 𝐸

𝑐
is locally

asymptotically stable.

Considering the limiting system

𝑑𝑋
𝑖

𝑑𝑡
= 𝛽
1
(𝑁
1
− 𝑋
𝑖
− 𝑋
𝑟
) 𝑌
𝑖
− 𝑚
1
𝑋
𝑖
,

𝑑𝑋
𝑟

𝑑𝑡
= 𝑘𝛽
1
(𝑁
1
− 𝑋
𝑖
− 𝑋
𝑟
) 𝑌
𝑟
+ 𝜌𝜎𝑋

𝑖
− 𝑚
2
𝑋
𝑟
,

𝑑𝑌
𝑖

𝑑𝑡
= 𝛽
2
(𝑁
2
− 𝑌
𝑖
− 𝑌
𝑟
)𝑋
𝑖
− 𝑚
3
𝑌
𝑖
,

𝑑𝑌
𝑟

𝑑𝑡
= 𝑘𝛽
2
(𝑁
2
− 𝑌
𝑖
− 𝑌
𝑟
)𝑋
𝑟
− 𝑚
4
𝑌
𝑟
,

(61)

where 𝑁
1

= Λ
1
/𝜇
1
and 𝑁

2
= Λ
2
/𝜇
2
. In this way, let

𝑍
0
= (𝑍
1
, 𝑍
2
, 𝑍
3
, 𝑍
4
), 𝑍
𝑖
∈ 𝐶. Substituting a solution of the

form (60) into the linearized system (61) of the coexistence
equilibrium 𝐸

𝑐
, we obtain the following linear equations:

𝜔𝑍
1
= − (𝛽

1
𝑌
𝑖𝑐
+ 𝑚
1
) 𝑍
1
− 𝛽
1
𝑌
𝑖𝑐
𝑍
2

+ 𝛽
1
(𝑁
1
− 𝑋
𝑖𝑐
− 𝑋
𝑟𝑐
) 𝑍
3
,

𝜔𝑍
2
= (𝜌𝜎 − 𝑘𝛽

1
𝑌
𝑟𝑐
) 𝑍
1
− (𝑘𝛽

1
𝑌
𝑟𝑐
+ 𝑚
2
) 𝑍
2

+ 𝑘𝛽
1
(𝑁
1
− 𝑋
𝑖𝑐
− 𝑋
𝑟𝑐
) 𝑍
4
,

𝜔𝑍
3
= 𝛽
2
(𝑁
2
− 𝑌
𝑖𝑐
− 𝑌
𝑟𝑐
) 𝑍
1
− (𝛽
2
𝑋
𝑖𝑐
+ 𝑚
3
) − 𝛽
2
𝑋
𝑖𝑐
𝑍
4
,

𝜔𝑍
4
= 𝑘𝛽
2
(𝑁
2
− 𝑌
𝑖𝑐
− 𝑌
𝑟𝑐
) 𝑍
2
− 𝑘𝛽
2
𝑋
𝑟𝑐
𝑍
3

− (𝑘𝛽
2
𝑋
𝑟𝑐
+ 𝑚
4
) 𝑍
4
,

(62)

which is equivalent to the system

[1 +
1

𝑚
1

(𝜔 + 𝛽
1
𝑌
𝑖𝑐
)]𝑍
1
= −

𝛽
1
𝑌
𝑖𝑐

𝑚
1

𝑍
2

+
𝛽
1
(𝑁
1
− 𝑋
𝑖𝑐
− 𝑋
𝑟𝑐
)

𝑚
1

𝑍
3
,

[1 +
1

𝑚
2

(𝜔 + 𝑘𝛽
1
𝑌
𝑟𝑐
)]𝑍
2
=

(𝜌𝜎 − 𝑘𝛽
1
𝑌
𝑟𝑐
)

𝑚
2

𝑍
1

+
𝑘𝛽
1
(𝑁
1
− 𝑋
𝑖𝑐
− 𝑋
𝑟𝑐
)

𝑚
2

𝑍
4
,

[1 +
1

𝑚
3

(𝜔 + 𝛽
2
𝑋
𝑖𝑐
)]𝑍
3
=

𝛽
2
(𝑁
2
− 𝑌
𝑖𝑐
− 𝑌
𝑟𝑐
)

𝑚
3

𝑍
1

−
𝛽
2
𝑋
𝑖𝑐

𝑚
3

𝑍
4
,

[1 +
1

𝑚
4

(𝜔 + 𝑘𝛽
2
𝑋
𝑟𝑐
)]𝑍
4
=

𝑘𝛽
2
(𝑁
2
− 𝑌
𝑖𝑐
− 𝑌
𝑟𝑐
)

𝑚
4

𝑍
2

−
𝑘𝛽
2
𝑋
𝑟𝑐

𝑚
4

𝑍
3
.

(63)
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Moving all the negative terms to the left-hand side, after some
manipulations we obtain the system

[1 + 𝐹
1 (𝜔)] 𝑍1 + [1 + 𝐹

2 (𝜔)] 𝑍2 = (𝐻𝑍)1 + (𝐻𝑍)2,

[1 + 𝐹
3 (𝜔)] 𝑍3 + [1 + 𝐹

4 (𝜔)] 𝑍4 = (𝐻𝑍)3 + (𝐻𝑍)4,
(64)

where

𝐹
1 (𝜔) =

𝜔 + 𝛽
1
𝑌
𝑖𝑐

𝑚
1

+
𝑘𝛽
1
𝑌
𝑟𝑐

𝑚
2

,

𝐹
2 (𝜔) =

𝜔 + 𝑘𝛽
1
𝑌
𝑟𝑐

𝑚
2

+
𝛽
1
𝑌
𝑖𝑐

𝑚
1

,

𝐹
3 (𝜔) =

𝜔 + 𝛽
2
𝑋
𝑖𝑐

𝑚
3

+
𝑘𝛽
2
𝑋
𝑟𝑐

𝑚
4

,

𝐹
4 (𝜔) =

𝜔 + 𝑘𝛽
2
𝑋
𝑟𝑐

𝑚
4

+
𝛽
2
𝑋
𝑖𝑐

𝑚
3

,

𝐻 =

(
(
(
(
(
(

(

0 0
𝛽
1
(𝑁
1
−𝑋
𝑖𝑐
−𝑋
𝑟𝑐
)

𝑚
1

0

𝜌𝜎

𝑚
2

0 0 𝑘𝛽
1
(𝑁
1
−𝑋
𝑖𝑐
−𝑋
𝑟𝑐
)

𝛽
2
(𝑁
2
−𝑌
𝑖𝑐
−𝑌
𝑟𝑐
)

𝑚
3

0 0 0

0 0 0
𝑘𝛽
2
(𝑁
2
−𝑌
𝑖𝑐
−𝑌
𝑟𝑐
)

𝑚
4

)
)
)
)
)
)

)

.

(65)

Note that the matrix 𝐻 has nonnegative entries, and 𝐸
𝑐
=

(𝑋
𝑖𝑐
, 𝑋
𝑟𝑐
, 𝑌
𝑖𝑐
, 𝑌
𝑟𝑐
) satisfies

𝐸
𝑐
= 𝐻𝐸

𝑐
. (66)

To show that Re𝜔 < 0, we distinguish two cases: 𝜔 = 0

and 𝜔 ̸= 0. In the first case, (62) is a homogeneous linear sys-
tem. Through calculations, we have the determinant of (62)
is

Δ =



− (𝛽
1
𝑌
𝑖𝑐
+ 𝑚
1
) −𝛽

1
𝑌
𝑖𝑐

𝛽
1
𝑋
𝑠𝑐

0

𝜌𝜎 − 𝑘𝛽
1
𝑌
𝑟𝑐
− (𝑘𝛽

1
𝑌
𝑟𝑐
+ 𝑚
2
) 0 𝑘𝛽

1
𝑋
𝑠𝑐

𝛽
2
𝑌
𝑠𝑐

0 − (𝛽
2
𝑋
𝑖𝑐
+ 𝑚
3
) −𝛽

2
𝑋
𝑖𝑐

0 𝑘𝛽
2
𝑌
𝑠𝑐

−𝑘𝛽
2
𝑋
𝑟𝑐
− (𝑘𝛽

2
𝑋
𝑟𝑐
+ 𝑚
4
)



= − (𝛽
1
𝑌
𝑖𝑐
+ 𝑚
1
) 𝐴
1
+ 𝛽
1
𝑌
𝑖𝑐
A
2
+ 𝛽
1
𝑋
𝑠𝑐
𝐴
3
,

(67)

where

𝐴
1
= 𝑚
1
𝑚
3
𝑘
2
𝛽
2
𝑋
𝑖𝑐
+ 𝑚
1
𝑚
2

3
𝑘
2
− 𝑚
4
𝑘𝛽
1
𝛽
2
𝑋
𝑖𝑐
𝑌
𝑟𝑐

− 𝑚
3
𝑘
2
𝛽
1
𝛽
2
𝑋
𝑟𝑐
𝑌
𝑟𝑐
− 𝑚
3
𝑚
4
𝑘𝛽
1
𝑌
𝑟𝑐
− 𝑚
2
𝑚
4
𝛽
2
𝑋
𝑖𝑐

− 𝑚
2
𝑚
3
𝑘𝛽
2
𝑋
𝑟𝑐
− 𝑚
2
𝑚
3
𝑚
4
,

𝐴
2
= 𝜌𝜎 (𝑚

3
𝑘𝛽
2
𝑋
𝑟𝑐
+ 𝑚
4
𝛽
2
𝑋
𝑖𝑐
+ 𝑚
3
𝑚
4
) − 𝑚
4
𝑘𝛽
1
𝛽
2
𝑋
𝑖𝑐
𝑌
𝑟𝑐

− 𝑚
3
𝑘
2
𝛽
1
𝛽
2
𝑋
𝑟𝑐
𝑌
𝑟𝑐
− 𝑚
3
𝑚
4
𝑘𝛽
1
𝑌
𝑟𝑐
− 𝑚
1
𝑚
3
𝑘
2
𝛽
2
𝑋
𝑟𝑐
,

𝐴
3
= 𝑘
2
𝛽
1
𝛽
2

2
𝑋
𝑠𝑐
𝑌
2

𝑠𝑐
+ 𝜌𝜎𝑘𝛽

2

2
𝑋
𝑖𝑐
𝑌
𝑠𝑐
− 𝑘
2
𝛽
1
𝛽
2

2
𝑋
𝑖𝑐
𝑌
𝑟𝑐
𝑌
𝑠𝑐

− 𝛽
2
𝑌
𝑠𝑐
(𝑘
2
𝛽
1
𝛽
2
𝑋
𝑟𝑐
𝑌
𝑟𝑐
+ 𝑚
4
𝑘𝛽
1
𝑌
𝑟𝑐

+𝑚
2
𝑘𝛽
2
𝑋
𝑟𝑐
+ 𝑚
2
𝑚
4
) .

(68)

Then, we can obtain

Δ = 𝜌𝜎 (𝑚
3
𝑘𝛽
1
𝛽
2
𝑋
𝑟𝑐
𝑌
𝑖𝑐
+ 𝑚
4
𝛽
1
𝛽
2
𝑋
𝑖𝑐
𝑌
𝑖𝑐

+𝑚
3
𝑚
4
𝛽
1
𝑌
𝑖𝑐
+ 𝑚
1
𝑚
3
𝑘𝛽
2
𝑋
𝑖𝑐
)

+ (𝛽
1
𝛽
2
𝑋
𝑖𝑐
𝑌
𝑖𝑐
+ 𝑚
1
𝛽
2
𝑋
𝑖𝑐
+ 𝑚
3
𝛽
2
𝑌
𝑖𝑐
)

× (𝑚
2
𝑚
4
− 𝑚
1
𝑚
3
𝑘
2
) + 𝛽
1
𝛽
2
𝑋
𝑟𝑐
𝑌
𝑖𝑐
𝑚
3
𝑘 (𝑚
2
− 𝑚
1
𝑘)

+ 𝛽
1
𝛽
2
𝑋
𝑖𝑐
𝑌
𝑟𝑐
𝑚
1
𝑘 (𝑚
4
− 𝑚
3
𝑘) .

(69)

Note that the coexistence equilibrium𝐸
𝑐
exists under the con-

dition 𝑅
0𝑖

> 𝑅
0𝑟
, that is, 𝑚

2
𝑚
4
> 𝑚
1
𝑚
3
𝑘
2. Then Δ > 0 if

𝑚
2
− 𝑚
1
𝑘 ≥ 0 and 𝑚

4
− 𝑚
3
𝑘 ≥ 0. Hence, for the case that

𝜔 = 0, (62) has only the trivial solution if 𝑚
2
− 𝑚
1
𝑘 ≥ 0 and

𝑚
4
− 𝑚
3
𝑘 ≥ 0. This implies that 𝜔 ̸= 0.

Now assume that𝜔 ̸= 0 and Re𝜔 ≥ 0. Let𝐹(𝜔) = min{|1+
𝐹
𝑖
(𝜔)|, 𝑖 = 1, 2, 3, 4}. It is easy to prove that |1 + 𝐹

𝑖
(𝜔)| > 1

for all 𝑖, and therefore 𝐹(𝜔) > 1. In the other hand, since the
coordinates of𝐸

𝑐
are positive, if𝑍 is any solution of (64), then

there exists a minimal positive real number 𝑠 such that

𝑍

≤ 𝑠𝐸
𝑐
, (70)

where |𝑍| = (|𝑍
1
|, |𝑍
2
|, |𝑍
3
|, |𝑍
4
|), and | ⋅ | is the norm in 𝐶.

Note that 𝑠 is also the minimal positive real number such that
𝑍1

 +
𝑍2

 ≤ 𝑠 (𝑋
𝑖𝑐
+ 𝑋
𝑟𝑐
) ,

𝑍3
 +

𝑍4
 ≤ 𝑠 (𝑌

𝑖𝑐
+ 𝑌
𝑟𝑐
) .

(71)

Taking norms on both side of (64) and using (66), (71), and
the fact that𝐻 is nonnegative, we obtain

𝐹 (𝜔) (
𝑍1

 +
𝑍2

) ≤ 𝐻(|𝑍|)1 + 𝐻(|𝑍|)2 ≤ 𝑠 (𝑋
𝑖𝑐
+ 𝑋
𝑟𝑐
) ,

(72)

that is,
𝑍1

 +
𝑍2

 ≤
𝑠

𝐹 (𝜔)
(𝑋
𝑖𝑐
+ 𝑋
𝑟𝑐
) < 𝑠 (𝑋

𝑖𝑐
+ 𝑋
𝑟𝑐
) , (73)

which contradicts the minimality of 𝑠. Hence, Re𝜔 < 0.
Summering above analysis, we have the following result.

Theorem 10. When 𝜌 ̸= 0, the coexistence equilibrium 𝐸
𝑐

of the system (1) is locally asymptotically stable if 𝑘 ≤

min{𝑚
2
/𝑚
1
, 𝑚
4
/𝑚
3
} and 𝑅

0𝑖
> 1.

The existence and stability of equilibria can be summered
in Table 1.

6. Discussion

In this paper we established a new schistosomiasis model.
In contrast to previous schistosomiasis models with drug
resistance, the model established in this study consider many
aspects. First, snail is considered as a variable in the model
since the resistance of schistosoma to PZQ can be expressed
in snails [14–16]. Second, previous models considered that
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Table 1: Existence and stability of equilibria. The sign “∃ !” means the existence and uniqueness. LAS means locally asymptotically stable,
and GAS means globally asymptotically stable.

𝜌 = 0 𝜌 ̸= 0

Existence Stability Existence Stability

𝐸
0 ∃ !

If 𝑅
0
< 1, LAS;

If 𝑅
0
≤ 1, GAS ∃ !

If 𝑅
0
< 1, LAS;

If 𝑅
0
≤ 1, GAS

𝐸
0𝑖 If 𝑅

0𝑖
> 1, ∃ !

If 𝑅
0𝑖
> 1 and 𝑅

0𝑖
> 𝑅
0𝑟
, LAS;

If 𝑅
0𝑖
> 1 ≥ 𝑅

0𝑟
, GAS Not exist /

𝐸
0𝑟 If 𝑅

0𝑟
> 1, ∃ !

If 𝑅
0𝑟

> 1 and 𝑅
0𝑟

> 𝑅
0𝑖
, LAS;

If 𝑅
0𝑟

> 1 ≥ 𝑅
0𝑖
, GAS If 𝑅

0𝑟
> 1, ∃ !

If 𝑅
0𝑟

> 1 and 𝑅
0𝑟

> 𝑅
0𝑖
, LAS;

If 𝑅
0𝑟

> 1 ≥ 𝑅
0𝑖
, GAS

𝐸
𝑐

If 𝑅
0𝑖
= 𝑅
0𝑟

> 1,
a line / If 𝑅

0𝑖
> 1 and 𝑅

0𝑖
> 𝑅
0𝑟
, ∃ !

If 𝑅
0𝑖
> 1 and

𝑘 ≤ min {𝑚
2
/𝑚
1
, 𝑚
4
/𝑚
3
}, LAS

resistance was caused by drug treatment, while a large
number of the literature show that some cases are due to
inheritance [1, 3, 4]. Therefore, in this study, we consider the
reasons for resistance are drug treatment and genetic. Last, in
previousmodels a resistance level (𝜃)was used to discount the
treatment rate. But the resistance level could not bemeasured,
and its valuewas assumed.Thismodel considerwhat percent-
age of infected human after treatment will recover and what
percentagewill emerge drug resistance. Inmedicine, from the
occurrence of cases the value of this ratio can be identified.
For example, this ratio was given in [27, 28] (1 − 𝜌 = 0.28 ∼

0.609).Therefore, it is easy to operate. In addition, we separate
the discussion of the case that treatment will cause resistance
(𝜌 ̸= 0) and treatment will not cause resistance (𝜌 = 0).

The reproductive number 𝑅
0𝑖
and 𝑅

0𝑟
of the sensitive and

resistant strains are given, respectively. It is easy to see that𝑅
0𝑖

is a decreasing function of𝜎, and𝑅
0𝑟
is an increasing function

of 𝑘. If the basic reproductive number 𝑅
0

= max{𝑅
0𝑖
, 𝑅
0𝑟
}

of the model (1) is less than 1, one can prove the stability of
the disease free equilibrium. This means that the spread of
schistosomiasis can be effectively controlled. When the basic
reproductive number 𝑅

0
is greater than 1, we first consider

the case that 𝜌 = 0. If 𝑅
0𝑖

= 𝑅
0𝑟

> 1, the two strains can
coexist. There is a line of coexistence equilibria in this case.
The infected human will evolve to one of them with higher
reproductive number (see Table 1).

When drug treatment can not cause resistance (𝜌 = 0),
that is, the new resistant strain is due to the inheritance of
resistance, the sensitive strain will dominate if the treatment
rate is smaller and the impact of the inheritance of resistance
is smaller such that 𝑅

0𝑖
> 1 ≥ 𝑅

0𝑟
. This result accords

to the results of previous models. On the other hand, if the
treatment rate and the impact of the inheritance of resistance
are both larger such that 𝑅

0𝑟
> 1 ≥ 𝑅

0𝑖
, the resistant strain

will dominate. This shows that although the assumption is
that drug treatment does not result in the emergence of drug
resistance, once the treatment rate is greater than a value, and
the impact of genetic resistance is larger, there will still be
the emergence of resistant strain, and the resistant strain is
dominant. This further shows that genetic resistance has a
great impact on the system.

When drug treatment can cause resistance (𝜌 ̸= 0), we
can show that the sensitive strain either does not appear or

coexist with the resistant strain under certain condition. If
𝑅
0𝑟

> 1, there is only resistant strain. It can be seen that,
regardless of whether drug treatment leads to the emergence
of resistance, once the impact of genetic resistance is larger,
resistant strain will be dominant, which is detrimental to the
control of schistosomiasis.

Finally, from the formula of the coexistence equilibrium
𝐸
𝑐
, it is easy to see that the value of the resistant strain

is increased with the value of 𝜌. This means once the
proportion of human with drug-resistant strain produced by
drug treatment is larger, the number of human and snails with
resistant strain is larger. This is not a good result for drug
treatment with praziquantel.

Hence, for poor treatment, there are two possible reasons:
drug therapy and genetic. An important priority in develop-
ing new control strategies is to search new drug targets, in
combination with selection of genetic methods such as that
viable vaccine candidates. And there is already a need for
alternative drugs to treat PZQ-resistant schistosomiasis, such
as already exists in northern Senegal [10].
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