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A new 4D fractional-order chaotic system, which has an infinite number of equilibrium points, is introduced. There is no-chaotic
behavior for its corresponded integer-order system. We obtain that the largest Lyapunov exponent of this 4D fractional-order
chaotic system is 0.8939 and yield the chaotic attractor. A chaotic synchronization scheme is presented for this 4D fractional-order
chaotic system. Numerical simulations is verified the effectiveness of the proposed scheme.

1. Introduction

Because the chaotic (hyperchaotic) signal can be used
in electrical engineering, telecommunications, information
processing, material engineering, and so forth much atten-
tion has been paid to effectively generating chaotic and
hyperchaotic systems. Many chaotic (hyperchaotic) sys-
tems and fractional-order chaotic (hyperchaotic) systems
are reported in recent years [1–14], such as Lorenz chaotic
(hyperchaotic) system and its corresponded fractional-order
system, and integer-order and fractional-order Chen chaotic
(hyperchaotic) system, integer-order and fractional-order Lü
chaotic (hyperchaotic) system.

However, for all the previous integer-order and frac-
tional-order chaotic (hyperchaotic), many systems have a
finite number of equilibrium points. For example, some
chaotic systems have one equilibrium point [15–17], some
chaotic systems have two equilibrium points [18], and some
chaotic systems have three equilibrium points [1, 2, 5, 6, 9,
10], so a natural and interesting question is can we con-
struct a chaotic (hyperchaotic) system which has an infinite
number of equilibrium points? Moreover, many fractional-
order chaotic and hyperchaotic systems also possess chaotic
attractor for its corresponded integer-order system, so the

other question is as follows: are the fractional-order chaotic
and hyperchaotic systems no-chaotic behavior for its corre-
sponded integer-order system? To the best of our knowledge,
few results on the above mentioned two questions are
reported.

Motivated by the above discussions, a new 4D fractional-
order chaotic system is presented in this paper. This new
4D fractional-order chaotic system has an infinite num-
ber of equilibrium points, and no-chaotic behavior for its
corresponded integer-order system. The largest Lyapunov
exponent and chaotic attractor are yielded for the new 4D
fractional-order chaotic system. A chaotic synchronization
scheme is presented for this new 4D fractional-order chaotic
system.

2. A New 4D Fractional-Order Chaotic System

Now, a new 4D fractional-order chaotic system is con-
structed, which is described as follows:

𝑑
𝑞
𝑥1

𝑑𝑡𝑞
= 10 (𝑥2 − 𝑥1) + 𝑥4

𝑑
𝑞
𝑥2

𝑑𝑡𝑞
= 15𝑥1 − 𝑥1𝑥3
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𝑑
𝑞
𝑥3

𝑑𝑡𝑞
= −2.5𝑥3 + 4𝑥1

2

𝑑
𝑞
𝑥4

𝑑𝑡𝑞
= −10𝑥2 − 𝑥4,

(1)

where 𝑞 = 0.95 is the fractional-order, and 𝑥𝑖 (𝑖 = 1, 2, 3, 4)
are real state variables.

The real equilibrium points of system (1) is calculated by

10 (𝑥2 − 𝑥1) + 𝑥4 = 0

15𝑥1 − 𝑥1𝑥3 = 0

−2.5𝑥3 + 4𝑥1
2
= 0

−10𝑥2 − 𝑥4 = 0.

(2)

Obviously, (𝑥1, 𝑥2, 𝑥3, 𝑥4) = (0, 𝑥2, 0, −10𝑥2) is the
real equilibrium points of system (1), where 𝑥2 is a any
real numbers, so system (1) has an infinite number of real
equilibrium points. To the best of our knowledge, this result
is different from all the previous fractional-order chaotic
and hyperchaotic systems. It implies that we yield a new 4D
fractional-order system, which has an infinite number of real
equilibrium points.

The Jacobian 𝐽 at all equilibrium points is

𝐽 = (

−10 10 0 1

15 0 0 0

0 0 −2.5 0

0 −10 0 −1

) (3)

and its eigenvalues are 𝜆1 = −18.548, 𝜆2 = −2.5, 𝜆3 = 0, and
𝜆4 = 7.548 for all 𝑥2. Therefore, all the equilibrium points in
system (1) are unstable.

The dynamical behaviors of system (1) for its corre-
sponded integer-order system (𝑞 = 1) can be characterized
by its Lyapunov exponents. The Lyapunov exponents for
its corresponded integer-order system are 0, 0, −0.779, and
−12.724, respectively. Therefore, the fractional-order system
(1) no-chaotic behaviors for 𝑞 = 1, and which is periodic
orbit for its corresponded integer-order system. Figure 1
shows the periodic orbit of fractional-order system (1) for its
corresponded integer-order system (𝑞 = 1).

Now, we discuss the numerical solution of fractional
differential equations. It is well known that there are
direct time domain approximation (the improved version
of Adams-Bashforth-Moulton numerical algorithm) and
frequency domain approximation for nonlinear fractional-
order system [6]. However, frequency domain approximation
may result in wrong consequences [19], so the direct time
domain approximation [6] numerical simulation is used to
solve the fractional-order system in this paper. Let ℎ =

𝑇/𝑁, 𝑡𝑛 = 𝑛ℎ (𝑛 = 0, 1, 2 . . . , 𝑁), and initial condition

(𝑥1(0), 𝑥2(0), 𝑥3(0), 𝑥4(0)), so the fractional-order chaotic
system (1) can be discretized as follows:

𝑥1 (𝑛 + 1)

= 𝑥1 (0) +
ℎ
𝑞

Γ (𝑞 + 2)

× [

[

10 (𝑥
𝑝

2
(𝑛 + 1) − 𝑥

𝑝

1
(𝑛 + 1)) + 𝑥

𝑝

4
(𝑛 + 1)

+

𝑛

∑

𝑗=0

𝛼1,𝑗,𝑛+1 × (10 (𝑥2 (𝑗)−𝑥1 (𝑗))+𝑥4 (𝑗))
]

]

𝑥2 (𝑛 + 1)

= 𝑥2 (0) +
ℎ
𝑞

Γ (𝑞 + 2)

× [

[

15𝑥
𝑝

1
(𝑛 + 1) − 𝑥

𝑝

1
(𝑛 + 1) 𝑥

𝑝

3
(𝑛 + 1)

+

𝑛

∑

𝑗=0

𝛼2,𝑗,𝑛+1 (15𝑥1 (𝑗) − 𝑥1 (𝑗) 𝑥3 (𝑗))
]

]

𝑥3 (𝑛 + 1)

= 𝑥3 (0) +
ℎ
𝑞

Γ (𝑞 + 2)

× [

[

4(𝑥
𝑝

1
(𝑛 + 1))

2

− 2.5𝑥
𝑝

3
(𝑛 + 1)

+

𝑛

∑

𝑗=0

𝛼3,𝑗,𝑛+1 (4(𝑥1 (𝑗))
2
− 2.5𝑥3 (𝑗))

]

]

𝑥4 (𝑛 + 1)

= 𝑥4 (0) +
ℎ
𝑞

Γ (𝑞 + 2)

× [

[

− 10𝑥
𝑝

2
(𝑛 + 1) − 𝑥

𝑝

4
(𝑛 + 1)

+

𝑛

∑

𝑗=0

𝛼4,𝑗,𝑛+1 × (−10𝑥2 (𝑗) − 𝑥4 (𝑗))
]

]

,

(4)

where

𝑥
𝑝

1
(𝑛 + 1) = 𝑥1 (0) +

1

Γ (𝑞)

×

𝑛

∑

𝑗=0

𝑏1,𝑗,𝑛+1 × [10 (𝑥2 (𝑗) − 𝑥1 (𝑗)) + 𝑥4 (𝑗)]
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Figure 1: The periodic orbit of fractional-order system (1) for its corresponded integer-order system (𝑞 = 1).

𝑥
𝑝

2
(𝑛 + 1) = 𝑥2 (0) +

1

Γ (𝑞)

×

𝑛

∑

𝑗=0

𝑏2,𝑗,𝑛+1 [15𝑥1 (𝑗) − 𝑥1 (𝑗) 𝑥3 (𝑗)]

𝑥
𝑝

3
(𝑛 + 1) = 𝑥3 (0) +

1

Γ (𝑞)

×

𝑛

∑

𝑗=0

𝑏3,𝑗,𝑛+1 [4(𝑥1 (𝑗))
2
− 2.5𝑥3 (𝑗)]

𝑥
𝑝

4
(𝑛 + 1) = 𝑥4 (0) +

1

Γ (𝑞)

×

𝑛

∑

𝑗=0

𝑏4,𝑗,𝑛+1 × [−10𝑥2 (𝑗) − 𝑥4 (𝑗)] ,

(5)

and for 𝑖 = 1, 2, 3, 4

𝛼𝑖,𝑗,𝑛+1

=

{{

{{

{

𝑛
𝑞+1
− (𝑛 − 𝑞) (𝑛 + 1)

𝑞
, 𝑗= 0

(𝑛−𝑗+2)
𝑞+1
+(𝑛 − 𝑗)

𝑞+1
−2(𝑛 −𝑗 +1)

𝑞+1
, 1≤ 𝑗 ≤ 𝑛

1, 𝑗= 𝑛 + 1,

𝑏𝑖,𝑗,𝑛+1 =
ℎ
𝑞

𝑞
[(𝑛 − 𝑗 + 1)

𝑞
− (𝑛 − 𝑗)

𝑞
] , 0 ≤ 𝑗 ≤ 𝑛.

(6)

The error of this approximation is described as follows:

𝑥𝑖 (𝑡𝑛) − 𝑥𝑖 (𝑛)
 = 𝑜 (ℎ

𝑝
) , 𝑝 = min (2, 1 + 𝑞) . (7)

The dynamical behaviors of 4D fractional-order system
(1) can be characterized by its largest Lyapunov exponent. By
computer simulation, we can obtain that the largest Lyapunov
exponent of fractional-order system (1) is 0.8939, so the 4D
fractional-order system (1) is chaotic. The chaotic attractor is
shown in Figure 2.

According to the above mentioned, we obtain a new 4D
fractional-order chaotic system, which has an infinite num-
ber of real equilibrium points. Moreover, the 4D fractional-
order chaotic system is no-chaotic behaviors for its corre-
sponded integer-order system (𝑞 = 1).The result in our paper
is different from all the previous fractional-order chaotic and
hyperchaotic systems.

3. Chaotic Synchronization for the New 4D
Fractional-Order Chaotic System

In this section, the chaotic synchronization for the new 4D
fractional-order chaotic system (1) is considered. Based on
the stability theory of nonlinear fractional-order systems
[20–24], one synchronization scheme is proposed, and some
numerical simulations are performed.
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Figure 2: The chaotic attractor of 4D fractional-order system (1).

Now, the response fractional-order chaotic system is
considered as

𝐷
𝑞
𝑦1 = 10 (𝑦2 − 𝑦1) + 𝑦4 + 𝑢1

𝐷
𝑞
𝑦2 = 15𝑦1 − 𝑦1𝑦3 + 𝑢2

𝐷
𝑞
𝑦3 = −2.5𝑦3 + 4𝑦1

2
+ 𝑢3

𝐷
𝑞
𝑦4 = −10𝑦2 − 𝑦4 + 𝑢4,

(8)

where 𝑢𝑖 (𝑖 = 1, 2, 3, 4) is the feedback controller, and 𝑦𝑖 (𝑖 =
1, 2, 3, 4) are real state variables. Our goal is to choose suitable
𝑢𝑖 (𝑖 = 1, 2, 3, 4) such that drive system (1) and response
system (8) can be achieved with chaotic synchronization.

Definition the synchronization errors are 𝑒𝑖 = 𝑦𝑖 −

𝑥𝑖 (𝑖 = 1, 2, 3, 4).The following Theorem 1 is given in order to
achieve the chaotic synchronization between the fractional-
order chaotic system (1) and the fractional-order chaotic
system (8).

Theorem 1. If the feedback controllers are

𝑢1 = (𝑦3 − 25) 𝑒2 − 4 (𝑦1 + 𝑥1) 𝑒3

𝑢2 = 10𝑒4

𝑢3 = 𝑥1𝑒2

𝑢4 = −𝑒1,

(9)

then the chaotic synchronization between fractional-order
chaotic system (1) and fractional-order chaotic system (8) can
be arrived.

Proof . Combining the fractional-order chaotic system (1),
fractional-order chaotic system (8), and the feedback con-
troller (9), we can obtain the following error system

(

𝐷
𝑞
𝑒1

𝐷
𝑞
𝑒2

𝐷
𝑞
𝑒3

𝐷
𝑞
𝑒4

)

=(

−10 −15 + 𝑦3 −4 (𝑦1 + 𝑥1) 1

15 − 𝑦3 0 −𝑥1 10

4 (𝑦1 + 𝑥1) 𝑥1 −2.5 0

−1 −10 0 −1

)

×(

𝑒1
𝑒2
𝑒3
𝑒4

)

Δ

= 𝐴 (𝑥, 𝑦)(

𝑒1
𝑒2
𝑒3
𝑒4

),

(10)

where matrix

𝐴 (𝑥, 𝑦)
Δ

= (

−10 −15 + 𝑦3 −4 (𝑦1 + 𝑥1) 1

15 − 𝑦3 0 −𝑥1 10

4 (𝑦1 + 𝑥1) 𝑥1 −2.5 0

−1 −10 0 −1

) ,

(11)

x = (x1, x2, x3, x4)
T, y = (y

1
, y
2
, y
3
, y
4
)
T.
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Figure 3: The synchronization errors between the drive systems (1) and the response system (8).

Let 𝜆 be one of the eigenvalues of 𝐴(𝑥, 𝑦) and 𝜓 is the
corresponding nonzero eigenvector, so

𝐴 (𝑥, 𝑦) 𝜓 = 𝜆𝜓,

𝜓
H
𝐴(𝑥, 𝑦)

H
= 𝜆𝜓

H
,

(12)

where H is conjugate transpose, and 𝜆 is the conjugate for
eigenvalues 𝜆.

According to (12), one can obtain

𝜓
H
𝐴 (𝑥, 𝑦) 𝜓 + 𝜓

H
𝐴(𝑥, 𝑦)

H
𝜓 = 𝜓

H
𝜆𝜓 + 𝜆𝜓

H
𝜓. (13)

Therefore

𝜆 + 𝜆 =
𝜓
H
[diag (−20, 0, −5, −2)] 𝜓

𝜓H𝜓
, (14)

so

𝜆 + 𝜆 ≤ 0. (15)

That is

arg |𝜆| ≥ 𝜋
2
>
𝑞𝜋

2
. (16)

Using the stability theory of nonlinear fractional-order
systems, one can yield that the error system (10) is asymp-
totically stable, so

lim
𝑡→+∞

𝑒𝑖 = 0 (𝑖 = 1, 2, 3, 4) . (17)

Equation (17) indicates that the chaotic synchronization
between fractional-order chaotic system (1) and fractional-
order chaotic system (8) can be achieved. The proof is
completed.

Now, numerical simulations are considered. The numer-
ical results are shown as Figure 3, in which the initial
conditions are x = (3, 3, 1, 2)T for drive system (1), and y =
(8, 7, 4, 6)

T for response system (8), respectively.

4. Conclusions

In this paper, we obtain a new 4D fractional-order chaotic
system, which has an infinite number of equilibrium points
and no-chaotic behavior for its corresponded integer-order
system. We yield the largest Lyapunov exponent of the new
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4D fractional-order system and the Lyapunov exponents for
its corresponded integer-order system. The chaotic attractor
for the new 4D fractional-order chaotic system and the
periodic orbit for its corresponded integer-order system are
given. Finally, we realize the chaotic synchronization for the
new 4D fractional-order chaotic system, and some numerical
simulations are performed.
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