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We consider the oscillations of numerical solutions for the nonlinear delay differential equations in the control of erythropoiesis.The
exponential 𝜃-method is constructed and some conditions under which the numerical solutions oscillate are presented.Moreover, it
is proven that every nonoscillatory numerical solution tends to the equilibriumpoint of the continuous system.Numerical examples
are given to illustrate the main results.

1. Introduction

The oscillatory and asymptotic behavior of solutions of
delay differential equations has been the subject of intensive
investigations during the past decades. A large number of
articles has appeared in the literature, we refer to [1–4] and
the references therein. The strong interest in this study is
motivated by the fact that it has many useful applications in
some mathematical models, such as ecology, biology, spread
of some infectious diseases in humans, and so on. For more
information on this investigation, the reader can see [5, 6] and
the references therein.

By contrast with the research on the oscillations of the
analytic solutions, much studies have been focused on the
oscillations of the numerical solutions for delay differential
equations. In [7, 8], oscillations of numerical solutions in
𝜃-methods and Runge-Kutta methods for a linear differen-
tial equation with piecewise constant arguments (EPCA, a
special type of Delay Differential Equations) 𝑥(𝑡) + 𝑎𝑥(𝑡) +
𝑎
1
𝑥([𝑡 − 1]) = 0 were considered, respectively. More recently,

Wang et al. [9] studied numerical oscillations of alternately
advanced and retarded linear EPCA, the conditions of oscil-
lations for the 𝜃-methods are obtained. To the best of our
knowledge, until now less attention had been paid for the
oscillations of the numerical solutions for nonlinear delay
differential equations except for [10]. Differently from [10],
in our paper, we will investigate another nonlinear delay

differential equation in the control of erythropoiesis and
obtain some new results.

Consider the following nonlinear delay differential equa-
tion:

𝑥


(𝑡) =
𝛽
0
𝜔
𝜇

𝜔𝜇 + 𝑥𝜇 (𝑡 − 𝜏)
− 𝛾𝑥 (𝑡), (1)

with conditions

𝜇, 𝜔, 𝛽
0
, 𝛾 > 0, 𝜏 ≥ 0. (2)

Mackey and Glass [11] have proposed (1) as model of
hematopoiesis (blood cell production). In (1), 𝑥(𝑡) denotes
the density of mature cells in blood circulation, 𝜏 is the
time delay between the production of immature cells in
the bone marrow and their maturation for release in the
circulating blood stream, and the production is a monotonic
decreasing function of 𝑥(𝑡−𝜏). Equation (1) has been recently
studied by many authors. Gopalsamy et al. [12] obtained
sufficient and also necessary and sufficient conditions for
all positive solutions to oscillate about their positive steady
states.They also obtained sufficient conditions for the positive
equilibrium to be a global attractor. Using the linearization
method, Zaghrout et al. [13] considered (1) and gave a
sufficient condition for oscillations of all solutions about the
positive steady state 𝑥∗ and proved that every nonoscillatory
positive solution of (1) tends to 𝑥

∗ as 𝑡 → ∞. For more
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details of (1), we refer toMackey andMilton [14] andMackey
[15]. Up to now, few results on the properties of numerical
solutions for (1) were obtained. In the present paper, ourmain
goal is to investigate some sufficient conditions under which
the numerical solutions are oscillatory. We also consider the
asymptotic behavior of nonoscillatory numerical solutions.

The contents of this paper are as follows. In Section 2,
some necessary definitions and results for oscillations of
the analytic solutions are given. In Section 3, we obtain a
recurrence relation by applying the 𝜃-methods to the sim-
plified form which comes from making two transformations
on (1). Moreover, the oscillations of the numerical solutions
are discussed and conditions under which the numerical
solutions oscillate are obtained. In Section 4, we study the
asymptotic behavior of nonoscillatory solutions. In Section 5,
we present numerical examples that illustrate the theoretical
results for the numerical methods. Finally, Section 6 gives
conclusions and issues for future research.

2. Preliminaries

In this section, we start by introducing some definitions,
lemmas and theorems that will be employed throughout the
work.

Definition 1. A function𝑥(𝑡) of (1) is said to oscillate about𝐾∗
if𝑥(𝑡)−𝐾∗ has arbitrarily large zeros. Otherwise,𝑥(𝑡) is called
nonoscillatory.When𝐾∗ = 0, we say that𝑥(𝑡) oscillates about
zero or simply oscillates.

Definition 2. A sequence {𝑥
𝑛
} is said to oscillate about {𝑦

𝑛
} if

{𝑥
𝑛
−𝑦
𝑛
} is neither eventually positive nor eventually negative.

Otherwise, {𝑥
𝑛
} is called nonoscillatory. If {𝑦

𝑛
} = {𝑦} is a

constant sequence, we simply say that {𝑥
𝑛
} oscillates about

{𝑦}. When {𝑦
𝑛
} = {0}, we say that {𝑥

𝑛
} oscillates about zero or

simply oscillates.

Definition 3. We say (1) oscillates if all of its solutions are
oscillatory.

Theorem 4 (see [16]). Consider the difference equation

𝑎
𝑛+1

− 𝑎
𝑛
+

𝑙

∑

𝑗=−𝑘

𝑞
𝑗
𝑎
𝑛+𝑗

= 0, (3)

assume that 𝑘, 𝑙 ∈ N and 𝑞
𝑗
∈ R for 𝑗 = −𝑘, . . . , 𝑙. Then the

following statements are equivalent:

(i) every solution of (3) oscillates;

(ii) the characteristic equation 𝜆 − 1 + ∑𝑙
𝑗=−𝑘

𝑞
𝑗
𝜆
𝑗
= 0 has

no positive roots.

Theorem 5 (see [16]). Consider the difference equation

𝑎
𝑛+1

− 𝑎
𝑛
+ 𝑝𝑎
𝑛−𝑘

+ 𝑞𝑎
𝑛
= 0, (4)

where 𝑘 > 0, 𝑝 > 0 and 𝑞 > 0. Then the necessary and
sufficient conditions for the oscillation of all solutions of (4) are
𝑞 ∈ (0, 1) and

𝑝
(𝑘 + 1)

𝑘+1

𝑘𝑘
> (1 − 𝑞)

𝑘+1

. (5)

Lemma6. The inequality ln(1+𝑥) > 𝑥/(1+𝑥)holds for𝑥 > −1
and 𝑥 ̸= 0.

Lemma 7. The inequality 𝑒𝑥 < 1/(1 − 𝑥) holds for 𝑥 < −1 and
𝑥 ̸= 0.

Lemma 8 (see [17]). For all𝑚 ≥ 𝑀,
(i) (1 + 𝑎/(𝑚 − 𝜃𝑎))

𝑚
≥ 𝑒
𝑎 if and only if 1/2 ≤ 𝜃 ≤ 1 for

𝑎 > 0, 𝜑(−1) ≤ 𝜃 ≤ 1 for 𝑎 < 0;
(ii) (1 + 𝑎/(𝑚 − 𝜃𝑎))

𝑚
< 𝑒
𝑎 if and only if 0 ≤ 𝜃 < 1/2 for

𝑎 < 0, 0 ≤ 𝜃 ≤ 𝜑(1) for 𝑎 > 0,
where 𝜑(𝑥) = 1/𝑥 − 1/(𝑒𝑥 − 1) and𝑀 is a positive constant.

3. Oscillations of Numerical Solutions

3.1. Transformation. For (1), we take an initial condition of
the form

𝑥 (𝑡) = 𝜓 (𝑡) , −𝜏 ≤ 𝑡 ≤ 0, (6)

where 𝜓 ∈ 𝐶([−𝜏, 0], (0,∞)), 𝜓(0) > 0.
In order to simplify (1), we introduce a similar method in

[13]. The change of variables

𝑥 (𝑡) = 𝜔𝑦 (𝑡) (7)

transforms (1) to the delay differential equation

𝑦


(𝑡) =
𝑎

1 + 𝑦𝜇 (𝑡 − 𝜏)
− 𝛾𝑦 (𝑡) , (8)

where 𝑎 = 𝛽
0
/𝜔. One can see that (8) has a unique

equilibrium𝐾 and that
𝑎

1 + 𝐾𝜇
= 𝛾𝐾. (9)

The following result concerning oscillations of the analytic
solution of (8) is given in [13].

Theorem 9. Assume that
𝑎𝜇𝐾
𝜇−1

𝜏

(1 + 𝐾𝜇)
2
𝑒
𝑎𝜏/𝐾(1+𝐾

𝜇
)
>
1

𝑒
, (10)

then every positive solution of (8) oscillates about its positive
equilibrium 𝐾.

Therefore, we obtain the following corollary naturally.

Corollary 10. Assume that the condition

𝑎𝜇𝐾
𝜇−1

𝜏

(1 + 𝐾𝜇)
2
𝑒
𝑎𝜏/𝐾(1+𝐾

𝜇
)
>
1

𝑒
(11)

holds, then every positive solution of (1) oscillates about its
positive equilibrium 𝐾

∗
= 𝜔𝐾.
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Next, we also introduce an invariant oscillation transfor-
mation 𝑦(𝑡) = 𝐾𝑒𝑧(𝑡), then (8) can be written as

𝑧


(𝑡) +
𝑎

𝐾 (1 + 𝐾𝜇)
[𝑓
1
(𝑧 (𝑡)) 𝑓

2
(𝑧 (𝑡 − 𝜏)) − 𝑓

1
(𝑧 (𝑡))

−𝑓
2
(𝑧 (𝑡 − 𝜏)) + 2] = 0,

(12)

where

𝑓
1
(𝑢) = 1 − 𝑒

−𝑢
, 𝑓

2
(𝑢) = 1 +

1 + 𝐾
𝜇

1 + 𝐾𝜇𝑒𝜇𝑢
. (13)

Then 𝑦(𝑡) oscillates about𝐾 if and only if 𝑧(𝑡) oscillates about
zero. Moreover, for the sake of brevity, let

𝑇 =
𝑎

𝐾 (1 + 𝐾𝜇)
, (14)

then (12) becomes

𝑧


(𝑡) = − 𝑇𝑓
1
(𝑧 (𝑡)) 𝑓

2
(𝑧 (𝑡 − 𝜏)) + 𝑇𝑓

1
(𝑧 (𝑡))

+ 𝑇𝑓
2
(𝑧 (𝑡 − 𝜏)) − 2𝑇.

(15)

For convenience, denote

𝐿 =
𝑎𝜇𝐾
𝜇−1

(1 + 𝐾𝜇)
2
, (16)

then the inequality (11) yields

𝐿𝜏𝑒
𝑇𝜏
>
1

𝑒
. (17)

3.2.TheDifference Scheme. In this subsectionwe consider the
adaptation of the 𝜃-methods. Let ℎ = 𝜏/𝑚 be a given step size
with integer 𝑚 > 1. The adaptation of the linear 𝜃-method
and the one-leg 𝜃-method to (15) leads to the same numerical
process of the following type:

𝑧
𝑛+1

= 𝑧
𝑛
− 𝑇ℎ (𝜃𝑓

1
(𝑧
𝑛+1

) 𝑓
2
(𝑧
𝑛+1−𝑚

)

+ (1 − 𝜃) 𝑓
1
(𝑧
𝑛
) 𝑓
2
(𝑧
𝑛−𝑚

))

+ 𝑇ℎ (𝜃𝑓
1
(𝑧
𝑛+1

) + (1 − 𝜃) 𝑓
1
(𝑧
𝑛
))

+ 𝑇ℎ (𝜃𝑓
2
(𝑧
𝑛+1−𝑚

) + (1 − 𝜃) 𝑓
2
(𝑧
𝑛−𝑚

)) − 2𝑇ℎ,

(18)

where 0 ≤ 𝜃 ≤ 1, 𝑧
𝑛+1

and 𝑧
𝑛+1−𝑚

are approximations to 𝑧(𝑡)
and 𝑧(𝑡 − 𝜏) of (15) at 𝑡

𝑛+1
, respectively.

Let 𝑧
𝑛

= ln(𝑥
𝑛
/𝐾𝜔), and take into account of the

expressions of 𝑓
1
and 𝑓

2
we have

𝑥
𝑛+1

= 𝑥
𝑛
exp(ℎ𝑇𝐾𝜔𝜇+1 (1 + 𝐾𝜇)

× (
𝜃

𝑥
𝑛+1

(𝜔𝜇 + 𝑥
𝜇

𝑛+1−𝑚
)

+
1 − 𝜃

𝑥
𝑛
(𝜔𝜇 + 𝑥

𝜇

𝑛−𝑚
)
) − ℎ𝑇) .

(19)

Definition 11. We call the iteration formula (19) as the
exponential 𝜃-method for (1), where 𝑥

𝑛+1
and 𝑥

𝑛+1−𝑚
are

approximations to 𝑥(𝑡) and 𝑥(𝑡−𝜏) of (1) at 𝑡
𝑛+1

, respectively.

The following theorem gives the convergence of exponen-
tial 𝜃-method. We can easily prove it by the method of steps
which is used in [18].

Theorem 12. The exponential 𝜃-method (19) is convergent
with order

1, if 𝜃 ̸=
1

2
,

2, if 𝜃 = 1

2
.

(20)

3.3. Oscillation Analysis. It is not difficult to know that 𝑥
𝑛

oscillates about 𝐾∗ if and only if 𝑧
𝑛
is oscillatory. In order

to study oscillations of (19), we only need to consider the
oscillations of (18).The following conditions which are taken
from [13] will be used in the next analysis:

𝑢𝑓
1
(𝑢) > 0, for 𝑢 ̸= 0, lim

𝑢→0

𝑓
1
(𝑢)

𝑢
= 1,

𝑓
2
(𝑢) > 0, any 𝑢, lim

𝑢→0

𝑓
2
(𝑢) = 2,

𝑓
1
(𝑢) ≤ 𝑢 for 𝑢 > 0, 𝑓

1
(0) = 0,

𝑓
2
(𝑢) ≤ 2 𝑢 ≥ 0, 𝑓

2
(0) = 2.

(21)

For (18), its linearized form is given by

𝑧
𝑛+1

= 𝑧
𝑛
− ℎ𝜃𝑇𝑧

𝑛+1
− ℎ (1 − 𝜃) 𝑇𝑧

𝑛

− ℎ𝜃𝐿𝑧
𝑛+1−𝑚

− ℎ (1 − 𝜃) 𝑧
𝑛−𝑚

,

(22)

which is equivalent to

𝑧
𝑛+1

=
1 − ℎ (1 − 𝜃) 𝑇

1 + ℎ𝜃𝑇
𝑧
𝑛
−

ℎ𝜃𝐿

1 + ℎ𝜃𝑇
𝑧
𝑛+1−𝑚

−
ℎ (1 − 𝜃) 𝐿

1 + ℎ𝜃𝑇
𝑧
𝑛−𝑚

.

(23)

It follows from [16] that (18) oscillates if (23) oscillates under
the condition (21).

Definition 13. Equation (19) is said to be oscillatory if all of its
solutions are oscillatory.

Definition 14. We say that the exponential 𝜃-method pre-
serves the oscillations of (1) if (1) oscillates, then there is a
ℎ
0
> 0 or ℎ

0
= ∞, such that (19) oscillates for ℎ < ℎ

0
.

Similarly, we say that the exponential 𝜃-method preserves the
nonoscillations of (1) if (1) nonoscillates, then there is aℎ

0
> 0

or ℎ
0
= ∞, such that (19) nonoscillates for ℎ < ℎ

0
.

In the following, we will study whether the exponential
𝜃-method preserves the oscillations of (1). That is, when
Corollary 10 holds, we will investigate the conditions under
which (19) is oscillatory.
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Lemma 15. The characteristic equation of (22) is given by

𝜉 = 𝑅 (−ℎ (𝑇 + 𝐿𝜉
−𝑚
)) . (24)

Proof. Let 𝑧
𝑛
= 𝜉
𝑛
𝑧
0
in (22), we have

𝜉
𝑛+1

𝑧
0
= 𝜉
𝑛
𝑧
0
− ℎ𝜃𝑇𝜉

𝑛+1
𝑧
0
− ℎ (1 − 𝜃) 𝑇𝜉

𝑛
𝑧
0

− ℎ𝜃𝐿𝜉
𝑛+1−𝑚

𝑧
0
− ℎ (1 − 𝜃) 𝐿𝜉

𝑛−𝑚
𝑧
0
,

(25)

that is

𝜉 = 1 − ℎ𝜃 (𝑇 + 𝐿𝜉
−𝑚
) 𝜉 − ℎ (1 − 𝜃) (𝑇 + 𝐿𝜉

−𝑚
) , (26)

which is equivalent to

𝜉 =
1 − ℎ (1 − 𝜃) (𝑇 + 𝐿𝜉

−𝑚
)

1 + ℎ𝜃 (𝑇 + 𝐿𝜉−𝑚)
= 1 −

ℎ (𝑇 + 𝐿𝜉
−𝑚
)

1 + ℎ𝜃 (𝑇 + 𝐿𝜉−𝑚)
.

(27)

In view of [19], we know that the stability function of the 𝜃-
method is

𝑅 (𝑥) = 1 +
𝑥

1 − 𝜃𝑥
, (28)

thus the characteristic equation of (22) is given by (24). This
completes the proof of the lemma.

Lemma 16. If 𝐿𝜏𝑒𝑇𝜏 > 1/𝑒, then the characteristic equation
(24) has no positive roots for 0 ≤ 𝜃 ≤ 1/2.

Proof. Let𝑉(𝜉) = 𝜉−𝑅(−ℎ(𝑇+𝐿𝜉−𝑚)). By Lemma 8, we have

𝑅 (−ℎ (𝑇 + 𝐿𝜉
−𝑚
))

≤ exp (−ℎ (𝑇 + 𝐿𝜉−𝑚)) , 𝜉 > 0, 0 ≤ 𝜃 ≤ 1/2.

(29)

Now we will prove that𝑊(𝜉) = 𝜉 − exp(−ℎ(𝑇 + 𝐿𝜉
−𝑚
)) > 0

for 𝜉 > 0. Suppose the opposite, that is, there exists a 𝜉
0
> 0

such that𝑊(𝜉
0
) ≤ 0, then we have 𝜉

0
≤ exp(−ℎ𝑇 − ℎ𝐿𝜉

−𝑚

0
),

and

𝜉
𝑚

0
≤ exp (−𝑇𝜏 − 𝐿𝜏𝜉−𝑚

0
) . (30)

Multiplying both sides of the inequality (30) by 𝐿𝜏𝑒𝑇𝜏𝑒𝜉−𝑚
0

,
we obtain

𝐿𝜏𝑒
𝑇𝜏
𝑒𝜉
−𝑚

0
𝜉
𝑚

0
≤ 𝐿𝜏𝑒

𝑇𝜏
𝑒𝜉
−𝑚

0
exp (−𝑇𝜏 − 𝐿𝜏𝜉−𝑚

0
) , (31)

which gives

𝐿𝜏𝑒
𝑇𝜏
𝑒 ≤ 𝐿𝜏𝜉

−𝑚

0
exp (1 − 𝐿𝜏𝜉−𝑚

0
) , (32)

therefore we have the following two cases.

Case 1. If 1 − 𝐿𝜏𝜉−𝑚
0

= 0, then 𝐿𝜏𝑒𝑇𝜏𝑒 ≤ 1, which contradicts
the condition 𝐿𝜏𝑒𝑇𝜏 > 1/𝑒.

Case 2. If 1 − 𝐿𝜏𝜉−𝑚
0

̸= 0, then in view of Lemma 7, we get

exp (1 − 𝐿𝜏𝜉−𝑚
0
) <

1

1 − (1 − 𝐿𝜏𝜉
−𝑚

0
)
=

1

𝐿𝜏𝜉
−𝑚

0

, (33)

that is,

𝐿𝜏𝜉
−𝑚

0
exp (1 − 𝐿𝜏𝜉−𝑚

0
) < 1, (34)

so 𝐿𝜏𝑒𝑇𝜏𝑒 < 1, which is also a contradiction to 𝐿𝜏𝑒𝑇𝜏 > 1/𝑒.
Combining both the cases, by (29)we obtain that for 𝜉 > 0

𝑉 (𝜉) = 𝜉 − 𝑅 (−ℎ (𝑇 + 𝐿𝜉
−𝑚
))

≥ 𝜉 − exp (−ℎ (𝑇 + 𝐿𝜉−𝑚)) = 𝑊 (𝜉) > 0,

(35)

which implies that the characteristic equation (24) has no
positive roots. The proof of the lemma is complete.

Without loss of generality, in the case of 1/2 < 𝜃 ≤ 1, we
assume that𝑚 > 1.

Lemma 17. If 𝐿𝜏𝑒𝑇𝜏 > 1/𝑒 and 1/2 < 𝜃 ≤ 1, then the
characteristic equation (24) has no positive roots for ℎ < ℎ

0
,

where

ℎ
0
=

{{{{

{{{{

{

∞, for 𝐿𝜏 ≥ 1,

𝜏 (1 + 𝑇𝜏 + ln 𝐿𝜏)
1 + 𝑇𝜏 (1 − ln 𝐿𝜏)

, for 𝐿𝜏 < 1.
(36)

Proof. Since 𝑅(−ℎ(𝑇 + 𝐿𝜉
−𝑚
)) is an increasing function of 𝜃

when 𝜉 > 0, then for 𝜉 > 0 and 1/2 < 𝜃 ≤ 1

𝑅 (−ℎ (𝑇 + 𝐿𝜉
−𝑚
)) =

1 − ℎ (1 − 𝜃) (𝑇 + 𝐿𝜉
−𝑚
)

1 + ℎ𝜃 (𝑇 + 𝐿𝜉−𝑚)

≤
1

1 + ℎ (𝑇 + 𝐿𝜉−𝑚)
.

(37)

Next, we will prove that the inequality

𝜉 −
1

1 + ℎ (𝑇 + 𝐿𝜉−𝑚)
> 0, 𝜉 > 0 (38)

holds under certain conditions.
From (38), it follows that

𝜉 −
1

1 + ℎ (𝑇 + 𝐿𝜉−𝑚)
=

(1 + ℎ𝑇) 𝜉
1−𝑚

1 + ℎ (𝑇 + 𝐿𝜉−𝑚)
𝜆 (𝜉) , (39)

where

𝜆 (𝜉) = 𝜉
𝑚
−

1

1 + ℎ𝑇
𝜉
𝑚−1

+
ℎ𝐿

1 + ℎ𝑇
, (40)

so we only need to prove 𝜆(𝜉) > 0 for 𝜉 > 0. It is not
difficult to know that 𝜆(𝜉) is the characteristic polynomial of
the following difference scheme

𝑧
𝑛+1

− 𝑧
𝑛
+

ℎ𝐿

1 + ℎ𝑇
𝑧
𝑛+1−𝑚

+
ℎ𝑇

1 + ℎ𝑇
𝑧
𝑛
= 0. (41)

In view ofTheorems 4 and 5, we have that 𝜆(𝜉) has no positive
roots if and only if

ℎ𝐿

1 + ℎ𝑇

𝑚
𝑚

(𝑚 − 1)
𝑚−1

> (1 −
ℎ𝑇

1 + ℎ𝑇
)

𝑚

, (42)
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which is equivalent to

ln 𝐿𝜏 + (𝑚 − 1) ln(1 + 1 + 𝑇𝜏

𝑚 − 1
) > 0. (43)

We examine two cases depending on the position of𝐿𝜏: Either
𝐿𝜏 ≥ 1 or 𝐿𝜏 < 1.
Case 1. If 𝐿𝜏 ≥ 1, by𝑚 > 1, then (43) holds true.

Case 2. If 𝐿𝜏 < 1 and

ℎ <
𝜏 (1 + 𝑇𝜏 + ln 𝐿𝜏)
1 + 𝑇𝜏 (1 − ln 𝐿𝜏)

, (44)

then according to Lemma 6 we have

ln 𝐿𝜏 + (𝑚 − 1) ln(1 + 1 + 𝑇𝜏

𝑚 − 1
)

> ln 𝐿𝜏 + (𝑚 − 1)
(1 + 𝑇𝜏) / (𝑚 − 1)

1 + (1 + 𝑇𝜏) / (𝑚 − 1)

= ln 𝐿𝜏 +
(𝑚 − 1) (1 + 𝑇𝜏)

𝑚 + 𝑇𝜏
> 0.

(45)

Therefore the inequality (38) holds for ℎ < ℎ
0
, where

ℎ
0
=

{{{{

{{{{

{

∞, for 𝐿𝜏 ≥ 1,

𝜏 (1 + 𝑇𝜏 + ln 𝐿𝜏)
1 + 𝑇𝜏 (1 − ln 𝐿𝜏)

, for 𝐿𝜏 < 1.
(46)

So we get that the following inequality:

𝑉 (𝜉) = 𝜉 − 𝑅 (−ℎ (𝑇 + 𝐿𝜉
−𝑚
)) ≥ 𝜉 −

1

1 + ℎ (𝑇 + 𝐿𝜉−𝑚)
> 0,

(47)

holds for ℎ < ℎ
0
and 𝜉 > 0, which implies that the characteris-

tic equation (24) has no positive roots. This completes the
proof.

Remark 18. By inequality (43) and condition 𝐿𝜏 < 1, we have
that

𝜏 (1 + 𝑇𝜏 + ln 𝐿𝜏)
1 + 𝑇𝜏 (1 − ln 𝐿𝜏)

> 0, (48)

thus ℎ
0
is meaningful.

In view of (21), Lemmas 16 and 17, and Theorem 4, we
have the first main theorem of this paper.

Theorem 19. If 𝐿𝜏𝑒𝑇𝜏 > 1/𝑒, then (19) is oscillatory for

ℎ < {
∞, when 0 ≤ 𝜃 ≤ 1/2,

ℎ
0
, when 1/2 < 𝜃 ≤ 1,

(49)

where ℎ
0
is defined in Lemma 17.

4. Asymptotic Behavior of
Nonoscillatory Solutions

In this section, we will investigate the asymptotic behavior of
nonoscillatory solutions of (19). The following lemma is an
important result about asymptotic behavior of (8).

Lemma 20 (see [13]). Let 𝑦(𝑡) be a positive solution of (8),
which does not oscillate about 𝐾. Then lim

𝑡→∞
𝑦(𝑡) = 𝐾.

From the relationship between (8) and (12), we know that
the nonoscillatory solution of (12) satisfies lim

𝑡→∞
𝑧(𝑡) = 0

if Lemma 20 holds. Furthermore, lim
𝑡→∞

𝑥(𝑡) = 𝐾
∗ is also

obtained. Next, we will prove that the numerical solution of
(1) can inherit this property.

Lemma 21. Let 𝑧
𝑛
be a nonoscillatory solution of (18), then

lim
𝑛→∞

𝑧
𝑛
= 0.

Proof. Without loss of generality, we may assume that 𝑧
𝑛
> 0

for sufficiently large 𝑛. Then by condition (21) we know that
the following inequalities holds true:

𝑓
1
(𝑧
𝑖
) > 0, 𝑓

2
(𝑧
𝑖
) − 1 > 0, 𝑓

2
(𝑧
𝑖
) − 2 < 0 (50)

for sufficiently large 𝑖. Moreover, it is can be seen from (18)
that

𝑧
𝑛+1

− 𝑧
𝑛
= − ℎ𝜃𝑇𝑓

1
(𝑧
𝑛+1

) [𝑓
2
(𝑧
𝑛+1−𝑚

) − 1]

− ℎ (1 − 𝜃) 𝑇𝑓
1
(𝑧
𝑛
) [𝑓
2
(𝑧
𝑛−𝑚

) − 1]

+ ℎ𝜃𝑇 [𝑓
2
(𝑧
𝑛+1−𝑚

) − 2]

+ ℎ (1 − 𝜃) 𝑇 [𝑓
2
(𝑧
𝑛−𝑚

) − 2] ,

(51)

which gives

𝑧
𝑛+1

− 𝑧
𝑛
− ℎ𝜃𝑇 [𝑓

2
(𝑧
𝑛+1−𝑚

) − 2]

− ℎ (1 − 𝜃) 𝑇 [𝑓
2
(𝑧
𝑛−𝑚

) − 2] < 0.

(52)

Thus

𝑧
𝑛+1

− 𝑧
𝑛
< ℎ𝜃𝑇 [𝑓

2
(𝑧
𝑛+1−𝑚

) − 2]

+ ℎ (1 − 𝜃) 𝑇 [𝑓
2
(𝑧
𝑛−𝑚

) − 2] < 0,

(53)

then the sequence {𝑧
𝑛
} is decreasing, and therefore

lim
𝑛→∞

𝑧
𝑛
= 𝜂 ∈ [0,∞) . (54)

Nowwewill prove that 𝜂 = 0. If 𝜂 > 0, then there exists𝑁 ∈ N
and 𝜀 > 0 such that for 𝑛 − 𝑚 > 𝑁, 0 < 𝜂 − 𝜀 < 𝑧

𝑛
< 𝜂 + 𝜀.

Hence 𝜂 − 𝜀 < 𝑧
𝑛−𝑚

and 𝜂 − 𝜀 < 𝑧
𝑛−1+𝑚

. So inequality (52)
yields

𝑧
𝑛+1

− 𝑧
𝑛
− ℎ𝜃𝑇 [

1 + 𝐾
𝜇

1 + 𝐾𝜇𝑒𝜇(𝜂−𝜀)
− 1]

− ℎ (1 − 𝜃) 𝑇 [
1 + 𝐾

𝜇

1 + 𝐾𝜇𝑒𝜇(𝜂−𝜀)
− 1] < 0,

(55)
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Figure 1: The analytic solution of (57).
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Figure 2: The numerical solution of (57) with𝑚 = 40 and 𝜃 = 0.2.

which implies that 𝑧
𝑛+1

− 𝑧
𝑛
< 𝐵 < 0, where

𝐵 =
ℎ𝑇𝐾
𝜇
(1 − 𝑒

𝜇(𝜂−𝜀)
)

1 + 𝐾𝜇𝑒𝜇(𝜂−𝜀)
. (56)

Thus 𝑧
𝑛
→ −∞ as 𝑛 → ∞, which is a contradiction to (54).

This completes the proof.

Therefore, the second main theorem of this paper is as
follows.

Theorem 22. Let 𝑥
𝑛
be a positive solution of (19), which does

not oscillate about 𝐾∗, then lim
𝑛→∞

𝑥
𝑛
= 𝐾
∗.

5. Numerical Experiments

In this section, we will give some numerical examples to
illustrate our results.

x
n

tn
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Figure 3: The numerical solution of (57) with𝑚 = 20 and 𝜃 = 0.8.
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Figure 4: The analytic solution of (58).
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Figure 5: The numerical solution of (58) with𝑚 = 25 and 𝜃 = 0.3.
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Figure 6: The numerical solution of (58) with𝑚 = 50 and 𝜃 = 0.6.
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Figure 7: The numerical solution of (58) with𝑚 = 5 and 𝜃 = 0.6.
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Figure 8: The analytic solution of (59).
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Figure 9: The numerical solution of (59) with𝑚 = 10 and 𝜃 = 0.4.
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Figure 10:The numerical solution of (59) with𝑚 = 15 and 𝜃 = 0.75.

Firstly, we consider the equation

𝑥


(𝑡) =
2

1 + 𝑥7 (𝑡 − 2)
− 𝑥 (𝑡) , (57)

with initial value 𝑥(𝑡) = 0.5 for 𝑡 ≤ 0. In (57), it is easy to see
that condition (11) holds true and 𝐿𝜏 ≈ 7 > 1. That is, the
analytic solutions of (57) are oscillatory. In Figures 1–3, we
draw the figures of the analytic solutions and the numerical
solutions of (57), respectively. The parameters 𝑚 = 40, 𝜃 =

0.2 in Figure 2 and 𝑚 = 20, 𝜃 = 0.8 in Figure 3. From
the two figures, we can see that the numerical solutions of
(57) oscillate about 𝐾∗ = 1, which are in agreement with
Theorem 19.

Secondly, we consider

𝑥


(𝑡) =
1

1 + 𝑥6 (𝑡 − 1)
− 2𝑥 (𝑡) , (58)

with initial value 𝑥(𝑡) = 0.6 for 𝑡 ≤ 0. In (58), it is not difficult
to see that condition (11) is fulfilled. That is, the analytic
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solutions of (58) are oscillatory. In Figures 4–7, we draw the
figures of the analytic solutions and the numerical solutions of
(58), respectively.The parameters𝑚 = 25, 𝜃 = 0.3 in Figure 5,
𝑚 = 50, 𝜃 = 0.6 in Figure 6 and 𝑚 = 5, 𝜃 = 0.6 in Figure 7.
We can see from the three figures that the numerical solutions
of (58) oscillate about𝐾∗ ≈ 0.4929, which are consistent with
Theorem 19. On the other hand, by direct calculation, we get
ℎ
0
≈ 0.1882. We notice that ℎ = 0.02 < ℎ

0
and ℎ = 0.2 > ℎ

0
in

Figures 6 and 7, respectively, so the stepsize ℎ
0
is not optimal.

Thirdly, we consider another equation,

𝑥


(𝑡) =
0.2 × 2.1

8

2.18 + 𝑥8 (𝑡 − 0.15)
− 0.1𝑥 (𝑡) , (59)

with initial value 𝑥(𝑡) = 39 for 𝑡 ≤ 0. For (59), it is
easy to see that 𝐿𝜏e𝑇𝜏+1 ≈ 0.0505 < 1, so the condition
(11) is not satisfied. That is, the analytic solutions of (59)
are nonoscillatory. In Figures 8–10, we draw the figures of
the analytic solutions and the numerical solutions of (59),
respectively. In Figure 8, we can see that 𝑥(𝑡) → 𝐾

∗
≈

1.6949 as 𝑡 → ∞. From Figures 9 and 10, we can also see
that the numerical solutions of (59) satisfy 𝑥

𝑛
→ 𝐾

∗
≈

1.6949 as 𝑛 → ∞. That is, the numerical method preserves
the asymptotic behavior of nonoscillatory solutions of (59),
which coincides withTheorem 22.

Finally, according to Definition 14, we can see from
these figures that the exponential 𝜃-method preserves the
oscillations of (57) and (58) and the nonoscillations of (59),
respectively.

All the above numerical examples confirmour theoretical
findings.

6. Conclusions

In this paper, we discuss the oscillations of the numerical
solutions of a nonlinear delay differential equation in the
control of erythropoiesis. The convergent exponential 𝜃-
method, namely the linear 𝜃-method and the one-leg 𝜃-
method in exponential form, is constructed. We establish
some conditions under which the numerical solutions oscil-
late in the case of oscillations of the analytic solutions.We also
prove that nonoscillatory numerical solutions can inherit the
corresponding properties of analytic solutions. It is pointed
out that the stepsize ℎ

0
in Lemma 17 is not optimal.Therefore,

our future work will be devoted to investigating this problem.

Acknowledgments

The authors would like to thank Professor Mingzhu Liu and
D. ZhanwenYang for their useful suggestions.Q.Wang’s work
is supported by the National Natural Science Foundation of
China (no. 11201084).

References

[1] L. Liu and Y. Bai, “New oscillation criteria for second-order
nonlinear neutral delay differential equations,” Journal of Com-
putational and AppliedMathematics, vol. 231, no. 2, pp. 657–663,
2009.

[2] E. M. Bonotto, L. P. Gimenes, and M. Federson, “Oscillation
for a second-order neutral differential equation with impulses,”
Applied Mathematics and Computation, vol. 215, no. 1, pp. 1–15,
2009.

[3] C. Zhang, T. Li, B. Sun, and E. Thandapani, “On the oscillation
of higher-order half-linear delay differential equations,”Applied
Mathematics Letters, vol. 24, no. 9, pp. 1618–1621, 2011.

[4] A.Weng and J. Sun, “Oscillation of second order delay differen-
tial equations,” Applied Mathematics and Computation, vol. 198,
no. 2, pp. 930–935, 2008.

[5] K. Gopalsamy, Stability and Oscillations in Delay Differential
Equations of Population Dynamics, vol. 74 of Mathematics and
Its Applications, Kluwer Academic Publishers, Dordrecht, The
Netherlands, 1992.
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